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Discrete-time systems

In continuous-time models t ∈ R. Another way to model natural
phenomena is to consider equations of the form

xt+1 = f (xt),

where t ∈ N or Z, that is, t takes values in a discrete valued
(countable) set

Time could for example be days, years, etc.
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Suppose we have a system in the form

xt+1 = f (xt),

with initial condition given for t = 0 by x0. Then,

x1 = f (x0)

x2 = f (x1) = f (f (x0))
∆
= f 2(x0)

...

xk = f k(x0).

The f k = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

are called the iterates of f .
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Fixed points

Definition (Fixed point)

Let f be a function. A point p such that f (p) = p is called a fixed
point of f .

Indeed, if f (p) = p, then

f (p) = p

f (f (p)) = f (p) = p

f (f (f (p))) = f (p) = p

...

f k(p) = p ∀k ∈ N

so the system is fixed (stuck) at p..
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Theorem
Consider the closed interval I = [a, b]. If f : I → I is continuous,
then f has a fixed point in I .

Theorem
Let I be a closed interval and f : I → R be a continuous function.
If f (I ) ⊃ I , then f has a fixed point in I .
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Periodic points

Definition (Periodic point)

Let f be a function. If there exists a point p and an integer n such
that

f n(p) = p, but f k(p) 6= p for k < n,

then p is a periodic point of f with (least) period n (or a
n-periodic point of f ).

Thus, p is a n-periodic point of f iff p is a 1-periodic point of f n.
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Stability of fixed points, of periodic points

Theorem
Let f : R→ R be a continuously differentiable function (that is,
differentiable with continuous derivative, or C 1), and p be a fixed
point of f .

1. If |f ′(p)| < 1, then there is an open interval I 3 p such that
limk→∞ f k(x) = p for all x ∈ I.

2. If |f ′(p)| > 1, then there is an open interval I 3 p such that if
x ∈ I, x 6= p, then there exists k such that f k(x) 6∈ I.

Definition
Suppose that p is a n-periodic point of f , with f : R→ R ∈ C 1.

I If | (f n)′ (p)| < 1, then p is an attracting periodic point of f .

I If | (f n)′ (p)| > 1, then p is an repelling periodic point of f .
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The logistic map

The logistic map is, for t ≥ 0,

Nt+1 = rNt

(
1− Nt

K

)
. (DT1)

To transform this into an initial value problem, we need to provide
an initial condition N0 ≥ 0 for t = 0.
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Parametrized families of functions

Consider the equation (DT1), which for convenience we rewrite as

Nt+1 = rNt(1− Nt), (DT2)

where r is a parameter in R+, and N will typically be taken in
[0, 1]. Let

fr (x) = rx(1− x).

The function fr is called a parametrized family of functions.
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Bifurcations

Definition (Bifurcation)

Let fµ be a parametrized family of functions. Then there is a
bifurcation at µ = µ0 (or µ0 is a bifurcation point) if there exists
ε > 0 such that, if µ0 − ε < a < µ0 and µ0 < b < µ0 + ε, then the
dynamics of fa(x) are “different” from the dynamics of fb(x).

An example of “different” would be that fa has a fixed point (that
is, a 1-periodic point) and fb has a 2-periodic point.
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Back to the logistic map

Consider the simplified version (DT2),

Nt+1 = rNt(1− Nt)
∆
= fr (Nt).

Are solutions well defined? Suppose N0 ∈ [0, 1], do we stay in
[0, 1]? fr is continuous on [0, 1], so it has a extrema on [0, 1]. We
have

f ′r (x) = r − 2rx = r(1− 2x),

which implies that fr increases for x < 1/2 and decreases for
x > 1/2, reaching a maximum at x = 1/2.

fr (0) = fr (1) = 0 are the minimum values, and f (1/2) = r/4 is the
maximum. Thus, if we want Nt+1 ∈ [0, 1] for Nt ∈ [0, 1], we need
to consider r ≤ 4.
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I Note that if N0 = 0, then Nt = 0 for all t ≥ 1.

I Similarly, if N0 = 1, then N1 = 0, and thus Nt = 0 for all
t ≥ 1.

I This is true for all t: if there exists tk such that Ntk = 1, then
Nt = 0 for all t ≥ tk .

I This last case might occur if r = 4, as we have seen.

I Also, if r = 0 then Nt = 0 for all t.

For these reasons, we generally consider

N ∈ (0, 1)

and
r ∈ (0, 4).

The logistic map p. 13



Fixed points: existence

Fixed points of (DT2) satisfy N = rN(1− N), giving:

I N = 0;

I 1 = r(1− N), that is, p
∆
=

r − 1

r
.

Note that limr→0+ p = 1− limr→0+ 1/r = −∞, ∂
∂r p = 1/r 2 > 0

(so p is an increasing function of r), p = 0⇔ r = 1 and
limr→∞ p = 1. So we come to this first conclusion:

I 0 always is a fixed point of fr .

I If 0 < r < 1, then p takes negative values so is not relevant.

I If 1 < r < 4, then p exists.
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Stability of the fixed points
Stability of the fixed points is determined by the (absolute) value
f ′r at these fixed points. We have

|f ′r (0)| = r ,

and

|f ′r (p)| =

∣∣∣∣r − 2r
r − 1

r

∣∣∣∣
= |r − 2(r − 1)|
= |2− r |

Therefore, we have

I if 0 < r < 1, then the fixed point N = p does not exist and
N = 0 is attracting,

I if 1 < r < 3, then N = 0 is repelling, and N = p is attracting,

I if r > 3, then N = 0 and N = p are repelling.
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Another bifurcation
Thus the points r = 1 and r = 3 are bifurcation points. To see
what happens when r > 3, we need to look for period 2 points.

f 2
r (x) = fr (fr (x))

= rfr (x)(1− fr (x))

= r 2x(1− x)(1− rx(1− x)). (1)

0 and p are points of period 2, since a fixed point x∗ of f satisfies
f (x∗) = x∗, and so, f 2(x∗) = f (f (x∗)) = f (x∗) = x∗.
This helps localizing the other periodic points. Writing the fixed
point equation as

Q(x)
∆
= f 2

r (x)− x = 0,

we see that, since 0 and p are fixed points of f 2
µ , they are roots of

Q(x). Therefore, Q can be factorized as

Q(x) = x(x − p)(−r 3x2 + Bx + C ),
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Substitute the value (r − 1)/r for p in Q, develop Q and (1) and
equate coefficients of like powers gives

Q(x) = x

(
x − r − 1

r

)(
−r 3x2 + r 2(r + 1)x − r(r + 1)

)
. (2)

We already know that x = 0 and x = p are roots of (2). So we
search for roots of

R(x) := −r 3x2 + r 2(r + 1)x − r(r + 1).

Discriminant is

∆ = r 4(r + 1)2 − 4r 4(r + 1)

= r 4(r + 1)(r + 1− 4)

= r 4(r + 1)(r − 3).

Therefore, R has distinct real roots if r > 3. Remark that for
r = 3, the (double) root is p = 2/3. For r > 3 but very close to 3,
it follows from the continuity of R that the roots are close to 2/3.
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Descartes’ rule of signs

Theorem (Descartes’ rule of signs)

Let p(x) =
∑m

i=0 aix
i be a polynomial with real coefficients such

that am 6= 0. Define v to be the number of variations in sign of the
sequence of coefficients am, . . . , a0. By ’variations in sign’ we mean
the number of values of n such that the sign of an differs from the
sign of an−1, as n ranges from m down to 1. Then

I the number of positive real roots of p(x) is v − 2N for some

integer N satisfying 0 ≤ N ≤ v

2
,

I the number of negative roots of p(x) may be obtained by the
same method by applying the rule of signs to p(−x).
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Example of use of Descartes’ rule

Example

Let
p(x) = x3 + 3x2 − x − 3.

Coefficients have signs + +−−, i.e., 1 sign change. Thus v = 1.
Since 0 ≤ N ≤ 1/2, we must have N = 0. Thus v − 2N = 1 and
there is exactly one positive real root of p(x).
To find the negative roots, we examine
p(−x) = −x3 + 3x2 + x − 3. Coefficients have signs −+ +−, i.e.,
2 sign changes. Thus v = 2 and 0 ≤ N ≤ 2/2 = 1. Thus, there
are two possible solutions, N = 0 and N = 1, and two possible
values of v − 2N. Therefore, there are either two or no negative
real roots. Furthermore, note that
p(−1) = (−1)3 + 3 · (−1)2 − (−1)− 3 = 0, hence there is at least
one negative root. Therefore there must be exactly two.
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Back to the logistic map and the polynomial R ..

We use Descartes’ rule of signs.

I R has signed coefficients −+−, so 2 sign changes imlying 0
or 2 positive real roots.

I R(−x) has signed coefficients −−−, so no negative real
roots.

I Since ∆ > 0, the roots are real, and thus it follows that both
roots are positive.

To show that the roots are also smaller than 1, consider the change
of variables z = x − 1. The polynomial R is transformed into

R2(z) = −r 3(z + 1)2 + r 2(r + 1)(z + 1)− r(r + 1)

= −r 3z2 + r 2(1− r)z − r .

For r > 1, the signed coefficients are −−−, so R2 has no root
z > 0, implying in turn that R has no root x > 1.
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Summing up

I If 0 < r < 1, then N = 0 is attracting, p does not exist and
there are no period 2 points.

I At r = 1, there is a bifurcation (called a transcritical
bifurcation).

I If 1 < r < 3, then N = 0 is repelling, N = p is attracting, and
there are no period 2 points.

I At r = 3, there is another bifurcation (called a
period-doubling bifurcation).

I For r > 3, both N = 0 and N = p are repelling, and there is a
period 2 point.
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This process continues
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The period-doubling cascade to chaos

The logistic map undergoes a sequence of period doubling
bifurcations, called the period-doubling cascade, as r increases
from 3 to 4.

I Every successive bifurcation leads to a doubling of the period.

I The bifurcation points form a sequence, {rn}, that has the
property that

lim n→∞ rn − rn−1

rn+1 − rn

exists and is a constant, called the Feigenbaum constant,
equal to 4.669202. . .

I This constant has been shown to exist in many of the maps
that undergo the same type of cascade of period doubling
bifurcations.
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Chaos

After a certain value of r , there are periodic points with all
periods. In particular, there are periodic points of period 3.

By a theorem (called Sarkovskii’s theorem), the presence of
period 3 points implies the presence of points of all periods.

At this point, the system is said to be in a chaotic regime, or
chaotic.

The logistic map p. 27



Bifurcation cascade for 2.9 ≤ r ≤ 4

2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

r

x*

The logistic map p. 28



The complete bifurcation cascade
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The tent map

[May’s 1976 paper]

Xt+1 =

{
aXt if Xt < 1/2

a(1− Xt) if Xt > 1/2

defined for 0 < X < 1.

For 0 < a < 1, all trajectories are attracted to X = 0; for
1 < a < 2, there are infinitely many periodic orbits, along with an
uncountable number of aperiodic trajectories, none of which are
locally stable. The first odd period cycle appears at a =

√
2 and all

integer periods are represented beyond a = (1 +
√

5)/2.
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Yet another chaotic map

[May’s 1976 paper]

Xt+1 =

{
λXt if Xt < 1

λX 1−b
t if Xt > 1

If λ > 1, GAS point for b < 2. For b > 2, chaotic regime with all
integer periods present after b = 3.
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The Ricker model

N(t + 1) = N(t) exp

{
r

(
1− N(t)

K

)}
= f (N(t)),

r intrinsic growth rate, K carrying capacity. Growth rate f (N(t))

increasing in N(t) and per capita growth f (N)
N decreasing in N(t).

Increase in population not sufficient to compensate for decrease in
per capita growth, so limN(t)→+∞ f (N(t)) = 0 (Ricker model is
overcompensatory).

I r < 2 Globally asymptotically stable equilibrium x̄ = K

I r = 2 Bifurcation into a stable 2-cycle

I r = 2.5 Bifurcation into a stable 4-cycle

I Series of cycle duplication: 8-cycle, 16-cycle, etc.

I r = 2.692 chaos

I For r > 2.7 there are some regions where dynamics returns to
a cycle, e.g., r=3.15.
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Perron-Frobenius theorem

Theorem
If M is a nonnegative primitive matrix, then:

I M has a positive eigenvalue λ1 of maximum modulus.

I λ1 is a simple root of the characteristic polynomial.

I for every other eigenvalue λi , λ1 > λi (it is strictly dominant)

I

min
i

∑
j

mij ≤ λ1 ≤ max
i

∑
j

mij

min
j

∑
i

mij ≤ λ1 ≤ max
j

∑
i

mij

I row and column eigenvectors associated with λ1 are � 0.

I the sequence Mt is asymptotically one-dimensional, its
columns converge to the column eigenvector associated with
λ1; and its rows converges to the row eigenvector associated
with λ1.
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