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Discrete-time systems

In continuous-time models t € R. Another way to model natural
phenomena is to consider equations of the form

xer1 = F(xe),

where t € N or Z, that is, t takes values in a discrete valued
(countable) set

Time could for example be days, years, etc.
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Suppose we have a system in the form
Xt+1 = f(Xt)a
with initial condition given for t = 0 by xp. Then,

x; = f(xp)

X2 = f(x1) = F(f(x0)) 2 F2(x0)
X = fk(xo).

The fK = fofo---of are called the iterates of f.

k times
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Fixed points

Definition (Fixed point)
Let f be a function. A point p such that f(p) = p is called a fixed
point of f.

Indeed, if f(p) = p, then

f(p)=p
f(f(p)) =f(p)=p
f(F(f(p))) =f(P)=p

so the system is fixed (stuck) at p..

Discrete-time equations
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Theorem
Consider the closed interval | = [a, b]. If f : | — | is continuous,
then f has a fixed point in .

Theorem
Let | be a closed interval and f : | — R be a continuous function.
Iff(I) DI, then f has a fixed point in |.

Discrete-time equations
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Periodic points

Definition (Periodic point)
Let f be a function. If there exists a point p and an integer n such

that
f'(p) =p, but FX(p)+#pfor k <n,

then p is a periodic point of f with (least) period n (or a
n-periodic point of f).

Thus, p is a n-periodic point of f iff p is a 1-periodic point of f".

Discrete-time equations
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Stability of fixed points, of periodic points

Theorem
Let f : R — R be a continuously differentiable function (that is,

differentiable with continuous derivative, or C1), and p be a fixed
point of f.

1. If |f'(p)| < 1, then there is an open interval T > p such that
limk_yo0 FX(x) = p for all x € T.

2. If|f'(p)| > 1, then there is an open interval Z > p such that if
x €I, x # p, then there exists k such that f*(x) & T.

Definition

Suppose that p is a n-periodic point of f, with f : R — R € C!.
» If [(f") (p)| < 1, then p is an attracting periodic point of f.
» If [(f") (p)| > 1, then p is an repelling periodic point of f.

Discrete-time equations
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The logistic map

The logistic map is, for t > 0,

N
N1 = rN; <1 - Kt> . (DT1)

To transform this into an initial value problem, we need to provide
an initial condition Ny > 0 for t = 0.

The logistic map
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Parametrized families of functions

Consider the equation (DT1), which for convenience we rewrite as
Nt+1 = rNt(l — Nt)a (DT2)

where r is a parameter in R, and N will typically be taken in
[0,1]. Let
fr(x) = rx(1 — x).

The function f, is called a parametrized family of functions.

The logistic map
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Bifurcations

Definition (Bifurcation)

Let f, be a parametrized family of functions. Then there is a
bifurcation at © = po (or o is a bifurcation point) if there exists
€ > 0 such that, if o —e < a < po and po < b < po + ¢, then the
dynamics of f53(x) are “different” from the dynamics of f(x).

An example of “different” would be that f, has a fixed point (that
is, a 1-periodic point) and f, has a 2-periodic point.

The logistic map
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Back to the logistic map

Consider the simplified version (DT2),
A
Nf+1 = rNt(l — Nt) = fr(Nt)

Are solutions well defined? Suppose Ny € [0, 1], do we stay in
[0,1]7 £, is continuous on [0, 1], so it has a extrema on [0,1]. We
have

fl(x)=r—2rx = r(1 - 2x),
which implies that f, increases for x < 1/2 and decreases for

x > 1/2, reaching a maximum at x = 1/2.

(0) = f,(1) = 0 are the minimum values, and f(1/2) = r/4 is the
maximum. Thus, if we want Nyq € [0,1] for N; € [0, 1], we need
to consider r < 4.

The logistic map
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v

Note that if Mg = 0, then Ny =0 for all t > 1.

Similarly, if Ng =1, then N; =0, and thus N; = 0 for all
t>1.

This is true for all t: if there exists tx such that Ny, =1, then
Ny =0 for all t > ty.

This last case might occur if r = 4, as we have seen.
» Also, if r =0 then Ny = 0 for all t.

v

v

v

For these reasons, we generally consider
N e (0,1)

and
r € (0,4).

The logistic map
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Fixed points: existence

Fixed points of (DT2) satisfy N = rN(1 — N), giving:
» N=0;
-1
> 1=r(1—N) thatis, p2 —=.
r
Note that lim, o+ p=1—lim,_,o+ 1/r = —o0, %p =1/r>>0

(so p is an increasing function of r), p=0< r =1 and
lim, 500 p = 1. So we come to this first conclusion:

> 0 always is a fixed point of f,.

» If 0 < r < 1, then p takes negative values so is not relevant.

» If 1 < r < 4, then p exists.

The logistic map
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Stability of the fixed points

Stability of the fixed points is determined by the (absolute) value
f! at these fixed points. We have

£(0) =r,
and
o)l =|r -2
=|r—2(r—1)|
=12—r|

Therefore, we have

» if 0 < r < 1, then the fixed point N = p does not exist and
N = 0 is attracting,

» if 1 <r <3, then N =0 is repelling, and N = p is attracting,

» if r >3, then N =0 and N = p are repelling.

The logistic map
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Another bifurcation

Thus the points r =1 and r = 3 are bifurcation points. To see
what happens when r > 3, we need to look for period 2 points.

f2(x) = f(f(x))

= rf(x)(1 = fr(x))

= r’x(1 — x)(1 — rx(1 — x)). (1)
0 and p are points of period 2, since a fixed point x* of f satisfies
f(x*) = x*, and so, f2(x*) = f(f(x*)) = f(x*) = x*.
This helps localizing the other periodic points. Writing the fixed
point equation as

Qx) £ F2(x) ~x =0,

we see that, since 0 and p are fixed points of flf, they are roots of
Q(x). Therefore, Q can be factorized as

Q(x) = x(x = p)(=r’x* + Bx + C),

The logistic map
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Substitute the value (r — 1)/r for p in Q, develop Q and (1) and
equate coefficients of like powers gives

r—1

Q(x) =x <x - > (=32 4+ (r+)x—r(r+1)). (2

We already know that x = 0 and x = p are roots of (2). So we
search for roots of

R(x) := —r*x*> + r(r + 1)x — r(r + 1).
Discriminant is
A=r*r+1)2—4r*(r+1)
=r*(r+1)(r+1-4)
=r*(r+1)(r —3).
Therefore, R has distinct real roots if r > 3. Remark that for

r = 3, the (double) root is p =2/3. For r > 3 but very close to 3,

it follows from the continuity of R that the roots are close to 2/3.
The logistic map
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Descartes’ rule of signs

Theorem (Descartes’ rule of signs)

Let p(x) = >, aix' be a polynomial with real coefficients such
that a,, # 0. Define v to be the number of variations in sign of the
sequence of coefficients ap,, ..., ag. By 'variations in sign’ we mean
the number of values of n such that the sign of a, differs from the
sign of an_1, as n ranges from m down to 1. Then
» the number of positive real roots of p(x) is v.— 2N for some
integer N satisfying 0 < N < g

» the number of negative roots of p(x) may be obtained by the
same method by applying the rule of signs to p(—x).

The logistic map
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Example of use of Descartes’ rule

Example
Let
p(x) = x* +3x* — x - 3.
Coefficients have signs + 4+ ——, i.e., 1 sign change. Thus v = 1.

Since 0 < N < 1/2, we must have N =0. Thus v —2N =1 and
there is exactly one positive real root of p(x).

To find the negative roots, we examine

p(—x) = —x3 + 3x2 + x — 3. Coefficients have signs — + +—, i.e.,
2 sign changes. Thus v =2 and 0 < N <2/2 =1. Thus, there
are two possible solutions, N =0 and N =1, and two possible
values of v — 2N. Therefore, there are either two or no negative
real roots. Furthermore, note that

p(=1) = (-1)3+3-(~1)2 = (=1) — 3 =0, hence there is at least
one negative root. Therefore there must be exactly two.

The logistic map



Back to the logistic map and the polynomial R..

We use Descartes’ rule of signs.

> R has signed coefficients — 4+ —, so 2 sign changes imlying 0
or 2 positive real roots.

» R(—x) has signed coefficients — — —, so no negative real
roots.

» Since A > 0, the roots are real, and thus it follows that both
roots are positive.

To show that the roots are also smaller than 1, consider the change
of variables z = x — 1. The polynomial R is transformed into

Ry(z) = —r3(z + 1)2 + r2(r +1)(z+1)—r(r+1)
= 324 r2(1 —r)z—r.
For r > 1, the signed coefficients are — — —, so R, has no root

z > 0, implying in turn that R has no root x > 1.

The logistic map
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Summing up

» If 0 < r <1, then N =0 is attracting, p does not exist and
there are no period 2 points.

» At r = 1, there is a bifurcation (called a transcritical
bifurcation).

» If 1 < r <3, then N =0 is repelling, N = p is attracting, and
there are no period 2 points.

» At r = 3, there is another bifurcation (called a
period-doubling bifurcation).

> For r > 3, both N =0 and N = p are repelling, and there is a
period 2 point.

The logistic map
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This process continues

Bifurcation diagram for the discrete logistic map
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The period-doubling cascade to chaos

The logistic map undergoes a sequence of period doubling
bifurcations, called the period-doubling cascade, as r increases
from 3 to 4.

» Every successive bifurcation leads to a doubling of the period.

» The bifurcation points form a sequence, {r,}, that has the
property that
. rn — rn—-1
limn—oco—
rn41 — In
exists and is a constant, called the Feigenbaum constant,
equal to 4.669202. ..
» This constant has been shown to exist in many of the maps
that undergo the same type of cascade of period doubling

bifurcations.

The logistic map

. 26



Chaos

After a certain value of r, there are periodic points with all
periods. In particular, there are periodic points of period 3.

By a theorem (called Sarkovskii's theorem), the presence of
period 3 points implies the presence of points of all periods.

At this point, the system is said to be in a chaotic regime, or
chaotic.

The logistic map
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Bifurcation cascade for 2.9 < r < 4

The logistic map
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The complete bifurcation cascade

The logistic map
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The tent map

[May's 1976 paper]
aX if X; < 1/2
Xiy1 = .
al—X,) if Xe>1/2

defined for 0 < X < 1.

For 0 < a < 1, all trajectories are attracted to X = 0; for

1 < a < 2, there are infinitely many periodic orbits, along with an
uncountable number of aperiodic trajectories, none of which are
locally stable. The first odd period cycle appears at a = /2 and all
integer periods are represented beyond a = (1 + /5)/2.

The logistic map

. 30



Yet another chaotic map

[May's 1976 paper]

X ifXe<1
LT X i X > 1

If A > 1, GAS point for b < 2. For b > 2, chaotic regime with all
integer periods present after b = 3.

The logistic map
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The Ricker model

e+ 1) = weeep {r (1 2 ) L= s,

r intrinsic growth rate, K carrying capacity. Growth rate f(N(t))
increasing in N(t) and per capita growth ( ) decreasing in N(t).
Increase in population not sufficient to compensate for decrease in
per capita growth, so limpy () 4o f(N(t)) = 0 (Ricker model is
overcompensatory).

> r < 2 Globally asymptotically stable equilibrium X = K

» r = 2 Bifurcation into a stable 2-cycle

» r = 2.5 Bifurcation into a stable 4-cycle

v

Series of cycle duplication: 8-cycle, 16-cycle, etc.
r = 2.692 chaos

For r > 2.7 there are some regions where dynamics returns to
a cycle, e.g., r=3.15.

v

v

The logistic map
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Perron-Frobenius theorem

Theorem
If M is a nonnegative primitive matrix, then:

>

>

>

M has a positive eigenvalue A1 of maximum modulus.
A1 Is a simple root of the characteristic polynomial.

for every other eigenvalue \;, A\1 > \; (it is strictly dominant)
min mj; < A1 < max mj;
; Z =1 =T Z i
J J

min g m;; < Ap < max g mj;
i = i =
1 1

row and column eigenvectors associated with A1 are > 0.

the sequence M* is asymptotically one-dimensional, its
columns converge to the column eigenvector associated with
A1, and its rows converges to the row eigenvector associated
with A\q.

Age or stage-structure in discrete-time models
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