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Leslie model

Let N(t) = (mi(t), ..., nm(t))7,
51 52 ﬁmfl Bm

51 0 e 0 0
Nit+1)=| 0 = 0 0 |n@
0 O Sm—1 O

N(t+1) = LN(t)

where L is a Leslie matrix

From discrete to continuous structure
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Write
> time as t; (i € N)
» age as a; (1 € N)
» birth as 8; = B(a;)
» survival as s; = s(a;) with s(a;) =0 for i > m
» population numbers/density as n;j(t) = n(t;, a;)

Then Leslie model is

n(t;, a;) = s(aji—1)n(ti—1, ai—1)

and

n(tit1,0) := n(tit1, ao) ZB n(ti, a;)

From discrete to continuous structure
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Time and age go hand in hand

Assume age and time evolve similarly, i.e.,

At =tiy1 —ti=ajp1—a; = Aa

From discrete to continuous structure
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Exponential survival time

Suppose population decreases exponentially in time

For small Aa,
s(aj_1) = e ME-D8a ~ 1 (5 1)Aa

where p(a;) is mortality at age a;

From discrete to continuous structure
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Density for age a; at time t;j;1 as function of density for age a;_1
at time t;:
n(tit1,a;) = s(ai—1)n(ti, ai-1)

So, assuming exponential decrease of population in time,

n(t,~+1, a,-) ~ []. — ,u(a,-_l)Aa]n(t,-, a,-_l)

s(aj—1) ~ [1 — pu(aj—1)A4]

From discrete to continuous structure
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We have
n(tiv1,a;) = [1 — p(aj-1)Aaln(t;, ai-1)

SO

n(tiy1,a;) — n(t, ai—1) ~ [1 — p(ai—1)Aaln(t;, ai—1) — n(t;, ai—1)
~ —,u(a,-_l)n(t,-, a;_l)Aa

From discrete to continuous structure
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Do the usual trick:
n(tiz1, a;)—n(ti,ai—1) = n(tiz1, ai)—n(ti, a;) + n(t;, a;)—n(t;, ai—1)
So
n(tiz1,a;) — n(t;, aj—1) ~ —p(ai—1)n(t;,ai—1)Aa
takes the form

n(tiz1,ai) — n(ti, a;) + n(ti, a;) — n(ti, aji—1) ~
— u(a,-_l)n(t,-,a,-_l)Aa

ie.,

n(ti+1,ai) — n(ti, ai) n n(ti, ai) — n(ti,ai-1)
Aa Aa N

— p(aj—1)n(ti, ai-1)

From discrete to continuous structure
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We have

n(tit1,a;) — n(ti, ai) n n(ti, ai) — n(ti,ai-1)
Aa Aa -
— p(ai—1)n(ti, ai—1)

But recall that Aa = At, so

n(tivi, ai) — n(ti,ai) | n(ti,a) — n(ti, ai-1)
At Aa -

— u(a,-_l)n(t,', ai—l)

Take limit as At = Aa — 0:

LAUPYS MAPERE

From discrete to continuous structure
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Describing births
Let b(a) be reproduction rate at age a, then

B = births from t; to tj41

tJ+1
/ / ) dx da

/ b tJ+17 )+n(tj7 )At da

(assuming we track females and sex-ratio 1)

[y

= Z b(a;)[n(tjs1,a;) + n(t;, a;)|AtAa

—be n(tj, a;)Atha + = Zb s(ai_1)n(t;, aj_1)AtAa
i=0

fZ[b ai)AtAa+ b(a;)s(aj_1)AtAaln(t), a;)
i=0

From discrete to continuous structure
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Let ¢ be probability that newborns survive for period of
At/2 = Aa/2, then

E oo
n(tj41,0) = (B = - > [b(aj)AtAa+ b(aj)s(aj—1)AtAaln(t;, a)
i=0

So
[b(a;)AtAa+ b(ajy1)s(a;)AtAal

N~

Blai) ~

From discrete to continuous structure
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McKendrick—Von Foerster equation

gtn(t, a) + aaan(n a) = —p(a)n(t, a)

with boundary condition (BC)

n(t,0) = /OOO b(a)n(t, a)da
and initial condition (1C)
n(0,a) = f(a)

Linear first-order hyperbolic PDE

McKendrick—Von Foerster equation
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Suppose u(t, x) satisfies

a(t, x)

ou

ot

+ b(t,x)gi +c(t,x)u=0

with x € R, t € R} and IC:

u(0,x) = ¢(x)

(BC not required as x € R)

The method of characteristics
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Method of characteristics

Express PDE as an ODE (or DDE) along characteristic curves, the
latter expressed in terms of auxiliary variables s and 7. Along
characteristics, 7 constant

Assume
u(t,x) = u(t(s,7),x(s,7)) = u(s, 1)

Find characteric curves by solving

% = a(t, x) o _ b(t, x)

with IC

t(0,7) =0, x(0,7)=r, u(0,7) = ¢(7)

The method of characteristics
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t(0,7) =0,

4

)

/i

The method of characteristics
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Using the chain rule,

du Oudt Oudx

ds  Ords oxds
@ ou

a(t, x) o + b(t,x)a

So, along characteristic curves (where 7 constant),

ou ou
a(t,x)a + b(t,x)& + c(t,x)u=0

and its I1C u(0, x) = ¢(x) is replaced by

d
£+C(t7X)U= 0, seRy

with 1C
u(0,7) = ¢(7)

The method of characteristics
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McKendrick—Von Foerster equation

%n(t, a) + %”(R a) = —p(a)n(t, a)

with boundary condition (BC)

n(t,0) = [ bla
and initial condition (1C)

n(0,a) = f(a)

Studying the McKendrick—Von Foerster equation
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Using characteristics

Here, PDE has a BC, so instead of an IVP, we will get a BVP.

First,
a(t,x) = b(t,x) =1

so characteristic curves are found by integrating

d o
ds ds
with 1C
a>t: t(0,7)=0and x(0,7) =71
and

a<t: t(0,7)=r7and x(0,7)=0

Studying the McKendrick—Von Foerster equation
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So we find

a>t: t=sanda=s+7,so7T=a—t

and
a<t: t=s+7anda=s,soT=t—a
So K-VF reduces to
dn _ _ (a)n
ds #

with 1C
a>t: n(0,7)="(7)

a<t: n(r0)= b(a)n(r,a)da

Studying the McKendrick—Von Foerster equation
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Casea>t

A%:—M@m n(0,7) = £(7)

Integrated form of the solution:
S
n(s,7) = n(0,7) exp {—/ p(x + 7')de|
0
So

mﬂ_mwm[Amﬂwﬂ

f(a—t)exp /,ux—{—a—tdx], y=x+a-—t

-
n(t,a)_fa—texp[ / wuly ]

Studying the McKendrick—Von Foerster equation
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Casea<t

o = —u(a)n, n(0,7) = £(r)

Integrated form of the solution:
n(s,7) = n(0,7) exp {—/ ,u(x)dx] , T=t—a
0
So
a
n(t,a) = n(t — a,0)exp [—/ ,u(y)dy}
0

Since RHS involves n(t — a,0), no explicit solution. Can solve this
iteratively (Picard) as an integral equation

Studying the McKendrick—Von Foerster equation

p.
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Asymptotic behaviour

If no age dependence, model reduces to a classic exponential
growth model. So, by analogy, we seek solutions of the following
form

n(t,a) = e*r(a)

with r(a) € Ry, called similarity or seperable solutions

If A <0, then lim;_ n(t,a) =0, if A >0, then
lim¢—oo n(t,a) = oo provided r(a) > 0. If A =0, then
n(t,a) = r(a) is an equilibrium

Studying the McKendrick—Von Foerster equation
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Substitute n(t,a) = e*tr(a) into

5.n(ta) + aaan(t a) = —p(a)n(t, a)
giving

AeMr(a) + eMr'(a) = —p(a)e?tr(a)
or

r'(a) = —[u(a) + Alr(a)

Studying the McKendrick—Von Foerster equation
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r'(a) = —[u(a) + Alr(a)

Separate, integrate, giving

H(a) = r(0) exp [—)\a _ /O " u(s) ds] >0

for r(0) > 0. Substitute n(t,a) = e*tr(a) into integral birth
equation:

n(t,0) = e*r(0)
:/Oo b(a)n(t, a) da
0

= /Ooo b(a)eAtr(O) exp [—)\a — /Oa u(s) ds] da

Studying the McKendrick—Von Foerster equation
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We have
eMr(0) = /Ooo b(a)e*tr(0) exp [—)\a - /Oa u(s) ds] da

Eliminate e*tr(0), giving

1:/000 b(a) exp [—Aa—/oa,u(s) ds} da

which is the characteristic equation associated to the PDE

Studying the McKendrick—Von Foerster equation
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Let

Then - 5
Ro=00)= [ bayes |- [“uts)as
is the inherent net reproductive number
d(A) on R, limy_,_ o ¢(A) = 400 and limy_00 p(A) = —00
Ro < 1 iff the solution Ag to ¢(\) = 1 satisfies Ao < 0. Also,

Ro>1iff>\0>0

Theorem

Assume sols to M—=VF PDE are of the form n(t,a) = e*r(a). If
Ro < 1, then lim;_o, n(t,a) =0 and if Rg > 1, then

lim; 00 N(t,a) = oo

Studying the McKendrick—Von Foerster equation
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