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Leslie model

Let N(t) = (n1(t), . . . , nm(t))T ,

N(t + 1) =


β1 β2 . . . βm−1 βm
s1 0 . . . 0 0
0 s2 . . . 0 0
...

...
. . .

...
...

0 0 . . . sm−1 0

N(t)

i.e.,
N(t + 1) = LN(t)

where L is a Leslie matrix
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Write

I time as ti (i ∈ N)

I age as ai (i ∈ N)

I birth as βi = β(ai )

I survival as si = s(ai ) with s(ai ) = 0 for i > m

I population numbers/density as ni (t) = n(ti , ai )

Then Leslie model is

n(ti , ai ) = s(ai−1)n(ti−1, ai−1)

and

n(ti+1, 0) := n(ti+1, a0) =
∞∑
i=0

β(ai )n(ti , ai )
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Time and age go hand in hand

Assume age and time evolve similarly, i.e.,

∆t = ti+1 − ti = ai+1 − ai = ∆a

From discrete to continuous structure p. 4



Exponential survival time

Suppose population decreases exponentially in time

For small ∆a,

s(ai−1) = e−µ(ai−1)∆a ' 1− µ(ai−1)∆a

where µ(ai ) is mortality at age ai
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Density for age ai at time ti+1 as function of density for age ai−1

at time ti :
n(ti+1, ai ) = s(ai−1)n(ti , ai−1)

So, assuming exponential decrease of population in time,

n(ti+1, ai ) ' [1− µ(ai−1)∆a]n(ti , ai−1)

i.e.,
s(ai−1) ' [1− µ(ai−1)∆a]
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We have
n(ti+1, ai ) ' [1− µ(ai−1)∆a]n(ti , ai−1)

so

n(ti+1, ai )− n(ti , ai−1) ' [1− µ(ai−1)∆a]n(ti , ai−1)− n(ti , ai−1)

' −µ(ai−1)n(ti , ai−1)∆a
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Do the usual trick:

n(ti+1, ai )−n(ti , ai−1) = n(ti+1, ai )−n(ti , ai ) + n(ti , ai )−n(ti , ai−1)

So

n(ti+1, ai )− n(ti , ai−1) ' −µ(ai−1)n(ti , ai−1)∆a

takes the form

n(ti+1, ai )− n(ti , ai ) + n(ti , ai )− n(ti , ai−1) '
− µ(ai−1)n(ti , ai−1)∆a

i.e.,

n(ti+1, ai )− n(ti , ai )

∆a
+

n(ti , ai )− n(ti , ai−1)

∆a
'

− µ(ai−1)n(ti , ai−1)
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We have

n(ti+1, ai )− n(ti , ai )

∆a
+

n(ti , ai )− n(ti , ai−1)

∆a
'

− µ(ai−1)n(ti , ai−1)

But recall that ∆a = ∆t, so

n(ti+1, ai )− n(ti , ai )

∆t
+

n(ti , ai )− n(ti , ai−1)

∆a
'

− µ(ai−1)n(ti , ai−1)

Take limit as ∆t = ∆a→ 0:

∂

∂t
n(t, a) +

∂

∂a
n(t, a) = −µ(a)n(t, a)
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Describing births
Let b(a) be reproduction rate at age a, then

B = births from tj to tj+1

=

∫ ∞
0

∫ tj+1

tj

b(a)n(x , a) dx da

'
∫ ∞

0
b(a)

n(tj+1, a) + n(tj , a)

2
∆t da

(assuming we track females and sex-ratio 1)

' 1

2

∞∑
i=0

b(ai )[n(tj+1, ai ) + n(tj , ai )]∆t∆a

=
1

2

∞∑
i=0

b(ai )n(tj , ai )∆t∆a +
1

2

∞∑
i=0

b(ai )s(ai−1)n(tj , ai−1)∆t∆a

=
1

2

∞∑
i=0

[b(ai )∆t∆a + b(ai )s(ai−1)∆t∆a]n(tj , ai )
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Let ` be probability that newborns survive for period of
∆t/2 = ∆a/2, then

n(tj+1, 0) ' `B =
`

2

∞∑
i=0

[b(ai )∆t∆a + b(ai )s(ai−1)∆t∆a]n(tj , ai )

So

β(ai ) '
`

2
[b(ai )∆t∆a + b(ai+1)s(ai )∆t∆a]
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McKendrick–Von Foerster equation

∂

∂t
n(t, a) +

∂

∂a
n(t, a) = −µ(a)n(t, a)

with boundary condition (BC)

n(t, 0) =

∫ ∞
0

b(a)n(t, a)da

and initial condition (IC)

n(0, a) = f (a)

Linear first-order hyperbolic PDE
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Suppose u(t, x) satisfies

a(t, x)
∂u

∂t
+ b(t, x)

∂u

∂x
+ c(t, x)u = 0

with x ∈ R, t ∈ R+ and IC:

u(0, x) = φ(x)

(BC not required as x ∈ R)
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Method of characteristics

Express PDE as an ODE (or DDE) along characteristic curves, the
latter expressed in terms of auxiliary variables s and τ . Along
characteristics, τ constant

Assume
u(t, x) ≡ u(t(s, τ), x(s, τ)) ≡ u(s, τ)

Find characteric curves by solving

dt

ds
= a(t, x)

dx

ds
= b(t, x)

with IC

t(0, τ) = 0, x(0, τ) = τ, u(0, τ) = φ(τ)
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t(0, τ) = 0, x(0, τ) = τ, u(0, τ) = φ(τ)

t

x
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Using the chain rule,

du

ds
=
∂u

∂t

dt

ds
+
∂u

∂x

dx

ds

= a(t, x)
∂u

∂t
+ b(t, x)

∂u

∂x

So, along characteristic curves (where τ constant),

a(t, x)
∂u

∂t
+ b(t, x)

∂u

∂x
+ c(t, x)u = 0

and its IC u(0, x) = φ(x) is replaced by

du

ds
+ c(t, x)u = 0, s ∈ R+

with IC
u(0, τ) = φ(τ)
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McKendrick–Von Foerster equation

∂

∂t
n(t, a) +

∂

∂a
n(t, a) = −µ(a)n(t, a)

with boundary condition (BC)

n(t, 0) =

∫ ∞
0

b(a)n(t, a)da

and initial condition (IC)

n(0, a) = f (a)
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Using characteristics

Here, PDE has a BC, so instead of an IVP, we will get a BVP.
First,

a(t, x) = b(t, x) = 1

so characteristic curves are found by integrating

dt

ds
=

dx

ds
= 1

with IC
a > t : t(0, τ) = 0 and x(0, τ) = τ

and
a < t : t(0, τ) = τ and x(0, τ) = 0
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So we find

a > t : t = s and a = s + τ, so τ = a− t

and
a < t : t = s + τ and a = s, so τ = t − a

So K–VF reduces to
dn

ds
= −µ(a)n

with IC

a > t : n(0, τ) = f (τ)

a < t : n(τ, 0) =

∫ ∞
0

b(a)n(τ, a)da
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Case a > t

dn

ds
= −µ(a)n, n(0, τ) = f (τ)

Integrated form of the solution:

n(s, τ) = n(0, τ) exp

[
−
∫ s

0
µ(x + τ)dx

]
So

n(s, τ) = f (τ) exp

[
−
∫ s

0
µ(x + τ)dx

]
= f (a− t) exp

[
−
∫ s

0
µ(x + a− t)dx

]
, y = x + a− t

n(t, a) = f (a− t) exp

[
−
∫ a

a−t
µ(y)dy

]
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Case a < t

dn

ds
= −µ(a)n, n(0, τ) = f (τ)

Integrated form of the solution:

n(s, τ) = n(0, τ) exp

[
−
∫ s

0
µ(x)dx

]
, τ = t − a

So

n(t, a) = n(t − a, 0) exp

[
−
∫ a

0
µ(y)dy

]
Since RHS involves n(t − a, 0), no explicit solution. Can solve this
iteratively (Picard) as an integral equation
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Asymptotic behaviour

If no age dependence, model reduces to a classic exponential
growth model. So, by analogy, we seek solutions of the following
form

n(t, a) = eλtr(a)

with r(a) ∈ R+, called similarity or seperable solutions

If λ < 0, then limt→∞ n(t, a) = 0, if λ > 0, then
limt→∞ n(t, a) =∞ provided r(a) > 0. If λ = 0, then
n(t, a) = r(a) is an equilibrium
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Substitute n(t, a) = eλtr(a) into

∂

∂t
n(t, a) +

∂

∂a
n(t, a) = −µ(a)n(t, a)

giving
λeλtr(a) + eλtr ′(a) = −µ(a)eλtr(a)

or
r ′(a) = −[µ(a) + λ]r(a)
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r ′(a) = −[µ(a) + λ]r(a)

Separate, integrate, giving

r(a) = r(0) exp

[
−λa−

∫ a

0
µ(s) ds

]
> 0

for r(0) > 0. Substitute n(t, a) = eλtr(a) into integral birth
equation:

n(t, 0) = eλtr(0)

=

∫ ∞
0

b(a)n(t, a) da

=

∫ ∞
0

b(a)eλtr(0) exp

[
−λa−

∫ a

0
µ(s) ds

]
da
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We have

eλtr(0) =

∫ ∞
0

b(a)eλtr(0) exp

[
−λa−

∫ a

0
µ(s) ds

]
da

Eliminate eλtr(0), giving

1 =

∫ ∞
0

b(a) exp

[
−λa−

∫ a

0
µ(s) ds

]
da

which is the characteristic equation associated to the PDE
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Let

φ(λ) =

∫ ∞
0

b(a) exp

[
−λa−

∫ a

0
µ(s)ds

]
Then

R0 = φ(0) =

∫ ∞
0

b(a) exp

[
−
∫ a

0
µ(s)ds

]
is the inherent net reproductive number

φ(λ)↘ on R, limλ→−∞ φ(λ) = +∞ and limλ→∞ φ(λ) = −∞

R0 < 1 iff the solution λ0 to φ(λ) = 1 satisfies λ0 < 0. Also,
R0 > 1 iff λ0 > 0

Theorem
Assume sols to M–VF PDE are of the form n(t, a) = eλtr(a). If
R0 < 1, then limt→∞ n(t, a) = 0 and if R0 > 1, then
limt→∞ n(t, a) =∞
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