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Abstract: We introduce inhomogeneous, substrate dependent cell division in a nonlinear
matrix model of size-structured population growth in the chemostat, �rst introduced by
Gage et al. [7] and later analyzed by Smith [11]. We show that mass conservation is
veri�ed, and conclude that our system admits one non zero globally stable equilibrium,
which we express explicitly. We then proceed to several numerical simulations, and brie�y
compare the prediction of the model to data, whose obtention we discuss.
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Un modèle discret, structuré en taille, de croissancei du

phytoplancton en chemostat.

Résumé : Nous introduisons une division cellulaire non homogène et dépendante du sub-
strat dans un modèle matriciel non linéaire de population structurée en taille. Le modèle
d'origine, introduit par Gage, Williams et Horton [7], et étudié plus tard analytiquement par
Smith [11], décrit la croissance de micro-organismes dans un chemostat. Nous montrons que
la conservation de la masse est véri�ée par le nouveau modèle, et par conséquent concluons
qu'il admet un équilibre non trivial globalement asymptotiquement stable, que nous expri-
mons analytiquement. Nous procédons ensuite à quelques simulations numériques, et com-
parons brièvement les prédictions du modèle à des données, dont nous discutons l'obtention.

Mots-clés : chemostat, modèles structurés, modèle discret, taille de division inégale
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4 Arino, Gouzé & Sciandra

Introduction

A chemostat is a continuous culture device in which organisms (bacteria, phytoplankton)
grow, submitted to a �ow of nutrient. Chemostats have been extensively studied mathe-
matically (see [12]), mainly using ordinary di�erential equations. The global behavior of a
chemostat is well known, using models such as the Monod model or the Droop model. But
these models describe the behavior of the total biomass of the system.

One of the possible ways to gain further knowledge on the behavior of chemostats is to
use structured models, describing the evolution of the population in more detail. Moreover,
it is now possible to obtain long time series of structured data from chemostats (e.g. the
automated device described in [4], which will be described more thoroughly in Section 3).
Therefore, comparison of model behavior to the data should lead to re�nements of the
models [3].

However, structured models of the chemostat are less known. Most works on the latter
use partial di�erential equations. In [9] a size structured model is presented, which is ex-
tended to the competition case in [5], while [10] introduces cell cycle structuration. However,
the mathematical analysis of these models is often hard (one often has to reduce the model
to an ODE system by considering moments of the density), so as their numerical integration.

Another kind of structured modelling is the use of discrete time, discrete structure sys-
tems (see [6, chapters 1 and 3] for a review of structured discrete models), While the math-
ematical analysis of such systems can be as tedious as in the continuous case, they have the
advantage that they are easy to simulate.

Such a model, time discrete and structured in biomass (size) classes, was introduced in [7]
by Gage et al.. They showed that a stable distribution of the biomass is reached, in which the
biomass is constant and equal for all size classes. They also studied numerically the in�uence
of various factors (number of size classes, �ow rate) on the convergence speed. Later, Smith
[11] corrected a mistake in the formulation of the model, showed mathematically that the
equilibrium is globally stable, and also introduced competition.

But this model is based on a very strong assumption: all cells are born with the same
biomass b, and divide when they reach biomass 2b. Gage et al. obtain biomass spectra
which resemble the experimentally observed spectra, but by using the assumption that the
biomass in each class is log-normally distributed [13].

The aim of the present work is to extend the model of Gage et al. to the case where
cell division (and consequently, cell birth) can happen for cells in several biomass classes,
distributed around a mean division biomass. Using this approach, the division process is
included in the model. This is closely related to the models of [9] and [10], where the division
rate is de�ned using a probability density.

This paper is organized as follows: �rst, we derive our model from the one of [7], intro-
ducing division for cells of di�erent sizes. We then analyze the model; using the fact that it
conserves the mass, we are able to follow the analysis of [11] and to conclude to the existence
of a globally stable non trivial equilibrium, which we characterize. Sample equilibrium dis-
tributions are then shown in Section 3, as well as examples of the transient behavior of the
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A discrete chemostat model 5

model. Finally, prior to the discussion, biological data is discussed, and brie�y compared to
model predictions.

1 Model formulation

We suppose that the system under consideration is a well-stirred chemostat. Since the model
will be formulated in discrete time, we de�ne T , the iteration period. Let E (0 < E < 1) be
the dilution rate per iteration period.

In Gage et al., the following biological assumptions are made.

(H1) In a constant environment (ie if the concentration of limiting nutrient is constant and
high), the growth of a cell is exponential.

(H2) Cells are born with a biomass b, they grow, then divide when they reach a biomass
2b.

(H3) When a cell divides, it divides into two daughter cells, whose individual biomass is
exactly one half of the biomass of the original cell.

We add the following one, to relax the division size hypothesis.

(H4) The birth biomass b (accordingly, the division biomass 2b) is not a constant. There ex-
ists an average birth biomass bd (accordingly, an average division biomass 2bd) around
which the individual birth biomasses are distributed.

We suppose that there is a total number r of biomass classes, and that the minimal birth
biomass of a cell is bmin (the smallest biomass that a cell can possibly be born with). We
use a Michaelis-Menten function, which we note f(S) = m S

a+S (m is the maximal growth
rate per iteration period, and a is called the half-saturation constant), to model nutrient
uptake and consequent growth of the cells. But the results hold for all functions f(S)
such that f(0) = 0, f 0(S) > 0 and f 00(S) < 0 (see [11, p. 739]). The state variables are
xt = (x1(t); : : : ; xr(t))

T , where xi(t) is the total biomass in biomass class i at time t, and
St, the concentration of substrate in the chemostat chamber at time t.

We suppose that the r biomass classes are divided as follows: there are rg (growth) size
classes, during which the dynamics is the same as in [7, 11]: the cells in these classes can
either proceed to the next biomass class (if they grow of a su�cient amount) or stay in
the class (if the growth is not su�cient). There are no births nor divisions in these classes.
Following this stable stage, there are rd (division) classes, during which cell division occurs.
Correspondingly, we assume that there are rb (with rb = rd) size classes prior to the stable
stage, in which the dividing cells �fall� (see Figure 1). Hereafter, we will call the latter classes
birth classes. Therefore, r = rb + rg + rd is the total number of classes, and the structure of
the model can be decomposed as follows:

� i = 1; : : : ; rd birth classes.

RR n° 3963



6 Arino, Gouzé & Sciandra

Birth classes

r-1 r1 r-2r-342 3

Growth classes Division classes

Figure 1: Structure of the model. Example with rd = 3 (= rb).

� i = rd + 1; : : : ; rd + rg growth classes.

� i = rd + rg + 1; : : : ; r division classes.

To describe the way a cell progresses along the size classes, we use a constant, M . Since
hypothesis (H1) must be ful�lled, M has to account for an exponential growth of the cells.
Suppose that a cell has exponential growth between biomasses b and 2b. If we want to
�track� this biomass as it progresses along, say n classes, then using M = 21=n does the
trick. Indeed, de�ning M i�1b to be the biomass of the cell in class i, we have an exponential
progression of the biomass from b to 2b.

But if we use M = 21=r as in [7, 11], then the only cells that will double in size are
the ones that are born in the �rst birth class and that divide in the last division class. So
in order to account for hypothesis (H2) and to have a one to one correspondence between
division classes and birth classes, M has to be chosen di�erently. Let bd be the mean birth
biomass. This biomass corresponds to one of the birth classes (for example, in Fig.1, we
could suppose that class 2 contains the cells which are born with the mean birth biomass bd).
We suppose that cells that are born with biomass bd undergo division when their biomass
has doubled. According to the way we de�ned the classes, to each division class corresponds
one and only one birth class. Therefore M has to be chosen so that the biomass doubles
when a cell moves from the class containing bd to the class containing 2bd. Let k be the
index of that birth class (k 2 f1; : : : ; rdg). Then k is also the index (division class-wise)
of the class which contains biomass 2bd, and M is a function of the number of classes that
separates these two classes.

Thus M = 21=(rb+rg+1). It has to be noted that M only depends on the number of birth
(or division, equivalently) and growth classes. Therefore bd can be chosen to lie in any birth
class.

In order to determine the proportion of cells moving from one class to the next, we
proceed as follows. We suppose that there is no washout (ie E = 0). Class i contains
at time t a total biomass xi(t). Following absorption of nutrient, this biomass becomes
xi(t)f(St). Since class i contains cells whose average biomass is M i�1bmin, and class i+ 1

INRIA



A discrete chemostat model 7

contains cells with an average biomass of M ibmin, the number of cells from class i moving
to class i+ 1 is xi(t)f(St)=(M � 1)M i�1bmin. Now this has to be related to the number of
cells in class i, which is approximatively given by ni(t) = xi(t)=M

i�1bmin.
As a consequence, the proportion of biomass moving from one class to the next is given

by

Pt =
f(St)

M � 1

Now, in order to follow hypothesis (H4), we suppose that cells that are in a division class
and grow su�ciently, can either divide, with a certain proportion, or proceed to the next
division class. Furthermore, we suppose that this proportion is a function of the substrate
concentration, that can di�er in di�erent division classes (e.g. one could assume that bigger
cells divide even in low substrate concentrations, while smaller cells do not).

Hence let us denote by Di(S) the proportion of cells in division class i that divide. Then
1�Di(S) is the proportion of cells of class i that grow instead of dividing. The way these
functions depend on the substrate concentration will not be speci�ed, but one can think of
Holling type II functionnal response, or of sigmoidal functions. All that we require is that
this function be bounded, that is for i = 1; : : : ; rd � 1 and for all S 2 R+ , 0 � Di(S) � 1,
where the inequality has to be strict for some S. This can be formulated the following way:
we suppose that there exists a nonempty subset Sint � R+ , Sint 6= f0g, de�ned by

Sint = f �S 2 R
+ : 9N ( �S);8S 2 N ( �S);8i < rd; Di(S) 2 (0; 1)g (1)

where N ( �S) is a neighborhood of �S. Note that we do not require that Sint be a connected
set. This subset will be useful in Theorem 2.3.

In order to constrain the cell sizes, we suppose that in the last division class all cells
divide, ie that Drd(S) = 1 for all S.

From a biological point of view, these hypotheses mean that there exist substrate con-
centrations such that: the only size class in which all cells divide is the last one; there are
no division classes in which no cells divide. For example, suppose that one observes cell
division in cells having a size between 10 and 15 micrometers. There may exist substrate
concentrations such that all cells reaching a size of say 12�m divide (e.g. if subject to star-
vation). The hypotheses we have just made ensure that this is not always the case, ie there
also exist substrate concentrations such that some cells grow to reach a size of 15�m.

Finally, taking into account the washout rate, which applies to all size classes at the
same rate ([7]), the model is written as follows.

xt+1 = (1�E)A(St)xt; t � 0 (2a)

St+1 = (1�E)[St � f(St)Ut] +ES0 (2b)

where Ut = 1lTxt is the total biomass at time t (1l = (1; : : : ; 1)T ), and A(St) is the following
transition matrix (of size r � r).

A(St) =
�
�(St) �(St)

�
(3)
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8 Arino, Gouzé & Sciandra

with

�(St) =

2
666666666666666666664

1� Pt 0 : : : 0
MPt

. . .
. . .

MPt 1� Pt

MPt 1� Pt
. . .

. . .

MPt 1� Pt

MPt
0 : : : : : : 0
...

...
0 : : : : : : 0

3
777777777777777777775

a (rb + rg ; r)-matrix, where the blocks correspond respectively to rb, rg and rd rows, and

�(St) =

2
6666666666666666666666664

MPtD1

MPtD2

. . .

MPtDrd�1

MPt

0 : : : : : : 0
...

...
0 : : : : : : 0

1� Pt
MPt(1�D1) 1� Pt

. . .
. . .

1� Pt
MPt(1�Drd�1) 1� Pt

3
7777777777777777777777775

is a (rd; r)-matrix. The �rst, second and last blocks are rb, rg and rd rows long, respectively.
In these matrices, we use the following notation: Pt = f(St)(M � 1)�1, and Di = Di(St).

In order to keep Pt in a reasonable interval (ie Pt 2 [0; 1]), some restrictions have to be
made.

The minimal doubling time Dmin and the maximal growth rate �max are two expressions
of the same quantity (since Dmin = ln 2=�max), and are species constants.

What we must constrain is the iteration period T , since the maximal growth rate per
iteration period m is given by m = �maxT .

Now, what happens in general cases? We are given a �max (or equivalently a Dmin),
we choose a number of classes, and want to study the behavior of the system. Hence the
determination of T is what comes last.

INRIA



A discrete chemostat model 9

The �rst constraint to be veri�ed is that m(M � 1)�1 � 1. Therefore we obtain T �
21=(rb+rg)�1

�max
. But the constraint rT � Dmin expressed in [11] also has to be satis�ed. Written

in terms of �max and adapted to our model, it reads T � ln 2
(rb+rg)�max

.

Hence, supposing �max given and the number of classes chosen, we must require that

T � min(
21=(rb+rg) � 1

�max
;

ln 2

(rb + rg)�max
) (4)

Now another problem which could arise is that Utf(St) > St for some t. This would
lead to negative values of St+1, which must of course be forbidden. In order to avoid this
problem, Ut has to be constrained. We proceed as in [11]. We �x an � 2 (0; 1), and require
that f(S)U=S < �. De�ning W > S0 an upper bound on U + S that depends on the range
of initial conditions that one wishes to accommodate, we require that

m

a
W < � (5)

We observe that these conditions should not be viewed as conditions on m, but only on the
iteration period T and the number of classes r.

2 Model behavior

Let us begin by verifying that the conservation principle (or mass conservation principle)
holds. We have

1lTA(S) = [1 + (M � 1)Pt]1l
T = (1 + f(St))1l

T

therefore
Ut+1 = 1lTxt = 1lTA(St)xt = (1� E)(1 + f(St))Ut

As a consequence,
Ut+1 + St+1 = (1�E)(Ut + St) +ES0 (6)

which means that mass conservation is veri�ed. In words all the mass that is present in the
chemostat at time t is still present at time t + 1, save for what enters (ES0) and for the
quantity E(Ut + St) that is washed out.

Hence all the results in the single population case of [11] hold. The method that is used
is the following.

� Since mass conservation is veri�ed, it is quite easy to show that the total �mass�
contained in the chemostat tends to a �xed quantity, namely S0.

� Therefore, the dynamics of the system can be studied on the invariant set U+S = S0,
inside of which the system reduces to a one dimensional system.

� On this set, the global behavior of the system can be studied. Smith showed that
under certain conditions, there exists a globally stable equilibrium for this simpli�ed
system.

RR n° 3963



10 Arino, Gouzé & Sciandra

� Following this, the global dynamics of the two dimensional system can be deduced.

� Finally, using a result of Golubitsky et al. [8], the distribution of biomass in all classes
can be deduced.

For the convenience of the reader, we recall here some of the proofs of [11].

First, we can solve (6) easily, and obtain

Ut+1 + St+1 = S0 � (S0 � U0 � S0)(1�E)t; t � 1 (7)

Let us now de�ne �, a positive bounded set, as � = f(x; S) 2 R
r+1
+ ; 1lTx + S � Wg (W

being de�ned as in Eq. (5)).

Proposition 2.1 ([11]) If (x0; S0) 2 �, then (xt; St) 2 � for t � 1, St � Utf(St) > 0 for
t � 1 and

St + Ut ! S0; t!1 (8)

Proof As we are in a discrete case, to show the positive invariance of �, we need only
show that (x1; S1) 2 � if (x0; S0) 2 �. Let (x0; S0) 2 �. Then U0 + S0 � W . Two cases
arise.

First, if S0 > 0, then

f(S0)

S0
U0 � f 0(0)W =

m

a
W < � < 1

so S0 � f(S0)U0 > (1� �)S0 > 0. Therefore, S1 > (1�E)(1� �)S0 +ES0 > 0.
Now, if S0 = 0 then S1 = ES0 > 0. Using (6), we have U1+S1 = (1�E)(U0+S0)+ES

0 <
(1�E)W +EW = W and also U1 = (1�E)U0 � 0.

Finally, Equation (8) follows immediately from Equation (7), since 1�E < 1. �

Let us now consider the system restricted to the positively invariant set f(U; S) 2
R
2
+ ; U + S = S0g. On this set, we can use a technique standard to those systems that

conserve the mass: we replace S by S0 � U (with 0 � U � S0 since S is positive). Thus,
when restricted to this set the system (2a) (2b) becomes

Ut+1 = (1�E)(1 + f(S0 � Ut))Ut (9)

Proposition 2.2 If (1 � E)(1 + f(S0)) � 1, then limt!1 Ut = 0, for all solutions of (9)
with U0 2 [0; S0]. If (1 � E)(1 + f(S0)) > 1, then limt!1 Ut = ~U , for all solutions of (9)
with U0 2 [0; S0].

INRIA



A discrete chemostat model 11

Proof [[11]] Let F (U) = (1�E)(1+f(S0�U))U . Then Ut+1 = F (Ut). The global behavior
of Eq. (9) will be obtained by studying the �xed points of F . F : [0; S0] ! [0; (1� E)S0],
and F (S0) = (1�E)S0. F is an increasing function of U , since

F 0(U) = (1�E)[1 + f(S0 � U)� Uf 0(S0 � U)]
> (1�E)[f(S0 � U) + 1�W m

a ]
> (1�E)[f(S0 � U) + 1� �]
> 0

by (5). On the other hand, F 0(U) is decreasing in U since f 0(S) is decreasing in S.
Two cases have to be considered. First, if F 0(0) � 1, 0 is the only �xed point of F

in [0; S0]. Indeed, by the Mean Value theorem, there exists � 2 (0; Ut) such that Ut+1 =
F (Ut) � F (0) = F 0(�)Ut. Since F 0 is decreasing and that F 0(0) � 1, we have Ut+1 < Ut,
and so limt!1 Ut = 0.

Now if F 0(0) > 1, we have F (S0) < S0, and therefore, denoting by F t the tth iterate of
F , F t(S0) & ~U as t ! 1. On the other hand, for a small � > 0, F (�) > �, so F t(�) % ~U
as t ! 1. Let now U0 2 (0; S0]. For small enough �, we have � < U0 � S0, and therefore
F t(�) < F t(U0) � F t(S0), which �nally implies that F t(U0)! ~U as t!1. �

To compute the positive �xed point of F , we de�ne � as the unique solution, when it
exists, of F (U) = U , ie

f(�) = (1�E)�1 � 1 (10)

Noting B = (1�E)�1 � 1, one �nds

� =
aB

m�B
(11)

if m > B, and no solution otherwise. This is the classical chemostat behavior: if the dilution
rate E is larger than the maximal growth rate of the organisms, then the population cannot
compensate the loss due to the out�ow, and it becomes extinct.

Finally, if � < S0, ~U is given by

~U = S0 � � (12)

Now the dynamics of the 2 dimensional system

Ut+1 = (1�E)(1 + f(St))Ut (13a)

St+1 = (1�E)(St � f(St)Ut) +ES0 (13b)

can be studied. Let 
 = f(U; S) 2 R2+ ; U + S < Wg.

Theorem 2.1 ([11]) If (1�E)(1+f(S0)) < 1, then for all solutions such that (U0; S0) 2 
,

(Ut; St)! (0; S0); t!1

RR n° 3963



12 Arino, Gouzé & Sciandra

If (1 � E)(1 + f(S0)) > 1, then there exists a non zero steady state, and for all solutions
such that (U0; S0) 2 
,

(Ut; St)! (S0 � �; �); t!1

Proof Let us begin by ruling out the trivial case. If U0 = 0, then for all t � 0, Ut = 0
and, since Ut + St ! S0 as t ! 1, St ! S0 as t ! 1. Hence in all that follows, we will
suppose that U0 > 0.

Solutions of (13a) (13b) starting in 
 approach the invariant line segment S + U in 

at an exponential rate (1 � E)t. On this invariant line segment the dynamics are given in
Proposition 2.2 and depend on whether (1 � E)(1 + f(S0)) is larger than one or less than
one.

Let us �rst consider the case where (1�E)(1 + f(S0)) < 1. Then we can �nd � 2 (0; 1)
and �S > S0 such that (1 � E)(1 + F (S0)) < � for all S 2 [0; �S]. Since Ut + St ! S0 as
t ! 1, it follows that St < �S for all large t, say t � � . Consequently, Ut+k � �kU� for
k � 0 and therefore Ut ! 0 as t!1. From this and Ut + St ! S0 as t! 1, we see that
St ! S0. Therefore in this case (0; S0) is globally stable.

Let us now consider the second case, ie (1�E)(1 + f(S0)) > 1. For convenience, let us
de�ne

G(U; S) = ((1�E)(1 + f(S))U; (1�E)(S � f(S)U) +ES0)

for (U; S) 2 
. G : 
! 
. Then (13a) (13b) becomes

(Ut+1; St+1) = G(Ut; St)

We �rst study the local stability of the �xed points (0; S0) and ( ~U; �). The Jacobian
matrix of G at (0; S0) is given by

J0 =

�
(1�E)(1 + f(S0)) 0
�(1�E)f(S0) 1�E

�

Its eigenvalues are 1 � E 2 (0; 1) and (1 � E)(1 + f(S0)) > 1, so (0; S0) is a saddle �xed
point for G. The stable manifold of (0; S0) is the S axis and the unstable manifold is the
portion of the segment U + S = S0 joining (0; S0) to ( ~U; �).

The Jacobian matrix of G at ( ~U; �) is

J1 =

�
1 (1�E) ~Uf 0(S0 � ~U)

�E (1�E)(1� f 0(S0 � ~U) ~U)

�

Its eigenvalues are 1�E and 1� (1�E) ~Uf 0(S0� ~U). Since ~Uf 0(S0� ~U) �Wm=a < � < 1
by (5), both eigenvalues belong to (0; 1) and ( ~U; �) is locally asymptotically stable.

It is enough then to show that ( ~U; �) belongs to the omega limit set of every orbit
f(Ut; St)gt�0 with U0 > 0. Let � be such an omega limit set. Obviously, � is a nonempty,
compact, invariant subset (G� = �) belonging to the line segment U + S = S0 in 
. From

INRIA



A discrete chemostat model 13

the dynamics of G restricted to this line segment, if � contains a point di�erent from (0; S0)
then necessarily � also contains ( ~U; �) since it is closed and invariant. In this case we are
done. But � must contain such a point since U0 > 0 and therefore (U0; S0) does not belong
to the stable manifold of (0; S0). This completes the proof. �

Now that we know the global behavior of the 2 dimensional system, we can use the
following result of Golubitsky et al. to derive the equilibrium distribution of the xi.

Theorem 2.2 ([8]) Suppose that Tk is a sequence of nonnegative primitive matrices, and
that Tk ! T as k ! 1, where T is also nonnegative and primitive. If e is the Perron-
Frobenius eigenvector of T satisfying 1lT e = 1 and xk+1 = Tkxk is a sequence starting with
x0 � 0 and x0 6= 0, then

xk

1lTxk
! e; k !1

Therefore, we have the following result.

Theorem 2.3 Let e be the Perron-Frobenius eigenvector of (1�E)A(�) satisfying 1lT e = 1.
If (1�E)(1+f(S0)) > 1, x0 6= 0 and � 2 Sint, then the system (2a) (2b) admits one globally
asymptotically stable non trivial equilibrium (~x; ~S), where

~x
~U

= e (14)

Proof The matrices A(St) and A(�) are obviously nonnegative, for all t > 0. Under the
hypotheses of the theorem, � 2 Sint, so there exists a neighborhood N1 of � such that for
all S 2 N1(�) and all i < rd, 0 < Di(S) < 1. Since (Ut; St) ! (S0 � �; �) as t ! 1 by
Theorem 2.1, it is possible to �nd � > 0 such that, for all t � � , St 2 N2(�), where N2(�) is
a neighborhood of � that we can make as small as we want. In particular, if � is such that
N2 � N1, then 0 < Di(St) < 1 for all t � � .

Therefore, for all t � � , A(St) and A(�) are irreducible, as it is easy to verify that any
class can be reached from any other class, in a �nite number of steps. Since the trace of
A(St) and the trace of A(�) are positive, they are also primitive [2, p. 34]. Hence the
conditions of Theorem 2.2 are ful�lled. �
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14 Arino, Gouzé & Sciandra

The Perron-Frobenius eigenvalue is (1 � E)(1 � P + MP ) (= (1 � E)(1 + f( ~S))), its
associated eigenvector has the following form.

e =
1
~U

0
BBBBBBBBBBBBBBBBBBBB@

D1( ~S)
...

1�
Qrb�1

k=1 (1�Dk( ~S))
1
1
...
1
1

1�D1( ~S)
...Qrd�1

k=1 (1�Dk( ~S))

1
CCCCCCCCCCCCCCCCCCCCA

(15)

where the blocks correspond to rb, rg and rd rows. It is easily veri�ed that (1�E)A( ~S)e =
(1�E)(1� P +MP )e.

Let us denote by xbi the ith birth class (i = 1; : : : ; rb), by xgi the ith growth class (i =
1; : : : ; rg), and by xdi the ith division class (i = 1; : : : ; rd). Using (14) and (15), the stable
distribution can be computed. This is expressed in the following result.

Proposition 2.3 The equilibrium biomass distribution is given by the following formulas:

� for i = 1; : : : ; rb � 1 (birth classes except the last one):

xbi = 1�
iY

k=1

(1�Dk( ~S)) (16)

� for i = 1; : : : ; rg (growth classes), for the last birth class and the �rst division class:

xbrb = xgi = xd1 = 1 (17)

� for i = 2; : : : ; rd (division classes except the �rst):

xgi =

i�1Y
k=1

(1�Dk( ~S)) (18)

Now let us consider the case where � 62 Sint. More precisely, what happens when Di(�) = 1
for some i < rd? This is the object of the following proposition.
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Proposition 2.4 Suppose that (1 � E)(1 + f(S0)) > 1 and x0 > 0. Furthermore, suppose
that there exists k < rd such that Dk(�) = 1. Then the system (2a) (2b) admits one globally
asymptotically stable non trivial equilibrium (~x; ~S), with

~x
~U

= ek

where ek is the Perron-Frobenius eigenvector of the sub-matrix of A(�) comprising its �rst
rb + rg + k rows and columns, and such that 1lT ek = 1.

It is easy to see that the equilibrium biomass distribution is the same as the one given
by Proposition 2.3, but with a � left shift� of the classes:

� Birth classes: from 1 to k (instead of rb, where k < rb).

� Growth classes: from k + 1 (instead of rb + 1) to rb + rg .

� Division classes: from rb + rg + 1 to rb + rg + k (instead of r = rb + rg + rd).

and where the classes from rb + rg + k + 1 to r are empty.
The converse proposition also holds: if for some k < rd we have Dk(�) = 0, then there

is a �right shift� in the classes, the k �rst birth classes being empty.

3 Numerical results

Figure 2 shows a comparison of the stable distributions of numbers (computed using the
approximation n(i) = xi=M

i�1bmin) as given by the homogeneous model of Gage et al. and
by our model. In this example, we have assumed that the mean division (and consequently
birth) biomass is located in the middle of the division classes.

Figure 3 shows the transient behavior of the model. We can see that the biomass in each
size class has damped oscillations prior to the equilibrium. The biological parameters used
in this computation are the ones corresponding to the data set (and to the algal species)
that will be shown in the next section.

Figure 4 shows the substrate concentration and total biomass, as well as the normalized
number of cells, corresponding to the same simulation. The number of cells oscillates, and
this behavior lasts until the biomass distribution has reached its equilibrium.

The transient behavior of the system can be studied as in [7], by de�ning the wavelength
of complex eigenvalue �i as

!i = 2�T= tan�1(
=(�i)

<(�i)
)

In Figure 5, two numerical experiments are shown. On the left hand side, the wavelength
of the complex eigenvalue of greatest magnitude is plotted, for an increasing number of
division classes, while the total number of classes is constant. We can see that as the
proportion of classes that are division classes rises, the wavelength of the �rst complex
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Figure 2: Comparison of the equilibrium distributions (converted to numbers), as given by
the two models. This example uses rb = rd = 300 and rg = 400. The vertical lines show the
passage from one type of class to another.

Figure 3: Transient behavior of the model following an initial condition of Dirac type in
class 20 (of a total of 40). The parameters are T = 0:001, rb = rd = 10. The �gure shows a
sampling (every 100 iterations) out of a total 18000 iterations ( corresponding to 18 days).
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Figure 4: Behavior of the total biomass and of the substrate (left), and of the total number
of cells (right), under the same conditions as in Figure 3.
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Figure 5: Wavelength of the �rst complex eigenvalue: (left) for a �xed total number of
classes (200), as the number of division classes progresses from 1 to 100; (right) for a �xed
proportion (1/4) of division classes, as the total number of classes progresses from 10 to 300.
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Figure 6: Comparison of distributions obtained for 200 size classes, when the proportion of
these classes that are division classes changes: one division class, 1=4 = 50 division classes,
1=3 = 66 division classes and 1=2 = 100 division classes.

eigenvalue decreases.The right hand side of the �gure shows that with a given proportion of
the classes being division classes, the wavelength of the complex eigenvalue �rst decreases,
then stabilizes.

Hence it seems that the proportion of classes in which cells divide (and accordingly are
born) is more determinant for the transient behavior of the system than the total number of
classes. Interpretation of this fact is rather straightforward: the more division classes (and
accordingly birth classes), the faster the �dispersion� of cells.

The proportion of division classes also in�uences the equilibrium distribution, as can be
seen in Figure 6. In this �gure, we show, for a �xed total number of classes, the shape of the
distribution (converted to numbers) as the proportion of division classes among the total
number of classes rises. The plain curve corresponds to the prediction of the model of Gage
et al. Then, as the proportion of division classes grows, the distribution becomes more and
more narrow.

Figure 7 illustrates the behavior pointed out in Proposition 2.4. The plain curve shows
the standard equilibrium distribution. The dashed-dot curve shows what happens when the
proportion of cells dividing is one, in a division class that is not the last: there are no more
cells in the classes following this class (class 162 on the �gure). On the other hand, if for a
certain number of division classes, there is no division, we obtain an equilibrium distribution
like the one corresponding to the dashed curve (named �late division� distribution in the
�gure): classes are �right shifted�, and there are no cells prior to the class corresponding to
the �rst non zero division class.
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Figure 7: Comparison of a sample distribution with two extreme cases (all converted to cell
numbers). The distribution was computed using 200 size classes (80 birth classes, 40 growth
classes and 80 division classes). Premature division case: D40(�) = 1. Late division case:
Di(�) = 0 for i = 1; : : : ; 39.
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Figure 8: Sample data set of Cryptomonas sp.. This series represents three weeks of chemo-
stat culture. There are 100 size classes, from 1:5�m to 15�m.

4 Experimental data

As was mentioned in the introduction, we have access to very long time series of structured
data from a chemostat, such as the dataset shown in Figure 8. This dataset corresponds to
the algal specie Cryptomonas. The maximal growth rate of this specie is �max = 0:7 day�1,
corresponding to a minimal doubling time of approximatively one day, and the half satura-
tion constant is 1 �Mol. The dilution rate in this experiment was 0.4 day�1, and the input
concentration was 260 �Mol.

Let us now shortly mention how this data is obtained. The chemostat is fully automated,
both on the operating side and on the measurement side [4]. The dilution rate and the input
nutrient concentration are computer controlled; this allows �uctuating inputs, as well as long
time, nearly unattended functioning.

But the main feature of this device is that it allows nearly continuous monitoring of sev-
eral variables: substrate concentration (by colorimetric methods, using a Technicon Auto-
analyzer), cell size and number distributions (by means of a particle counter (HIAC/ROYCO
with laser sensor HRLD 400)), and even chlorophyllia concentration (using a spectropho-
tometer). All of these measures are computer controlled. Typical experiments last between
one and four months, resulting in sets of one thousand to four thousand measures.
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We will shortly discuss the comparison of the predictions of the model to this data in
the next section.

5 Discussion

We have shown that the introduction of size and substrate dependent cell division in the
model of Gage et al. does not fundamentally modify its dynamical behavior. Since our
model sums to a Monod type model, we are able following the analysis of [11], to prove
the existence of a globally stable non trivial equilibrium. This is done by �rst studying
the reduced model of substrate and total biomass, which is shown to have a globally stable
equilibrium, and then using a weak ergodic theorem of Golubitsky et al. to derive the
distribution of biomass in the size classes.

Then, we have presented several numerical simulations. These simulations show that
the ratio of division classes to the total number of classes is determinant of the shape of
the equilibrium distribution. The proportion of division classes also has an impact on the
transient behavior of the model: as it increases, the frequency of the oscillations in individual
size classes reduces, as well as their duration.

Regarding the equilibrium distribution, as can be seen in Figure 9, there exists quite
a di�erence between the data and the model prediction. But, by tuning of the division
parameters, one can obtain many di�erent shapes for the equilibrium distribution, the main
characteristic being that these distributions are leptokurtic. The precise identi�cation of
the division functions remains to be treated. However, we do not expect to be able to �t
such data very precisely using the predictions of our model. Indeed, it can be inferred from
Figure 9 that the doubling of the biomass that is a major hypothesis of this model, should
be relaxed. We can see that the diameter of the cells in the sample ranges from 3 �m to
about 8 �m. Converting this to biovolume gives a range of 14 to more than 200 �m3. To
relax the biomass doubling hypothesis, one could consider introducing division into cells of
di�erent sizes, as is done in [1, 9], or division into more than two cells, as Williams suggests
in [13].

From a modelling point of view, the comparison of Figures 3 and 4 pleads for the use of
structured models of the chemostat. Indeed, consider the total biomass curve in Figure 4.
It is smooth, while in Figure 3 we observe damped oscillations: the summation hides the
more complicated behavior of the individual biomass classes.

To conclude this discussion, let us note that we have not treated here the competition
case. But the analysis of [11] should still hold, were we to consider competition.
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Figure 9: Comparison of a sample spectrum with an equilibrium distribution (converted to
numbers). The distribution was computed using 200 size classes (80 birth classes, 40 growth
classes and 80 division classes).
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