Some stochastic models

CTMC

Continuous-time Markov chain

 $\{X(t)\}, t \in [0,\infty)$ a collection of discrete random variables with values in a finite or infinite set

Definition

Stochastic process $\{X(t)\}$, $t \in [0, \infty)$ a continuous time Markov chain if for any sequence of real numbers

 $0 \leq t_0 < t_1 < \cdots < t_n < t_{n+1},$

$$\mathbb{P}(X(t_{n+1}) = i_{n+1} \mid X(t_1) = i_i, \dots, X(t_n) = i_n) \\ = \mathbb{P}(X(t_{n+1}) = i_{n+1} \mid X(t_n) = i_n)$$

Each r.v. X(t) has probability distribution $\{p_i(t)\}_{i=0}^{\infty}$ with

$$p_i(t) = \mathbb{P}(X(t) = i)$$

and let $p(t) = (p_0(t), p_1(t), \ldots)^T$. To link r.v., for s < t,

$$p_{ji}(t,s) = \mathbb{P}\left(X(t) = j \mid X(s) = i\right)$$

is **transition probability**. Transition probability is **stationary** (or **homogeneous**) if $p_{ji}(t, s)$ depends on t - s (length of time interval) but not explicitly on t or s, i.e., for s < t,

$$p_{ji}(t-s) = \mathbb{P}(X(t) = j \mid X(s) = i) = \mathbb{P}(X(t-s) = j \mid X(0) = i)$$

Transition matrix

Transition matrix is

$$P(t) = [p_{ji}(t)]$$

 $p_{ji}(t) \ge 0$ and in general,

$$\sum_{j=0}^{\infty} p_{jj}(t) = 1, \quad t \ge 0$$

(proba of transition from state *i* to some other state is 1) P(t) is a **stochastic matrix** for $t \ge 0$ Transition probas satisfy **Chapman-Kolmogorov** equations

$$\sum_{k=0}^{\infty} p_{jk}(s) p_{ki}(t) = p_{ji}(t+s)$$

or $P(s)P(t)=P(s+t), \, \forall s,t\in [0,\infty)$

CTMC as jump processes

▶ ...

CTMC starting in state X(0)

- ► stays in state X(0) for random amount of time W₁ then jumps to new state X(W₁)
- ► stays in state X(W₁) for random amount of time W₂ then jumps to new state X(W₂)

 W_i r.v. for time of i^{th} jump. Define $W_0 = 0$. Then collection of r.v. $\{W_i\}$ is **jump times** (or **waiting times**) and r.v.

$$T_i = W_{i+1} - W_i$$

are interevent times (or holding times or sojourn times)

Initial condition X(0) = 0, then for Δt sufficiently small

$$\blacktriangleright p_{i+1,i}(\Delta t) = \mathbb{P}(X(t+\Delta t) = i+1 \mid X(t) = i) = \lambda \Delta t + o(\Delta t)$$

$$\blacktriangleright p_{ii}(\Delta t) = \mathbb{P}(X(t + \Delta t) = i \mid X(t) = i) = 1 - \lambda \Delta t + o(\Delta t)$$

►
$$p_{ji}(\Delta t) = \mathbb{P}(X(t + \Delta t) = j \mid X(t) = i) = o(\Delta t), j \ge i + 2$$

•
$$p_{ji}(\Delta t) = 0, j < i$$