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Abstract. Vaccination of both newborns and susceptibles is included in a transmission model
for a disease that confers immunity. The interplay of the vaccination strategy together with the
vaccine efficacy and waning is studied. In particular, it is shown that a backward bifurcation leading
to bistability can occur. Under mild parameter constraints, compound matrices are used to show
that each orbit limits to an equilibrium. In the case of bistability, this global result requires a novel
approach since there is no compact absorbing set.
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1. Introduction. Vaccination is a commonly used method for controlling dis-
eases, e.g., pertussis, measles, or influenza. Mathematical models including vaccina-
tion aid in deciding on a vaccination strategy and in determining changes in qualitative
behavior that could result from such a control measure (see, e.g., [5, 6]). If the vac-
cine is not totally effective, then recent models show that a backward bifurcation is
possible for some parameter values [9, 10]. In such a case, the basic reproduction
number as modified by vaccination must be reduced below a certain threshold (that
is less than one) in order to ensure that the disease dies out. Backward bifurcation
has been observed in other disease transmission models, for example the HIV/AIDS
models discussed in [2, 8] and the bovine respiratory syncytial virus model in [4].

Our model is a generalization of that of [10], allowing individuals recovering from
the disease to go into a temporarily immune class rather than directly back into
the susceptible class. A recent model [9] allows for a recovered class and considers
vaccination for a disease that has acute and chronic infective stages as well as variable
infectivity.

In section 2, we develop our model with general parameters, and illustrate its
behavior in section 3 by using vaccination-related values appropriate for pertussis
[1, 5]. In particular, we focus on the vaccination parameters and how changes in these
may alter the qualitative behavior of the model by leading to subthreshold endemic
states via backward bifurcation. Some local stability results are proved.

Previous investigations of the stability of subthreshold endemic states associated
with backward bifurcations rely mainly on local results. We use compound matrices
and geometric ideas to develop global results under mild parameter restrictions. These
tools have been used for analyzing other models of disease transmission in which there
is a unique endemic equilibrium; see, e.g., [11, 14, 16, 18]. In section 4, we present
a brief summary of this geometric approach for studying the global dynamics of our
model, concentrating on the novel features. This method is then used in section 5 to
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prove global results for the model. (Some technical details are placed in Appendices
A and B.) Concluding remarks are given in section 6.

2. Formulation of an SIRS model with vaccination. Following [10], but
with newborn vaccination and a recovered class, the model has the flow diagram given
in Figure 2.1 with the following assumptions. Each of the N individuals can be in
one of four states: susceptible, infective, recovered, and vaccinated; the numbers in
these states are denoted by S, I, R, and V , respectively. Thus, N = S + I +R + V .
Birth occurs in the system with rate constant d > 0. Of these newborns, a fraction
α ∈ [0, 1] are vaccinated at birth. Death occurs with the same rate constant d as birth;
thus the total population N is constant. The transmission coefficient β is the number
of contacts made by one infective per unit time multiplied by the probability that a
contact with a susceptible leads to infection. The disease is transmitted horizontally,
with the transmission modeled using a standard incidence function; thus the rate at
which susceptibles become infective is βSI/N . For contacts between infectives and
vaccinated individuals this coefficient is multiplied by a factor σ ∈ [0, 1]. Thus 1− σ
is the vaccine efficacy. Susceptible individuals are vaccinated with rate constant φ,
and the vaccine protection wanes with rate constant θ > 0. Infective individuals
recover with rate constant γ > 0 and then have temporary immunity. They leave the
recovered state with rate constant ν. We assume αd + φ > 0 to ensure that there is
a nonzero flow of individuals into class V .
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Fig. 2.1. The flow diagram of the SIRV model.

The model is formulated as the following system of ordinary differential equations:

dS

dt
= (1− α)dN − dS − β

SI

N
− φS + θV + νR,(2.1a)

dI

dt
= β

SI

N
+ σβ

V I

N
− (d+ γ)I,(2.1b)

dR

dt
= γI − (d+ ν)R,(2.1c)

dV

dt
= αdN + φS − (d+ θ)V − σβ

V I

N
,(2.1d)

with nonnegative initial conditions and N(0) > 0.
System (2.1) is well posed: solutions remain nonnegative for nonnegative initial

conditions. As the total population is constant, the system can be rewritten in terms
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of proportions as

dS

dt
= (1− α)d− dS − βSI − φS + θ(1− S − I −R) + νR,(2.2a)

dI

dt
= βSI + σβ(1− S − I −R)I − (d+ γ)I,(2.2b)

dR

dt
= γI − (d+ ν)R,(2.2c)

V = 1− (S + I +R),(2.2d)

where here S, I, R, V denote the proportions in the susceptible, infective, recovered,
and vaccinated states, respectively. Conclusions about system (2.1) can be easily
recovered from system (2.2), and we employ system (2.2) from now on. System
(2.2a)–(2.2c) can be written as dx/dt = f(x) with x = (S, I,R)T .

In the case σ = 1, the vaccine is totally useless, and (2.2) reduces to an SIRS model
without vaccination. The behavior is then determined by R0 = β/(d+γ). This is the
classical basic reproduction number in the SIRS model, namely, the average number
of new infections caused by one infective (in a completely susceptible population)
during the infective period. From now on we assume that σ < 1.

3. Equilibria and bifurcations. For system (2.2), there is always the disease-
free equilibrium (DFE)

X0 = (SDFE , 0, 0, VDFE) =

(
θ + d(1− α)

d+ θ + φ
, 0, 0,

φ+ dα

d+ θ + φ

)
.(3.1)

Now consider endemic equilibria with I = I∗ > 0. From (2.2b) at an endemic equi-
librium, β(S + σV ) = d+ γ. Since S + σV < 1, this can be true only for β > d+ γ;
hence, for R0 ≤ 1 there exists no endemic equilibrium. For R0 > 1, the existence of
endemic equilibria is determined by the presence in (0, 1] of positive real solutions of
the quadratic

P (I) = AI2 +BI + C = 0,

with

A = −σβ2 d+ ν + γ

d+ ν
,

B = σβ2 − β(d+ θ + σ(d+ γ + φ))− βγ

d+ ν
(d+ θ + σφ),

C = (d+ θ + σφ− dα(1− σ))β − (d+ γ)(d+ θ + φ).

Thus, depending on parameter values, the number of endemic equilibria is zero, one,
or two. For σ = 0 (the vaccine is totally effective), at most one endemic equilibrium
is possible. From now on we make the realistic assumption that the vaccine is not
totally effective, and thus 0 < σ < 1. From (2.2a)–(2.2d), it can be shown that if
I∗ is a positive solution of P (I) = 0, then S∗, R∗, and V ∗ are positive; thus the
equilibrium is biologically relevant. For a positive real solution I∗ to P (I) = 0, the
endemic equilibrium point (EEP) in system (2.2) is given by

(S∗, I∗, R∗, V ∗) =

(
(1− α)d+ (ν−θ)γI∗

d+ν + (1− I∗)θ
d+ βI∗ + φ+ θ

, I∗,
γI∗

d+ ν
, 1− S∗ − I∗ −R∗

)
.
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Fig. 3.1. (a) Plot of the quadratic P (I), with increasing values of σ (at left, from bottom to top,
σ = 0.04, 0.06, . . . , 0.16) in the forward bifurcation case, φ = 0.2. (b) As (a) but in the backward
bifurcation case, φ = 0.05. (c) Bifurcation in the (Rvac(σ), I∗)-plane, φ = 0.2. (d) Bifurcation in
the (Rvac(σ), I∗)-plane, φ = 0.05.

In Figure 3.1, P (I) is plotted versus I for increasing values of σ and φ = 0.2
or 0.05 (all other parameters being fixed at the values indicated in Table 3.1). The
values of γ, d and the vaccination parameters of Table 3.1 are appropriate for pertussis
[1, 5], whereas β and ν are estimated to illustrate our bifurcation results. Figure 3.1(a)
shows the situation that prevails when the bifurcation is a classical forward one. In
this case, an increase in σ through some critical value σc (which depends on the
other parameter values) leads through a transcritical bifurcation to a unique endemic
equilibrium. Figure 3.1(b) shows the occurrence of the backward bifurcation. In this
case, an increase of σ leads to the curve P (I) becoming tangent to the horizontal axis
defining a critical value σc at a saddle-node bifurcation. As σ becomes larger than σc,
two equilibria exist. We expect bistability with the DFE and the equilibrium with the
larger I value being stable. As σ increases further, the equilibrium with the smaller
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Table 3.1
Parameter values used in simulations.

Parameter Typical value or range Meaning
β 0.4 /day Transmission coefficient
γ 1/(21 days) Average infectious period 21 days
d 1/(75 years) Average lifespan 75 years
ν 1/(31 days) Average period of immunity 31 days
α 0.9 Proportion of vaccinated newborns
φ 0.05 to 0.2/day Vaccination rate constant
σ 0.04 to 0.2 Vaccine is between 80% and 96% effective
θ 1/(5 years) Average vaccine waning time 5 years

I value moves to the left. When this equilibrium leaves the positive orthant through
a transcritical bifurcation with the DFE, there is only one endemic equilibrium.

Since the concavity of the quadratic P (I) is fixed (as A < 0), observation of
Figure 3.1(b) gives necessary conditions for the existence of two equilibria: P ′(0) =
B > 0 and P (0) = C < 0. Together with the fact that the roots of P (I) are real, this
gives the bistability region B > 0, C < 0 and ∆ = B2 − 4AC > 0. Figure 3.2 shows
this region as a function of σ and φ, with all other parameters fixed as in Table 3.1.
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Fig. 3.2. Bifurcation diagram in the (σ, φ)-plane.

Using for example the method of [20], the basic reproduction number as modified
by vaccination is

Rvac =
β

d+ γ
(SDFE + σVDFE) ,

which from (3.1) gives

Rvac = R0
d+ θ + σφ− dα(1− σ)

d+ θ + φ
.(3.2)
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We writeRvac(σ) to indicate σ as the bifurcation parameter when all other parameters
are fixed. Note that R0(d(1 − α) + θ)/(d + θ + φ) < Rvac(σ) < R0 (equalities are
achieved at σ = 0 and σ = 1, respectively). The constant term C in the polynomial
P (I) can be written as (d+ γ)(d+ θ + φ)(Rvac − 1); thus P (0) has the same sign as
Rvac − 1. Define Rc = Rvac(σc). For a forward bifurcation, this gives Rc = 1; see
Figure 3.1(c). For a backward bifurcation, Rc < 1; see Figure 3.1(d). The existence
of endemic equilibria is summarized as follows.
Proposition 3.1. For model (2.2), if Rvac < Rc or Rvac = Rc = 1, there

is no endemic equilibrium; if Rc < Rvac < 1, then there are two distinct endemic
equilibria; if Rc = Rvac < 1, Rc < Rvac = 1, or Rvac > 1, there is a unique endemic
equilibrium.

When two endemic equilibria are present, letX∗ andX∗ be the endemic equilibria
with the larger and smaller value of I∗, respectively; when Rvac �= Rc and a unique
endemic equilibrium exists, it is denoted by X∗; when Rvac = Rc and a unique
endemic equilibrium exists, it is denoted by Xc. A global result (for R0 < 1) and
local stability of the equilibria are summarized in the following theorem, which justifies
the stability of equilibria as shown in Figures 3.1(c) and 3.1(d).
Theorem 3.2. If R0 < 1, then the DFE X0 is the only equilibrium for system

(2.2a)–(2.2c), and it is globally asymptotically stable; X0 is locally asymptotically sta-
ble for Rvac < 1 and unstable for Rvac > 1. When present, the endemic equilibrium
X∗ is unstable, and if θ ≤ ν, then X∗ is locally asymptotically stable.

Proof. As remarked earlier, for R0 ≤ 1 there exists no endemic equilibrium.
Further, if R0 < 1, then I can be used as a Lyapunov function to show that the DFE
is globally asymptotically stable.

From [20, Theorem 2], Rvac is a threshold value, with X0 being locally asymp-
totically stable if Rvac < 1 and unstable if Rvac > 1. Linearizing (2.2a)–(2.2c) about
an endemic equilibrium gives the Jacobian matrix

∂f

∂x
(S∗, I∗, R∗) =


 −d− βI∗ − φ− θ −βS∗ − θ ν − θ

(1− σ)βI∗ −σβI∗ −σβI∗
0 γ −(d+ ν)


 .

In the case in which two endemic equilibria exist, det
(
∂f
∂x (X∗)

)
> 0 and tr

(
∂f
∂x (X∗)

)
<

0. Thus ∂f
∂x (X∗) has a positive eigenvalue and two eigenvalues with negative real part,

making X∗ unstable hyperbolic.
Let λj , j = 1, 2, 3, be the eigenvalues of ∂f

∂x (X
∗) with �(λ1) ≤ �(λ2) ≤ �(λ3).

It can be shown that det
(
∂f
∂x (X

∗)
)
< 0 and so λ1λ2λ3 < 0. This means that either

�(λj) < 0 for j = 1, 2, 3 or �(λ1) < 0 ≤ �(λ2) ≤ �(λ3). Since tr
(
∂f
∂x (X

∗)
)
< 0, it

follows that λ1 +λ2 +λ3 < 0, which implies that �(λ1 +λ2) < 0 and �(λ1 +λ3) < 0.
Assume now that θ ≤ ν, and consider the second additive compound [12] of the

Jacobian matrix

∂f

∂x

[2]

(X∗) =




−
(
(1 + σ)βI∗

+ d+ φ+ θ

)
−σβI∗ θ − ν

γ −
(

βI∗ + 2d
+φ+ θ + ν

)
−βS∗ − θ

0 (1− σ)βI∗ −(σβI∗ + d+ ν
)



.

Using the signs of the matrix elements, it is easily shown that det
(
∂f
∂x

[2]
(X∗)

)
< 0.
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The eigenvalues of ∂f
∂x

[2]
(X∗) are λi + λj , 1 ≤ i < j ≤ 3, and so

−1 = sgn

(
det

(
∂f

∂x

[2]

(X∗)

))

= sgn (�(λ1 + λ2) �(λ1 + λ3)�(λ2 + λ3))
= sgn (�(λ2 + λ3)) .

Thus, �(λj) < 0 for j = 1, 2, 3, and thereforeX∗ is locally asymptotically stable.
Remark 3.3. For all of the numerical simulations performed here, the parameters

satisfy θ ≤ ν; i.e., the average period of immunity is no longer than the average
vaccine waning time. If θ ≥ ν, then there is no endemic equilibrium for Rvac ≤ 1,
since each of the coefficients in P (I) is nonpositive; thus there can be no bistability.

More general techniques are needed to determine the global dynamics for the case
R0 > 1.

4. A geometric approach to global dynamics. In this section, a brief out-
line of a general mathematical framework for studying global dynamics is given. This
approach to global dynamics is developed in the papers of Smith [17] and Li and Mul-
downey [12, 13, 15]. While this method is usually applied to demonstrate the global
stability of a unique equilibrium [11, 14], here it is used to demonstrate bistability for
a system that exhibits a backward bifurcation. In [11, 14], compound matrix tech-
niques together with the existence of a compact absorbing set are used to prove global
asymptotic stability of the endemic equilibrium point. For cases in which our model
exhibits bistability, no such compact absorbing set exists; thus, a sequence of surfaces
that exists for time ε > 0 and minimizes the functional measuring surface area must
be considered.

Let B be the Euclidean ball in R
2, and let B̄ and ∂B be its closure and boundary,

respectively. Letting Lip(X → Y ) denote the set of Lipschitzian functions from X to
Y , a function ϕ ∈ Lip(B̄ → D) is a (simply connected rectifiable) surface in D. A
function ψ ∈ Lip(∂B → D) is a closed rectifiable curve in D and is called simple if it
is one-to-one. Let Σ(ψ,D) = {ϕ ∈ Lip(B̄ → D) : ϕ|∂B = ψ}. In [15], it is shown that
if ψ is contained in a simply connected open subset of D, then Σ(ψ,D) is nonempty.

Let ‖ · ‖ be a norm on R
(n
2 ). Consider a functional S on surfaces in D defined by

Sϕ =

∫
B̄

∥∥∥∥P ·
(
∂ϕ

∂u1
∧ ∂ϕ

∂u2

)∥∥∥∥ du,(4.1)

where u = (u1, u2), u �→ ϕ(u) is Lipschitzian on B̄, the wedge product ∂ϕ
∂u1

∧ ∂ϕ
∂u2

is a

vector in R
(n
2 ) (see [19]), and P is an (n2 ) × (n2 ) matrix such that ‖P−1‖ is bounded

on ϕ(B̄). The following result follows from the development in [12] and [15].
Proposition 4.1. Suppose that ψ is a simple closed rectifiable curve in R

n.
Then there exists δ > 0 such that

Sϕ ≥ δ

for all ϕ ∈ Σ(ψ,Rn).
Functionals of the form (4.1) give a measure of the surface area of the surface

ϕ. In this context, Proposition 4.1 can be interpreted as stating that, given a curve
ψ ⊂ R

n and a measure of surface area, all surfaces with boundary ψ have surface area
uniformly bounded away from zero.
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Let x �→ f(x) ∈ R
n be a C1 function for x in a set D ⊂ R

n. Consider the
differential equation

dx

dt
= f(x).(4.2)

(This is used in section 5 with x = (S, I,R)T for the system (2.2a)–(2.2c).) For any
surface ϕ, the new surface ϕt is defined by ϕt(u) = x(t, ϕ(u)). Note that when viewed
as a function of t, ϕt(u) gives the solution to (4.2) that passes through the point ϕ(u)
at t = 0.

It is shown in [15] that D+Sϕt, the right-hand derivative of Sϕt, is given by

D+Sϕt =

∫
B̄

lim
h→0+

1

h

[∥∥z + hQ
(
ϕt(u)

)
z
∥∥− ∥∥z∥∥] du,(4.3)

where the matrix Q = PfP
−1+P ∂f

∂x

[2]
P−1. Here Pf is the directional derivative of P

in the direction of the vector field f , ∂f
∂x

[2]
is the second additive compound [12] of

∂f
∂x , and z = P · ( ∂ϕ

∂u1
∧ ∂ϕ

∂u2
) is a solution to the differential equation

dz

dt
= Q

(
ϕt(u)

)
z.(4.4)

Thus, (4.3) can be rewritten as

D+Sϕt =

∫
B̄

D+

∥∥z∥∥ du.
If there exists η > 0 such that D+‖z‖ ≤ −η‖z‖ for all z ∈ R

(n
2 ) and all x ∈ D, then

D+Sϕt ≤
∫
B̄
−η‖z‖ du = −ηSϕt, and so Sϕt ≤ Sϕ e−ηt as long as ϕt remains in D.

If ϕt ⊂ D for all t, then limt→∞ Sϕt = 0.
Suppose that ψ is the trace of a periodic solution of (4.2). Then ψ is invariant

under the flow described by (4.2). Let ϕ ∈ Σ(ψ,D). Then ϕt(∂B) = x(t, ϕ(∂B)) =
x(t, ψ(∂B)) = ψ(∂B). Thus, ϕt ∈ Σ(ψ,D) as long as ϕt ⊂ D. If D is positively
invariant, then ϕt ∈ Σ(ψ,D) for all t ≥ 0, and therefore, by Proposition 4.1, Sϕt ≥ δ
for all t ≥ 0. Thus, by the remarks of the previous paragraph, the condition that
D+‖z‖ ≤ −η‖z‖ for all z and x precludes the existence of periodic solutions to (4.2).

In the absence of a compact absorbing set, a surface may not remain in D
for all time. Thus, we consider a sequence of surfaces {ϕk} in Σ(ψ,D) such that
limk→∞ Sϕk = δ, where δ = inf{Sϕ : ϕ ∈ Σ(ψ,D)} and for which there exists ε > 0
such that ϕk

t (B̄) ⊂ D for t ∈ [0, ε] and k = 1, 2, . . . . If D+‖z‖ ≤ −η‖z‖ for all z ∈ R
(n
2 )

and all x ∈ D, then Sϕk
ε ≤ Sϕke−ηε, and therefore there exists l such that Sϕl

ε < δ.
This implies that the boundary of ϕl

ε is not ψ, and therefore ψ is not invariant under
(4.2). Thus, if for every simple closed curve ψ in D there is a sequence of surfaces
{ϕk} in Σ(ψ,D) that all remain in D for some time ε > 0, and there is a surface
functional S of the form given in (4.1), then the condition D+‖z‖ ≤ −η‖z‖ precludes
the existence of invariant closed curves, including periodic orbits, homoclinic orbits,
and heteroclinic cycles.

The above conditions are robust under local C1 perturbations to the original
differential equation (4.2). Thus, if (4.2) satisfies the above hypotheses, then so do
all systems that are sufficiently C1-close to (4.2). Therefore, Pugh’s closing lemma
[7] leads to the following result in the spirit of Criterion 3.1 in [15], giving conditions
that preclude the existence of nonconstant nonwandering points.
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Theorem 4.2. Suppose there exists a norm ‖ · ‖ on R
(n
2 ) and η > 0 such that

D+‖z‖ ≤ −η‖z‖ for all z ∈ R
(n
2 ) satisfying (4.4) and all x ∈ D for D simply connected.

Further, suppose that for any simple closed curve ψ in D there exists a sequence of
surfaces {ϕk} that minimizes S relative to Σ(ψ,D) and there exists ε > 0 such that
ϕk
t ⊂ D for t ∈ [0, ε] and k = 1, 2, . . . . Then any omega limit point of (4.2) in the
interior of D is an equilibrium.

In order to apply the theorem to a particular system, it is necessary to find a norm
‖ ·‖ and a matrix P (which then determines the matrix Q) such that D+‖z‖ ≤ −η‖z‖
and to show that an appropriate sequence of surfaces exists.

5. Global analysis of the SIRS model with vaccination. Recalling that
for R0 < 1 the DFE is globally asymptotically stable (Theorem 3.2), we now apply
the theory outlined in the previous section to system (2.2a)–(2.2c) for R0 > 1. Let
D = {(S, I,R) : S,R ≥ 0, I > 0, S + I + R ≤ 1}. The Jacobian matrix at a general
point x = (S, I,R)T is given by

∂f

∂x
=


−d− βI − φ− θ −βS − θ ν − θ

(1− σ)βI β(S + σV − σI)− (d+ γ) −σβI
0 γ −(d+ ν)


 ,(5.1)

where V = 1 − S − I − R from (2.2d). The second additive compound [12] of the
Jacobian matrix is the 3× 3 matrix given by

∂f

∂x

[2]

=




(
β(S + σV − (1 + σ)I)
− [2d+ φ+ θ + γ]

)
−σβI θ − ν

γ −(βI + 2d+ φ+ θ + ν) −(βS + θ)

0 (1− σ)βI

(
β(S + σV − σI)
− [2d+ γ + ν]

)



.

Let P = 1
I I3, where I3 is the 3× 3 identity matrix. Then PfP

−1 = − 1
I
dI
dt I3 with

dI
dt given by (2.2b), and

Q = PfP
−1 + P

∂f

∂x

[2]

P−1

=



−[(1 + σ)βI + d+ φ+ θ] −σβI θ − ν

γ

(
γ − [β(S + σV + I)
+ d+ φ+ θ + ν]

)
−(βS + θ)

0 (1− σ)βI −(σβI + d+ ν)


 .

(5.2)

For z = (z1, z2, z3)
T , let ‖z‖ be given by

‖z‖ =

{
max{|z1|+ |z3|, |z2|+ |z3|} if 0 ≤ z2z3,
max{|z1|+ |z3|, |z2|} if z2z3 ≤ 0.

(5.3)

This norm is used as a Lyapunov function for system (4.4). The following two propo-
sitions, with proofs given in the appendices, lead to our main result.
Proposition 5.1. Assume that in system (2.2a)–(2.2c) the parameters satisfy

the following inequalities:

θ < d+ 2ν,

2γ < d+ φ+ θ + ν,

γ < d+ φ+ ν.

(5.4)
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Then there exists η > 0 such that D+‖z‖ ≤ −η‖z‖ for all z ∈ R
3 and all S, I,R, V ≥ 0,

I �= 0, where z is a solution of (4.4) with Q and ‖ · ‖ given by (5.2) and (5.3),
respectively.

Note that inequalities (5.4) are independent of the transmission coefficient β, the
proportion of newborns vaccinated α, and the vaccine efficacy σ but depend on the
other model parameters.
Proposition 5.2. Let ψ be a simple closed curve in D. There exist ε > 0 and

a sequence of surfaces {ϕk} that minimizes S given by (4.1) relative to Σ(ψ,D) such
that ϕk

t ⊂ D for all k = 1, 2, . . . and all t ∈ [0, ε].
Theorem 5.3. If inequalities (5.4) hold, then each positive semitrajectory of

(2.2a)–(2.2c) in D̄ limits to a single equilibrium.
Proof. Let Γ be a positive semitrajectory in D̄ with omega limit set Ω. Suppose

that Ω intersects the interior of D. Propositions 5.1 and 5.2 ensure that Theorem 4.2
can be applied to system (2.2a)–(2.2c). Theorem 4.2 implies that every omega limit
point of (2.2a)–(2.2c) in the interior of D is an equilibrium. Since the system has a
finite number of equilibria, there are only a finite number of points in the interior of
D which can be in Ω. As Γ is bounded, Ω must be connected. Thus, Ω must consist
of a single equilibrium.

Suppose, on the other hand, that Ω is contained in the boundary ∂D of D. Since
omega limit sets are invariant, Ω must be contained in the largest invariant subset
of ∂D. By considering (2.2a)–(2.2c) with the assumption that θ, γ, and αd + φ are
positive, it is easily shown that {X0} is the only invariant subset of ∂D and therefore
Ω = {X0}.

For the parameters given in Table 3.1 and used in Figure 3.2, inequalities (5.4) are
satisfied for φ > 0.063, which contains part of the bistability region. With θ = 1/(1
year) and ν = 1/(14 days), and all other parameters fixed as in Table 3.1, Figure 5.1
shows a two-dimensional bifurcation diagram in the (σ, φ)-plane. Inequalities (5.4)
are satisfied for φ > 0.021, including the entire region for which bistability occurs.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

σ

φ

B=0
C=0
∆=0

No EEP 

2 EEP 

1 EEP 

(5.4) 

Fig. 5.1. Bifurcation diagram in the (σ, φ)-plane, for 1/θ equal to one year and 1/ν equal to
two weeks. The second inequality of (5.4) holds for φ above the horizontal line labeled (5.4). The
other two inequalities of (5.4) hold in the whole region.
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Corollary 5.4. Assume that inequalities (5.4) hold for system (2.2a)–(2.2c).
(i) If there is no endemic equilibrium, then all solutions limit to the DFE X0.
(ii) If Rvac > 1, then (S, I,R) tends to the unique endemic equilibrium X∗,

provided that I(0) > 0.
(iii) If there are two endemic equilibria, or if Xc is the only endemic equilib-

rium, then depending on the initial values, the disease dies out or limits to a constant
endemic value.

Proof. Statements (i) and (iii) follow directly from Theorem 5.3. For (ii),Rvac>1,
and so the DFE is unstable with a two-dimensional stable manifold (see (5.1)), which
is {I = 0}. Since from Theorem 5.3 every solution limits to an equilibrium, and since
solutions with I(0) > 0 do not go to the DFE, they must limit to X∗.
Corollary 5.5. Suppose that θ ≤ ν and 2γ < d+φ+θ+ν. Then the conclusions

of Corollary 5.4 hold. Furthermore, if system (2.2a)–(2.2c) has two endemic equilibria,
then the basins of attraction of X∗ and X0 have positive measure and the basin of
attraction of X∗ has zero measure.

Proof. If θ ≤ ν and 2γ < d + φ + θ + ν, then the inequalities (5.4) are satisfied
and so the conclusions of Corollary 5.4 follow. From Theorem 3.2, X∗ is locally
asymptotically stable. Thus it has a basin of attraction with positive measure. It is
shown in section 3 that X∗ is unstable hyperbolic. Thus, the set of points which limit
to X∗ has Lebesgue measure zero. When there are two endemic equilibria, Rvac < 1,
and thus X0 is locally asymptotically stable and has a basin of attraction with positive
measure.

Remark 5.6. For ν sufficiently large (i.e., a sufficiently short period of immunity),
inequalities (5.4) hold and the conclusion of Corollary 5.5 holds. In the limiting case
as ν tends to infinity, upon recovery infective individuals progress directly to the
susceptible class; thus the model reduces to an SIS model with vaccination, similar
to that considered in [10].

Remark 5.7. By using norms other than the norm given by (5.3), inequalities
(5.4) can be replaced with other conditions which lead to the same conclusions. For
example, if ‖z‖ is given by

‖z‖ = max
j=1,2,3

|zj |,

then (5.4) can be replaced with

2γ ≤ d+ ν + θ.(5.5)

Similarly, if ‖z‖ is given by

‖z‖ =




|z1|+ |z2|+ |z3| if sgn(z1) = sgn(z2) = sgn(z3),
max{|z1|+ |z2|, |z1|+ |z3|} if sgn(z1) = sgn(z2) = −sgn(z3),
max{|z1|+ |z3|, |z2|} if sgn(z1) = −sgn(z2) = sgn(z3),
max{|z1|+ |z3|, |z2|+ |z3|} if − sgn(z1) = sgn(z2) = sgn(z3),

then (5.4) can be replaced with

θ < d+ 2ν,

γ < d+ φ+min{θ, ν}.(5.6)

For parameter values given in Table 3.1, the inequalities found in (5.4) are less re-
strictive than those given in (5.5) or (5.6).
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6. Concluding remarks. The model formulated in section 2 incorporates vacci-
nation for a disease in a simple manner, with vaccinated individuals in a class distinct
from that of the individuals who have recovered from the disease. By contrast, in
some models (e.g., [3]) these two classes are combined. The basic reproduction num-
ber as modified by vaccination, namely Rvac as given by (3.2), is a key parameter
in our model. To eradicate the disease, it may not be sufficient to reduce Rvac be-
low one. In the case of bistability, Rvac must be further reduced; see Figure 3.1(d).
Increasing vaccination of either newborns or the population at risk has the effect of
reducing Rvac. An important parameter in Rvac is the efficacy of the vaccine, namely,
1−σ. Bistability may occur for a range of σ values. This range depends on the values
of the other parameters in the model. The occurrence of a backward bifurcation is
illustrated for some parameter values in Figures 3.1(b), 3.1(d), 3.2, 5.1. In the case
of bistability, the asymptotic behavior of the proportion of infectives depends on the
initial conditions. In such a situation, global analysis is more complicated than in a
situation with a unique endemic equilibrium and a compact absorbing set. An ap-
propriate sequence of surfaces that minimizes the functional measuring surface area
must be considered. This novel approach is outlined in section 4 and then applied to
our model in section 5. Global results are proved under mild parameter restrictions,
and it is indicated that alternative restrictions arise from alternative choices of norms.
The rate of vaccination of susceptibles and the vaccine waning rate play a role in these
restrictions, whereas the vaccine efficacy and the proportion of newborns vaccinated
do not. Theorem 5.3 rules out any complicated behavior (e.g., limit cycles) under
mild parameter restrictions, and numerical simulations have found no such behavior
for any parameter values. A more realistic model including vaccination should incor-
porate age structure and demographics (see, e.g., [5]). However, global results are
then not available, and simulations must be performed to gain some insight into the
model behavior and to determine vaccination strategy.

The analysis of our model can be regarded as the first application of using a
minimizing sequence of surfaces in this context. This method may also be useful in
other models for which there exist solutions that limit to boundary equilibria.

Appendix A. Proof of Proposition 5.1.
Proof. We demonstrate the existence of some η > 0 such that D+‖z‖ ≤ −η‖z‖,

where z is a solution of (4.4). By linearity, if this inequality is true for some z, then
it is also true for −z. The proof is subdivided into eight cases based on the octant
and the definition of the norm in (5.3).

Case 1. If 0 < z1, z2, z3 and |z1|+ |z3| > |z2|+ |z3|, then ‖z‖ = |z1|+ |z3| and

D+‖z‖ = D+(|z1|+ |z3|)
= D+(z1 + z3)

=
dz1
dt

+
dz3
dt

= −((1 + σ)βI + d+ φ+ θ
)
z1 + (1− 2σ)βIz2 +

(
θ − (σβI + d+ 2ν)

)
z3.

Noting that (1− 2σ)βIz2 ≤ (1− σ)βIz2 ≤ (1− σ)βIz1,

D+‖z‖ < −(2σβI + d+ φ+ θ)z1 + (θ − (σβI + d+ 2ν))z3

≤ max{−(2σβI + d+ φ+ θ), θ − (σβI + d+ 2ν)} ‖z‖.

Thus, in order that D+‖z‖ be bounded away from zero on the negative side for all z
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and all I > 0, we require that

θ < d+ 2ν.(A.1)

Case 2. If 0 < z1, z2, z3 and |z1|+ |z3| < |z2|+ |z3|, then ‖z‖ = |z2|+ |z3| and
D+‖z‖ = D+(|z2|+ |z3|)

=
dz2
dt

+
dz3
dt

= γz1+
(
γ − (β(S + σV + σI) + d+ φ+ θ + ν

))
z2 −

(
β(S + σI) + d+ θ + ν

)
z3.

Since z1 < z2, this becomes

D+‖z‖ <
(
2γ − (β(S + σV + σI) + d+ φ+ θ + ν

))
z2 −

(
β(S + σI) + d+ θ + ν

)
z3.

In order that D+‖z‖ be bounded away from zero on the negative side for all S, I, V >
0, we require that

2γ < d+ φ+ θ + ν.(A.2)

Case 3. If z1 < 0 < z2, z3 and |z1|+ |z3| > |z2|+ |z3|, then ‖z‖ = |z1|+ |z3| and
D+‖z‖ = D+(|z1|+ |z3|)

= D+(−z1 + z3)

= −dz1
dt

+
dz3
dt

=
(
(1 + σ)βI + d+ φ+ θ

)
z1 + βIz2 − (σβI + d+ θ)z3

= −((1 + σ)βI + d+ φ+ θ
)|z1|+ βI|z2| − (σβI + d+ θ)|z3|.

Since |z2| < |z1|,
D+‖z‖ < −(σβI + d+ φ+ θ)|z1| − (σβI + d+ θ)|z3|

≤ −(d+ θ)‖z‖.
Thus, in this case, D+‖z‖ is automatically bounded away from zero on the negative
side.

Case 4. If z1 < 0 < z2, z3 and |z1|+ |z3| < |z2|+ |z3|, then ‖z‖ = |z2|+ |z3| and
D+‖z‖ = D+(|z2|+ |z3|)

=
dz2
dt

+
dz3
dt

= γz1+
(
γ−(β(S+σV +σI) + d+ φ+ θ + ν

))
z2−

(
β(S + σI) + d+ θ + ν

)
z3

= −γ|z1|+
(
γ − (β(S + σV + σI) + d+ φ+ θ + ν

))|z2|
− (β(S + σI) + d+ θ + ν

)|z3|
<
(
γ − (β(S + σV + σI) + d+ φ+ θ + ν

))|z2| − (β(S + σI) + d+ θ + ν
)|z3|

≤ max
{
γ−(β(S+σV +σI) +d+ φ+ θ + ν

)
,−(β(S + σI) + d+ θ + ν

)} ‖z‖.
Thus we require that

γ < d+ φ+ θ + ν.(A.3)
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Case 5. If z2 < 0 < z1, z3 and |z1|+ |z3| > |z2|, then ‖z‖ = |z1|+ |z3| and

D+‖z‖ = D+(|z1|+ |z3|)
=

dz1
dt

+
dz3
dt

= −((1 + σ)βI + d+ φ+ θ
)
z1 + (1− 2σ)βIz2 +

(
θ − (σβI + d+ 2ν)

)
z3

= −((1 + σ)βI + d+ φ+ θ
)|z1|+ (2σ − 1)βI|z2|+

(
θ − (σβI + d+ 2ν)

)|z3|.
Since (2σ − 1)βI|z2| ≤ σβI|z2| < σβI(|z1|+ |z3|),

D+‖z‖ < −(βI + d+ φ+ θ)|z1|+
(
θ − (d+ 2ν)

)|z3|
≤ max{−(βI + d+ φ+ θ), θ − (d+ 2ν)}‖z‖.

Thus, we require that (A.1) hold.
Case 6. If z2 < 0 < z1, z3 and |z1|+ |z3| < |z2|, then ‖z‖ = |z2| and

D+‖z‖ = D+(|z2|)
= −dz2

dt

= −γz1 −
(
γ − (β(S + σV + I) + d+ φ+ θ + ν

))
z2 + (βS + θ)z3

= −γ|z1|+
(
γ − (β(S + σV + I) + d+ φ+ θ + ν

))|z2|+ (βS + θ)|z3|.

Since −γ|z1| < 0 and |z3| < |z2|,

D+‖z‖ <
(
γ − (β(σV + I) + d+ φ+ ν

))|z2|.
Thus, we require that

γ < d+ φ+ ν.(A.4)

Case 7. If z3 < 0 < z1, z2 and |z1|+ |z3| > |z2|, then ‖z‖ = |z1|+ |z3| and

D+‖z‖ = D+(|z1|+ |z3|)
=

dz1
dt

− dz3
dt

= −((1 + σ)βI + d+ φ+ θ
)
z1 − βIz2 + (θ + σβI + d)z3

= −((1 + σ)βI + d+ φ+ θ
)|z1| − βI|z2| − (θ + σβI + d)|z3|

≤ −(d+ θ)‖z‖.

Thus, in this case, D+‖z‖ is automatically bounded away from zero on the negative
side.

Case 8. If z3 < 0 < z1, z2 and |z1|+ |z3| < |z2|, then ‖z‖ = |z2| and

D+‖z‖ = D+(|z2|)
=

dz2
dt

= γz1 +
(
γ − (β(S + σV + I) + d+ φ+ θ + ν

))
z2 − (βS + θ)z3

= γ|z1|+
(
γ − (β(S + σV + I) + d+ φ+ θ + ν

))|z2|+ (βS + θ)|z3|.
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Noting that |z1|+ |z3| < |z2|,
D+‖z‖ <

(
γ − (β(S + σV + I) + d+ φ+ θ + ν

)
+max{γ, βS + θ})‖z‖.

Thus, we require that (A.2) and (A.4) hold.
Note that (A.2) and (A.4) each imply (A.3). Thus, if inequalities (A.1), (A.2),

and (A.4) hold, then there exists η > 0 such that D+‖z‖ ≤ −η‖z‖ for almost every
z ∈ R

3 and all nonnegative S, I, R, and V . The boundary between the different cases,
including, for example, zj = 0 for some j, is resolved by continuity. Thus, (A.1), (A.2),
and (A.4) (equivalently (5.4)) imply that D+‖z‖ ≤ −η‖z‖ for all z ∈ R

3.

Appendix B. Proof of Proposition 5.2.
Proof. Let ξ = 1

2 min{I : (S, I,R) ∈ ψ} and let ε > 0. Note that the model is well

posed so solutions remain in the nonnegative orthant. In D, dI
dt ≥ −(d + ν)I. Thus,

if a solution satisfies I(0) ≥ ξ, then the solution remains in D for time ε.
Therefore, it suffices to show that there exists a sequence of surfaces {ϕk} that

minimizes S relative to Σ(ψ, D̃), where D̃ = {(S, I,R) ∈ D : I ≥ ξ}. Let ϕ =
(S(u), I(u), R(u)) ∈ Σ(ψ,D). Define a new surface ϕ̃ = (S̃, Ĩ, R̃) by

ϕ̃(u) =




ϕ(u) if I(u) ≥ ξ,
(S, ξ,R) if I(u) < ξ and S(u) + ξ +R(u) ≤ 1,(
S

S+R (1− ξ), ξ, R
S+R (1− ξ)

)
if I(u) < ξ and S(u) + ξ +R(u) > 1.

(B.1)

Note that ϕ̃ ∈ Σ(ψ, D̃). We now demonstrate that Sϕ̃ ≤ Sϕ.
Since ϕ is Lipschitzian, the partial derivatives ∂ϕ

∂uj
, j = 1, 2, exist almost every-

where. Thus,

∂ϕ

∂u1
∧ ∂ϕ

∂u2
=




∂S
∂u1

∂I
∂u1

∂R
∂u1


 ∧




∂S
∂u2

∂I
∂u2

∂R
∂u2


 =




det

(
∂S
∂u1

∂S
∂u2

∂I
∂u1

∂I
∂u2

)

det

(
∂S
∂u1

∂S
∂u2

∂R
∂u1

∂R
∂u2

)

det

(
∂I
∂u1

∂I
∂u2

∂R
∂u1

∂R
∂u2

)




is a vector in R
3 for almost every u ∈ B. To examine

∥∥ ∂ϕ̃
∂u1

∧ ∂ϕ̃
∂u2

∥∥, we do a case
analysis based on the definition of ϕ̃ given in (B.1).

Case 1. If I(u) ≥ ξ, then ϕ̃ = ϕ and therefore
∥∥ ∂ϕ̃
∂u1

∧ ∂ϕ̃
∂u2

∥∥ =
∥∥ ∂ϕ
∂u1

∧ ∂ϕ
∂u2

∥∥ when
all of the relevant partial derivatives exist.

Case 2. If I(u) < ξ and S(u) + ξ + R(u) ≤ 1, then ϕ̃(v) = (S(v), ξ, R(v)).
Therefore

∂ϕ̃

∂u1
∧ ∂ϕ̃

∂u2
=




det

(
∂S
∂u1

∂S
∂u2

0 0

)

det

(
∂S
∂u1

∂S
∂u2

∂R
∂u1

∂R
∂u2

)

det

(
0 0
∂R
∂u1

∂R
∂u2

)




=




0

det

(
∂S
∂u1

∂S
∂u2

∂R
∂u1

∂R
∂u2

)

0
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almost everywhere. If yj is equal to either zj or zero for j=1, 2, 3, then ‖(y1, y2, y3)
T ‖≤

‖(z1, z2, z3)T ‖ for the given norm. It follows that
∥∥ ∂ϕ̃
∂u1

∧ ∂ϕ̃
∂u2

∥∥ ≤ ∥∥ ∂ϕ
∂u1

∧ ∂ϕ
∂u2

∥∥.
Case 3. If I(u) < ξ and S(u)+ξ+R(u) > 1, then ϕ̃(v) =

(
S

S+R (1−ξ), ξ, R
S+R (1−

ξ)
)
. Therefore

∂ϕ̃

∂uj
= (1− ξ)

R ∂S
∂uj

− S ∂R
∂uj

(S +R)2


 1

0
−1




for j = 1, 2. Thus, ∂ϕ̃
∂u1

and ∂ϕ̃
∂u2

are linearly dependent, and so their wedge product is

zero [19]. Therefore
∥∥ ∂ϕ̃
∂u1

∧ ∂ϕ̃
∂u2

∥∥ = 0 ≤ ∥∥ ∂ϕ
∂u1

∧ ∂ϕ
∂u2

∥∥.
The above three cases show that

∥∥ ∂ϕ̃
∂u1

∧ ∂ϕ̃
∂u2

∥∥ ≤ ∥∥ ∂ϕ
∂u1

∧ ∂ϕ
∂u2

∥∥ for almost all u ∈ B̄.

We also note that Ĩ(u) = max{I(u), ξ} and thus 1/Ĩ ≤ 1/I. Therefore from (4.1),

Sϕ̃ =

∫
B̄

1

Ĩ

∥∥∥∥ ∂ϕ̃∂u1
∧ ∂ϕ̃

∂u2

∥∥∥∥ du
≤
∫
B̄

1

I

∥∥∥∥ ∂ϕ∂u1
∧ ∂ϕ

∂u2

∥∥∥∥ du
= Sϕ.

Let {ϕk} be a sequence of surfaces that minimizes S relative to Σ(ψ,D). Let
{ϕ̃k} be a sequence of surfaces in Σ(ψ, D̃) defined by the above construction. Since
Sϕ̃k ≤ Sϕk for each k, and Σ(ψ, D̃) is a subset of Σ(ψ,D), it follows that {ϕ̃k}
minimizes S relative to Σ(ψ, D̃).
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