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ABSTRACT. We investigate some properties of a very gen-
eral model of growth in the chemostat. In the classical mod-
els of the chemostat, the function describing cellular growth
is assumed to be a constant multiple of the function modeling
substrate uptake. The constant of proportionality is called the
growth yield constant. Here, this assumption of a constant de-
scribing growth yield is relaxed. Instead, we assume that the
relationship between uptake and growth might depend on the
substrate concentration and hence that the yield is variable.

We obtain criteria for the stability of equilibria and for the
occurrence of a Hopf bifurcation. In particular, a Hopf bifur-
cation can occur if the uptake function is unimodal. Then, in
this setting, we consider competition in the chemostat for a sin-
gle substrate, in order to challenge the principle of competitive
exclusion.

We consider two examples. In the first, the function de-
scribing the growth process is monotone and in the second it
is unimodal. In both examples, in order to obtain a Hopf bi-
furcation, one of the competitors is assumed to have a variable
yield, and its “uptake” is described by a unimodal function.
However, the interpretation is different in each case. We pro-
vide a necessary condition for strong coexistence and a suffi-
cient condition that guarantees the extinction of one or more
species. We show numerically by means of bifurcation diagrams
and simulations, that the competitive exclusion principle can be
breached resulting in oscillatory coexistence of more than one
species, that competitor-mediated coexistence is possible, and
that these simple systems can have very complicated dynamics.

1 Introduction Numerous papers deal with the growth of microor-
ganisms in the chemostat. Most originate from bioengineering and mi-
crobiology, where the chemostat finds a wide variety of applications, from
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theoretical studies of bacteria to the use of bacteria in biological waste
decomposition and water purification (see, e.g., [10, 36]). As well as
being an experimental system that generates reproducible results, it has
been modeled extensively with good success. When browsing the corpus
of literature dedicated to modeling the chemostat, it appears that al-
though approaches and applications are varied, most of the models rely
on a simple relationship between two fundamental processes, nutrient
uptake and cellular growth. In particular, in most models these pro-
cesses are assumed to be proportional. The constant of proportionality
is referred to as the growth yield constant or yield constant.

The notion of yield dates from the beginning of continuous bacterial
culture, and is for example defined by Monod [35] as the ratio K of the
amount of bacterial substance formed per amount of limiting nutrient
utilized. He notes that if the growth is expressed as “standard” cell
concentration, then 1/K represents the amount of limiting nutrient used
up in the formation of a “standard” cell. He also notes that the yield has,
for a given strain and a given compound and under similar conditions,
a remarkable degree of stability and reproducibility. But this reasoning
is based on the assumption of constant yield.

In most of the early models of microbial growth in the chemostat,
besides assuming constant yield, it was assumed that growth was a
monotone increasing function of substrate concentration. However, for
some organisms, high concentrations of substrate can be detrimental, as
was pointed out in 1925 by Briggs and Haldane [7]. See also [43] for a
comprehensive review of the mechanisms involved. Inhibition was subse-
quently incorporated into models of bacterial growth (see, e.g., [3, 16]).
Attempting to fit experimental data, many authors have used different
functional forms to model inhibition (see, e.g., [14, 33, 39]).

Under the assumption of constant yield, mathematical models predict
that there can be no sustained oscillations (see, e.g., [9, 23, 41, 45]).
Since such oscillations have been observed in experiments (see, e.g., [15]
for Arthrobacter globiformis and [27] for Lactobacillus plantarum), it is
then useful to find models that reproduce these oscillations.

With this in mind, we explore models involving variable yield. In the
case of batch experiments, it was shown [29] that oscillatory solutions
occur only if the yield is a function of both the substrate and the cell
concentration. In continuous culture, this is not necessary, and most of
the work has focused on the simpler assumption of a substrate depen-
dent yield. Different explanations can be given for this dependence. In
the case of chemical reactors, the yield is obtained from mass balance
equations. For biological reactors, it is more complicated. See [42] for
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a recent review of various thermodynamical models. For a description
of how units of substrate are converted into units for cellular (bio)mass,
see [36, p. 28–38].

The earliest model considering a more accurate relationship between
uptake and growth was developed by Koga and Humphrey [24]. They
introduce a respiration coefficient, R. They note that when respiration
is considered, the observed yield coefficient Yobs is given by 1/Yobs =
1/Y + R/µ(S), where Y is a constant yield coefficient and µ(S) is the
specific growth rate of the microorganisms. In subsequent work on the
subject, [11, 12, 17] assume that growth and uptake are related through
a linear function of the substrate concentration. In [2, 38, 37], linear
and nonlinear functions modeling yield are considered and conditions
are derived for the existence of a Hopf bifurcation.

It is a difficult task to determine which part of the dynamics stems
from the “higher” level processes that are modeled, and which part stems
from the nature of the hypotheses made on nutrient uptake and cellular
growth. The objective of this paper is to explore the dynamics result-
ing from the different ways of modeling variable yield in the chemostat
model. We review the commonly used methods describing uptake and
growth, and study their interplay. To do this, we consider that the
uptake, i.e., the process through which a cell absorbs nutrient, can be
different from growth, i.e., the process through which a cell transforms
the uptaken nutrient into biomass. However, we do not consider the
effect of delay. We also do not consider long term nutrient storage di-
rectly.

The rest of this paper is organized as follows. In Section 2, we con-
sider a very general model of single species growth in the chemostat and
first restrict our attention to what all such models have in common. We
give preliminary results, and in particular, show that the behavior of
chemostat models about the washout equilibrium point is generic. We
are able to deal with the local stability analysis in this very general
setting as well as some global properties of the model. Then we look
for differences in the dynamics based on differences in the monotonicity
assumptions on the nutrient uptake and cellular growth and show that
under certain assumptions Hopf bifurcation is possible, whereas under
other assumptions it is not. In Section 3, we briefly discuss the yield
term and give different interpretations justifying a substrate dependent
yield function. In Section 4, we extend the model to the case of com-
peting species. We provide a necessary condition for strong coexistence
and a sufficient condition for the extinction of a population. We give
numerical evidence indicating that, unlike in the constant yield case,
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assuming a variable yield can lead to rather complicated dynamics and
give numerical evidence that indicates that the principle of competi-
tive extinction need not hold and that competitor-mediated coexistence
seems to be possible.

2 The general model for single species growth in a chemostat

Consider the following model of a chemostat in which a microbial species,
with concentration (or biomass) at time t denoted x(t), consumes a single
substrate with concentration S(t) at time t.

dS

dt
= D(S0 − S) − xu(S),(1a)

dx

dt
= x (g(S) − D1) ,(1b)

S(0) ≥ 0, x(0) ≥ 0.

S0 denotes the substrate concentration in the input feed, and D de-
notes the dilution rate. We assume only that D1 > 0 and we make
no assumption on the relative values of D and D1. However, the most
common interpretation for D1 is that it is the sum of the dilution rate
and the species specific death rate. Substrate is consumed by cells at
the rate u(S(t)). This results in growth of the cellular biomass at the
rate g(S(t)). The functions u and g are assumed to be continuously
differentiable. The uptake function u(S) is further assumed to satisfy
u(0) = 0. By this, we mean that if there is no substrate in the environ-
ment, then there is no substrate uptake. As mentioned earlier, we do
not model storage of nutrient directly and so in the absence of substrate,
we assume that there is no growth so that g(0) = 0. Otherwise, u(S)
and g(S) are positive for S > 0. Finally, we assume that each one of
these functions is either monotone increasing or unimodal.

2.1 Local analysis The washout equilibrium, E0 ≡ (S0, 0), always
exists.

Condition 2.1. E∗ ≡ (S∗, x∗) =

(
S∗,

D(S0 − S∗)

u(S∗)

)
, where S∗ is

any solution of

(2) g(S) = D1

is a feasible positive equilibrium if, and only if, S∗ < S0.
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In what follows, we restrict our attention to functions u(S) and g(S)
that are either monotone increasing or initially monotone increasing and
unimodal. Thus, there are at most two values of S that satisfy (2). They
are denoted λ, µ ∈ R, with λ < µ. We adopt the convention that µ = ∞
if (2) has only one solution, and λ = ∞ if (2) has no solution. Therefore,
S∗ must equal either λ or µ. We refer to E∗ as E∗

λ or E∗
µ when it is

necessary to make the distinction. See Figure 1.
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FIGURE 1: Definition of λ and µ, in the case of (a) monotone growth
(µ = ∞); (b) nonmonotone growth.

We are not aware of any experimental evidence of growth or uptake
processes limited by a single substrate that exhibit more complicated
behavior (such as two-humped responses). A similar analysis for more
complicated functions is however possible, but involves treating more
cases.

The Jacobian matrix evaluated at an arbitrary point (S, x) is given
by

(3)

[
−D − u′(S)x −u(S)

g′(S)x g(S) − D1

]
.

Thus, the Jacobian matrix evaluated at the washout equilibrium, E0, is
given by

(4)

[
−D −u(S0)

0 g(S0) − D1

]
.
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Condition 2.2. The washout equilibrium, E0, is locally asymptotically

stable if g(S0) − D1 < 0.

Evaluated at a positive equilibrium, E∗, the Jacobian matrix is

(5)

[
−D − u′(S∗)x∗ −u(S∗)

g′(S∗)x∗ 0

]
.

Thus, det(J) = u(S∗)g′(S∗)x∗ and Tr(J) = −D − u′(S∗)x∗. Since
D, u, (S) and x∗ are positive, by the Routh-Hurwitz criterion, we ob-
tain the following condition.

Condition 2.3. A feasible positive equilibrium, E∗, is locally asymptot-

ically stable if the following two inequalities are satisfied simultaneously:

(6) g′(S∗) > 0, and u′(S∗) > −
u(S∗)

S0 − S∗
.

Another consequence of (5) is that the existence of complex eigen-
values, i.e., oscillations (both damped and sustained), is determined by
the following condition, which follows directly from the characteristic
polynomial of (5).

Condition 2.4. The linearization of (1) about a feasible positive equi-

librium, E∗, has complex eigenvalues if, and only if, (D +u′(S∗)x∗)2 <
4u(S∗)g′(S∗)x∗.

This implies that there are no oscillations in a neighborhood of a
positive equilibrium, E∗, if g′(S∗) < 0.

Condition 2.5. The eigenvalues of the linearization (5) of system (1)
about a positive equilibrium, E∗, are purely imaginary if, and only if,

(7) g′(S∗) > 0, and u′(S∗) = −
u(S∗)

S0 − S∗
,

Thus, a Hopf bifurcation of a locally asymptotically stable equilibrium
point can only occur at an equilibrium, E∗

λ, since it is necessary that
u′(S∗) < 0 and g′(S∗) > 0. Since the bifurcation requires g to be
increasing at S∗, it follows that S∗ must equal λ, not µ.

Select one of the parameters in the model as the bifurcation parameter
and call it α.



CHEMOSTAT MODELS 113

Theorem 2.6. Assume that there exists α = αc, the critical value of α,

such that x∗
αc

u′(λαc
) + D = 0. System (1) undergoes a Hopf bifurcation

at E∗
λαc

= (λαc
, xαc

) if g′(λαc
) > 0 and

(8)
d

dα
(−Dx∗(α)u′(S∗(α)))

∣∣∣
α=αc

6= 0.

This bifurcation is supercritical if CH defined by

CH ≡ −u(λαc
)g′(λαc

)u′′′(λαc
)+u′′(λαc

)(u′(λαc
)g′(λαc

)+u(λαc
)g′′(λαc

))

is negative, and subcritical if CH > 0.
Equivalently, the bifurcation is supercritical if the sign of

ĈH ≡ h′′′(λαc
)u(λαc

) + 2h′′(λαc
)u′(λαc

) −
h′′(λαc

)g′′(λαc
)u(λαc

)

g′(λαc
)

is negative, and subcritical if it is positive, where h(S) = (S0−S)D/u(S),
the S-isocline.

The proof of this result follows from the formula derived in Marsden
and McCracken [34] and is postponed to Appendix 5. Another technique
for determining the criticality of the Hopf bifurcation in this context is
to use the divergence criterion as in [38] or the rescaling method as in
[37].

2.2 Global analysis

2.2.1 Boundedness of solutions.

Lemma 2.7. Both the nonnegative cone and the interior of the non-

negative cone are positively invariant under the flow of (1).

Proof. The line {S ≥ 0, x = 0} is invariant under the flow of (1). Also,
for S = 0 and x > 0, S′ = DS0 > 0, i.e., the vector field points strictly
inwards.

Lemma 2.8. Solutions of (1) are defined and remain bounded for all

t ≥ 0.

Proof. The proof is identical to the proof of Theorem 4.1 in Section 4
in the case that n = 1.
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Lemma 2.9. For any ε > 0, there exists Tε ≥ 0 such that S(t) ≤ S0 +ε
for all t ≥ Tε. If in addition, λ < S0, g(S) > D1 for S ∈ (λ, S0], and

x(0) > 0, then there exists T such that S(t) < S0 for all t > T .

Proof. First suppose that x(0) = 0. Then, clearly S(t) converges to
S0.

Now assume that x(0) > 0. If there exists T ≥ 0 such that S(T ) = S0,
then S′(T ) = −u(S(T ))x(T ) < 0. This implies that if there exists t̂ ≥ 0
such that S(t̂) ≤ S0 then S(t) < S0 for all t > t̂. If S(t) > S0 for all
t ≥ 0, then S′(t) < 0 for all t > 0. Therefore S(t) converges to some
α ≥ S0. If α > S0, then S′(t) < (S0 − α)D < 0 for all t > 0. But
this implies that S(t) converges to −∞ as t tends to ∞, a contradiction.
Therefore, either S(t) ≤ S0 for all sufficiently large t or S(t) converges
to S0 as t → 0.

Now assume that λ < S0, g(S) > D1 for S ∈ (λ, S0], and x(0) >
0. Suppose S(t) > S0 for all t > 0. Then, by the continuity of g(S),
there exists ∆ > S0 such that g(S) > D1 for all S ∈ [S0, ∆] and there
exists a T∆ > 0 such that S0 < S(t) < ∆ for all t > T∆. Define
ḡ ≡ minS∈[S0,∆] g(S). Then ḡ > D1. But then, since by Lemma 2.7,
x(t) > 0 for all t > 0, x′(t)/x(t) > (ḡ − D1) > 0, for all t > T∆.
Integrating both sides from T∆ to ∞, it follows that x(t) → ∞. But, by
Lemma 2.8, x(t) is bounded, a contradiction. The result follows.

2.2.2 Global stability of equilibrium points

Theorem 2.10. If S0 ≤ λ, then the washout equilibrium, E0, of (1),
is globally asymptotically stable.

Proof. Since the nonnegative cone is invariant and all solutions are
bounded, the result follows immediately from a standard phase portrait
analysis.

Theorem 2.11. If λ < S0, g′(λ) > 0, g(S0) > D1, u′(λ) > − u(λ)
S0−λ

and 1− u(S)(S0
−λ)

u(λ)(S0−S) has exactly one sign change for S ∈ (0, S0), then the

equilibrium, E∗
λ = (λ, x∗

λ), is globally asymptotically stable with respect

to the interior of the positive cone.

Proof. First, note that since g(S0) > D1, it follows that λ < S0 ≤ µ,
and so by Condition 2.1, E∗

µ is not feasible and that by Condition 2.3,
E∗

λ is locally asymptotically stable. Also, by Lemma 2.9, without loss of
generality, we need only consider S ∈ [0, S0].
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Consider the following function,

(9) V (S, x) =

∫ S

λ

(g(ξ) − D1)(S
0 − λ)

u(λ)(S0 − ξ)
dξ + x − x∗

λ ln

(
x

x∗
λ

)
,

that is defined and continuously differentiable for S ∈ (0, S0) and x > 0.
For brevity of notation, let

(10) Ψ(S) =
u(S)

S0 − S
.

Then, using (10) it follows that

V̇ = x(g(S) − D1)

(
1 −

u(S)(S0 − λ)

u(λ)(S0 − S)

)

= x(g(S) − D1)

(
1 −

Ψ(S)

Ψ(λ)

)
.

(11)

Note that V̇ = 0 if and only if S = λ or x = 0 or S = µ = S0. The
derivative of Ψ is given by

u′(S)(S0 − S) + u(S)

(S0 − S)2
.

From Condition 2.3 and by the continuity of u′, we have that for S close
to λ, u′(S)(S0 − S) + u(S) > 0, and thus the function Ψ is increasing.
Also, g is monotone increasing for S near λ. Since each term in (11)
changes sign at S = λ, this implies that for S close to λ, V̇ < 0. In fact,
V̇ remains negative as long as neither term in (11) changes sign. But
this is ruled out by the hypotheses.

Let η = {(S, x) ∈ [0, S0] : V̇ (S, x) = 0}. Therefore, η = {(S, x) ∈
[0, S0] : x = 0 or S = λ or S = S0 = µ}. Let E denote the largest
invariant subset of η. Then E = {(S, 0), 0 ≤ S ≤ S0} ∪ {E∗

λ}. As
solutions are bounded, E attracts all solutions with nonnegative initial
conditions (by the modified LaSalle’s Extension Theorem, as stated in
[45, Th. 1.2]). Noting that from our hypotheses, E0 is unstable and
E∗

λ = (λ, x∗
λ) is locally asymptotically stable, using a standard argument

involving the Butler-McGehee Lemma (see [41]), it follows that no points
of the form (S, 0), S ≥ 0 can be in the omega limit set of any solution
initiating inside the positive cone and so the result follows.
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3 Discussion of the yield term There are different mechanisms
that lead to the use of a yield term in chemostat models. Consider the
following expression relating growth and uptake:

(12) g(S) = ρu(S).

As mentioned in the Introduction, one rationale for including the yield
term is, historically, to express substrate and organic biomass in the same
units. In this case, the yield term is the constant of proportionality in
(12).

Another use of the yield coefficient, often confused with the previous
one, is to decribe the efficiency of the processes involved. If substrate
and microorganism were evaluated in the same units, a perfect reaction
would transform one unit of substrate into one unit of microorganism.
However, such reactions are not perfect. It is for example possible, in
the case of chemical reactions, to compute theoretical yield values from
the mass-balance equations of the reactions involved; see, e.g., [42]. It
is then possible to state that for a given reaction, it takes one mole of
reactant to produce ρ moles of product. Equation (12) would in this case
give the rate of formation of moles of the new compound as a function
of the number of moles of the reactant. Again, in this case ρ would be
a constant.

Things are more complicated for more complex processes. In par-
ticular, biological processes are prone to a lot of individual variability,
making it more difficult to obtain a measure of the efficacy of a biolog-
ical reaction. Since this measure is very important, for example in the
bioprocess field where it serves as an indicator of the economic viability
of a given process, the yield has been the object of numerous studies.
However, a functional form for the yield has not yet been validated by
experiment.

Formally, the yield is the ratio between the amount of matter taken
up and the resulting cellular growth, and so it is likely that the yield is
not actually constant, but could depend on the substrate concentration,
the microbial concentration, and environmental conditions among other
things.

In the model studied by Crooke and Tanner [11] and Agrawal, Lee,
and Ramkrishna [2], they assumed that the yield is a function of the
substrate concentration, Y (S). They considered monotone growth g(S)
and modeled the uptake in system (1) by u(S) = g(S)/Y (S), where
Y (S) = a + bS. They let

(I) g(S) =
µmS

Km + S
, and so u(S) =

µmS

(a + bS)(Km + S)
, or
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(II) g(S) = kSe(− S

K
), and so u(S) =

kSe(− S

K
)

(a + bS)
.

Pilyugin and Waltman [37] proved that only super-critical Hopf bi-
furcations are possible in case (I). However, if Y (S) = a + bS2, they
proved that both super- and sub-critical Hopf bifurcations are possible.

In the case of constant yield, including the yield term in the substrate
equation is mathematically equivalent to including the reciprocal in the
microorganism equation instead. One of the important differences in
the case that the yield is not constant is that the variable yield term
can lead to uptake and growth terms that have different monotonicity
properties. Therefore, careful attention to the interpretation of the yield
term resulting in its correct placement in the equations is necessary. This
is especially true, since the explicit form of the yield function is not yet
known. Thus, it is currently only possible to represent the yield in the
model using a function that we suspect has similar qualitative properties,
e.g., similar monotonicity properties.

If it is assumed that the yield is constant, but that cells need some
maintenance energy, then in [24], the yield is given by :

−
dS

dt
=

1

Y

dx

dt
+ Rx,

where R can be interpreted, for example, as the portion of nutrient used
for respiration. An alternative approach to modeling the maintenance
energy is to consider the yield as a function of the substrate concentra-
tion.

Modeling the yield as a function of substrate concentration could
also provide an indirect way of modeling storage of nutrient. As well,
Godin, Cooper, Rey [18] provide experimental evidence that indicates
that critical division mass increases as substrate concentration increases
and so reproduction rate depends on substrate concentration.

The different interpretations of yield can lead to different forms for
the yield functions and different ways to include the yield terms.

4 The general competition model We consider the more gen-
eral case of several species competing for a common resource using the
framework of the previous sections. Here, xi(t) denotes the concentra-
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tion of the ith population of microorganisms at time t.

dS

dt
= D(S0 − S) −

n∑

i=1

xiui(S),(13a)

dxi

dt
= xi (gi(S) − Di) , i = 1, . . . , n,(13b)

S(0) ≥ 0, xi(0) ≥ 0, i = 1, . . . , n.

For each species, we define the break-even concentrations λi and µi as
in Section 2. In the case of constant yield, i.e. ui(S) is proportional
to gi(S) for each i = 1, 2, . . . , n, if the species specific death rates are
assumed to be insignificant compared to the dilution rate (i.e. Di = D
for all i or at least Di sufficiently close to D for all i), the dynamics
are well understood. See for example, [9, 41, 46]. With constant yield
and monotone or inhibitory growth, the competitive exclusion princi-
ple holds. At most one species avoids extinction, and its concentration
rapidly approaches an equilibrium concentration. In the case of mono-
tone response functions, the species that survives is the one with the
lowest break-even concentration. Similar results hold in the case that
Di may not equal D, see for example, [23, 30, 45, 46], although this
case is not yet completely understood. However, in the case of constant
yield, numerical simulations of model (13) to date have only displayed
competitive exclusion with convergence to an equilibrium with at most
one surviving species.

In the rest of this paper, we demonstrate that in the case of variable
yield, more exotic dynamical behavior seems to be possible.

Before we consider specific examples we make the following observa-
tions.

Theorem 4.1. Both the nonnegative cone and the interior of the non-

negative cone are invariant under the flow of (13) and all solutions are

defined and remain bounded for all t ≥ 0.

Proof. An argument similar to that given to prove Lemma 2.7 can
be used to establish that solutions are nonnegative and hence bounded
below, so it remains only to prove that all solutions are bounded above.

Without loss of generality, assume that xi(0) > 0 and thus xi(t) >
0 for all i ∈ {1, ..., n} and all t ≥ 0 in the domain of definition of
the solution (S(t), x1(t), ..., xn(t)). Let Ŝ = max(S(0), S0). Then the

nonnegativity of solutions implies that S(t) ≤ Ŝ for all t ≥ 0 for which
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S(t) is defined. Since gi(0) = 0, by the continuity of gi, there exists
ε > 0 such that gi(S) ≤ Di/2 for all 0 ≤ S ≤ ε and all i ∈ {1, ..., n}. In
addition, there exists Mε > 0 such that

gi(S) − Di + D

ui(S)
≤ Mε, ∀S ∈ [ε, Ŝ], ∀i ∈ {1, ..., n}.

Let x̂ > Mε(Ŝ − ε) and define Ω̂(x̂) to be the set

Ω̂(x̂) =

{
(S, x1, ..., xn) ⊂ R

n+1
+ : S ≤ Ŝ,

n∑

i=1

xi ≤ min(x̂, x̂ − Mε(S − ε))

}
.

Choose x̂ sufficiently large so that (S(0), x1(0), ..., xn(0)) ∈ Ω̂(x̂).

We have already established that 0 ≤ S(t) ≤ Ŝ. If (S, x1, ..., xn) is a

point on the relevant part of the boundary of Ω̂(x̂), then either S < ε
and

∑n

i=1 xi = x̂, or ε ≤ S ≤ Ŝ and
∑n

i=1 xi = x̂ − Mε(S − ε). In the
former case, we have that

( n∑

i=1

xi

)′

=

n∑

i=1

xi(gi(S) − Di) ≤ −

n∑

i=1

xiDi

2
< 0,

since we assumed xi > 0. In the latter case, we have that

(
S +

n∑

i=1

xi

Mε

)′

= D

(
S0 − S −

n∑

i=1

xi

Mε

)

+

n∑

i=1

xi

Mε

(
−Mεui(S) + (gi(S) − Di + D)

)
.

Since ε ≤ S ≤ Ŝ, the choice of Mε warrants that

n∑

i=1

xi

Mε

(
−Mεui(S) + (gi(S) − Di + D)

)
≤ 0.

Consequently,

(
S +

n∑

i=1

xi

Mε

)′

≤ D

(
S0 − S −

n∑

i=1

xi

Mε

)
= D

(
S0 − ε −

x̂

Mε

)
< 0,
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because S0 ≤ Ŝ < ε + (x̂/Mε) by the choice of x̂. We conclude that

the vector field of (13) points strictly into the interior of Ω̂(x̂) when

restricted to the part of the boundary ∂Ω̂ with xi > 0, i = 1, 2, . . . , n
and 0 ≤ S ≤ Ŝ. Also, since xi(0) > 0, we have that xi(t) > 0, for all

i = 1, . . . , n, and t > 0. Thus (S(t), x1(t), ..., xn(t)) ∈ Ω̂(x̂) for all t ≥ 0.

Since Ω̂ is bounded, (S(t), x1(t), ..., xn(t)) must be bounded for all t ≥ 0.

Lemma 4.2. In (13), if for some i ∈ {1, . . . , n}, λi > S0, then xi(t) →
0 as t → ∞.

Proof. Using an argument similar to that given to prove Lemma 2.9, it
follows that there exists ε > 0, and T > 0 such that S(t) < S0 + ε < λi,
for all t ≥ T . By Lemma 4.1 xi(t) is nonnegative, and so x′

i(t)/xi(t) <
−Di + gi(S

0 + ε) < 0 = −Di + gi(λi), for all t > T . Integrating from
t = T to ∞, it follows that xi(t) → 0 as t → ∞.

The next two results are helpful for constructing examples in which
coexistence is possible.

Theorem 4.3. Suppose that

(i) there exist nonempty sets I−, I+ ⊂ {1, ..., n} and αi > 0 such that

I−
⋂

I+ = ∅ and

G(S) =
∑

i∈I−

αi(gi(S) − Di) −
∑

i∈I+

αi(gi(S) − Di) < 0

for all S ∈ (0, S0);

(14)

(ii) there exists j ∈ I+ such that gj(S
0) > Dj.

Then for any positive solution (S(t), x1(t), ..., xn(t)) of (13),

lim
t→∞

∏

i∈I−

xαi

i (t) = 0.

Proof. By Theorem 4.1, there exists M > 0 such that 0 ≤ xi(t) ≤ M
for all i = 1, ..., n and t ≥ 0. Equation (13a) then implies that there
exists a sufficiently small δ > 0 such that S(t) ≥ δ for all sufficiently
large t. By an argument similar to that given in Lemma 2.9, S(t) < S0



CHEMOSTAT MODELS 121

for all sufficiently large t. Therefore, there exists T > 0 such that 0 <
δ < S(t) < S0 for all t > T .

For all i ∈ I− ∪ I+, define zi(t) = xαi

i (t). Then

z′i(t) = αix
αi−1
i (t) xi(t)(gi(S(t)) − Di) = zi(t) αi(gi(S(t)) − Di).

Let

ξ(t) =

∏
i∈I−

zi(t)∏
i∈I+

zi(t)
.

Then
ξ′(t) = ξ(t)G(S(t)).

Since S(t) ∈ [δ, S0) for all t > T , G(S(t)) < 0 so that ξ(t) is a strictly
decreasing function for t > T bounded below by 0. It follows that there
exists ξ0 = limt→∞ ξ(t) ≥ 0. Now there are two possibilities. The first
possibility is that ξ0 = 0 in which case

0 ≤ lim
t→∞

∏

i∈I−

zi(t) ≤

( ∏

i∈I+

Mαi

)
lim

t→∞
ξ(t) = 0.

The second possibility is that ξ0 > 0, in which case, a theorem by
Hadamard and Littlewood [32] implies that limt→∞ G(S(t)) = 0. Since
S(t) ∈ [δ, S0) for all t > T , it must be the case that limt→∞ S(t) = S0.
But this conclusion would contradict the boundedness of xj(t) and hence
the assertion ξ0 > 0 is invalid. The result follows by observing that

lim
t→∞

∏

i∈I−

xαi

i (t) = lim
t→∞

∏

i∈I−

zi(t) = 0.

Corollary 4.4. If the set I− is a singleton, that is, I− = {i∗}, then the

assumptions (i) and (ii) imply that for any positive solution

(S(t), x1(t), ..., xn(t)) of (13),

lim
t→∞

xi∗(t) = 0.

In the population dynamics literature, two types of coexistence are
distinguished: strong and weak. We say that a positive solution
(S(t), x1(t), ..., xn(t)) exhibits strong coexistence if lim inf t→∞ xi(t) > 0,
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for all i ∈ {1, ..., n} and it exhibits weak coexistence if lim supt→∞ xi(t) >
0, for all i ∈ {1, ..., n}. Using this terminology, Theorem 4.3 provides a
necessary condition for strong coexistence. The conclusion that

lim
t→∞

∏

i∈I−

xαi

i (t) = 0

is insufficient to eliminate the possibility of weak coexistence. We would
like to point out that Rao and Roxin [40] have obtained an equivalent
criterion for strong coexistence using the methods of control theory for
constant yields (gi(S) = kiui(S)) and a time dependent input feed con-
centration (S0 = S0(t)).

4.1 Yield included in the uptake equation Here, we consider model
(13) of the chemostat in which two microbial species x1 = x and x2 = y
compete for a single substrate S. We assume that the species x has a
variable yield while the species y has a constant yield. As we pointed
out previously, there are two ways to incorporate the variable yield into
the model. In this section we choose to incorporate the yield into the
consumption (uptake) rate of species x. In addition, we assume that the
variables x, y, and S, and time t, have been rescaled appropriately so
that both the dilution rate D and the substrate feed concentration S0

equal unity, that is, D = S0 = 1. The model then takes the form

dS

dt
= 1 − S − x

p1(S)

γ1(S)
− y

p2(S)

γ2
,(15a)

dx

dt
= x(p1(S) − 1),(15b)

dy

dt
= y(p2(S) − 1),(15c)

S(0) ≥ 0, x(0) ≥ 0, y(0) ≥ 0.

We assume that the specific growth rates p1(S) and p2(S) are ex-
pressed in the traditional Monod formulation

pi(S) =
miS

ai + S
, i = 1, 2,

and the variable yield coefficient of the species x is given by γ1(S) =
b1+c1S

n where b1, c1 > 0 and n is a positive integer. For a more detailed
description of the model (15) we refer the reader to [37].
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For reasons that will be explained below, we choose to treat c1 and
m2 as bifurcation parameters. The rest of the parameters will be fixed
as shown in Table 1.

TABLE 1: Parameter values for model (15).

m1 = 2.0 m2 varies
a1 = 0.7 a2 = 6.5
b1 = 1.0 γ2 = 120.0
c1 varies n = 4

The break-even concentrations λi of the species x and y can be ob-
tained by solving pi(λi) = 1:

λ1 =
a1

m1 − 1
= 0.7, λ2 =

a2

m2 − 1
.

Since λ1 < 1, species x will persist in the absence of species y. A
necessary condition for the species y to persist in the culture is that
λ2 < 1, or equivalently, m2 > 7.5.

Corollary 4.4 implies that a necessary condition for coexistence is that
the graphs of p1(S) and p2(S) intersect at some point 0 < Ŝ < 1. In
model (15),

Ŝ =
m1a2 − m2a1

m2 − m1

so that a necessary condition for coexistence is

8.82 = m1
a2

a1
< m2 < m1

a2 + 1

a1 + 1
= 18.57.

If m2 < 8.82, then x will always drive y to extinction. If m2 >
18.57, then y will always drive x to extinction. Both of these conclusions
hold regardless of any particular dynamic behavior of the full system
(e.g., equilibrium, periodic solution, or other) and specifically they are
independent of the functional form of the variable yield coefficient γ1(S).
If γ1(S) = γ1 were constant, then the outcome of competition would
be completely determined by the inequality λ1 < λ2 and whether or
not λ < 1. The critical value of m2 for which λ1 = λ2 is given by
m2 = 1 + (m1 − 1)(a2/a1) = 10.286.
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4.1.1 Bifurcation to coexistence The fact that single species continuous
cultures with variable yields may exhibit sustained oscillations has an
important implication for coexistence. The principle of competitive ex-
clusion states that two species cannot coexist at equilibrium when they
compete for a single substrate in continuous culture. The first proof of
this assertion was presented in [23] for Monod uptake rates and it was
later extended to a much broader class of growth rates and uptake func-
tions in [45]. In [8], a two predator - one prey ecosystem was studied
in the chemostat setting. It was shown that such a system may ex-
hibit a stable periodic solution with both competing predators present
at all times. Specifically, it was shown that the stable limit cycle cor-
responding to sustained oscillations of a single predator population can
bifurcate into the region of coexistence and preserve its stability. In
[37], it was demonstrated that the same type of bifurcation can occur
in the chemostat when one competitor exhibits a variable yield and the
other competitor has a constant yield. If Γ = (S(t), x(t)) is a stable
periodic solution of (15) of period T > 0 with y = 0, then Γ undergoes
a transcritical bifurcation when m2 increases past the bifurcation value

(16) m∗
2 =

T
∫ T

0
S(t)

a2+S(t) dt
.

The stable periodic solution of (15) with x(t), y(t) > 0 exists for m2 >
m∗

2.
If we let y = 0 in (15) then the reduced model (15a–15b) undergoes

a Hopf bifurcation when c1 crosses the value

(17) ĉ1 =
(m1 − 1)4

(
(m1 − 1)2 + a1

)

a4
1(3m2

1 − 4m1a1 − 2m1 − a1 − 1)
.

For the parameter values given in Table 1, the Hopf bifurcation occurs
at ĉ1 = 10.115. Furthermore, the Hopf bifurcation is supercritical for
m2 = 2, a2 = 0.7, n = 4, that is, the stable limit cycle of (15a–15b)
exists for c1 > ĉ1.

To compute the bifurcation value m∗
2 for different values of c1, we

implemented the formula (16) as follows. If c1 < ĉ1 and the stable limit
cycle of (15a–15b) does not exist, then we let

m∗
2 =

a2 + λ1

λ1
,

which is the limiting case of (16) as S(t) → λ1 and T → ∞. If c1 > ĉ1,
then the stable limit cycle Γ does exist and we first integrate (15a–15b)
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FIGURE 2: A transcritical bifurcation to coexistence for a given value of
c1 occurs at m∗

2 given by the lower curve on the graph. The straight line
shows the value m2 = 10.286 at which the break-even concentrations are
equal (λ1 = λ2 = 0.7). The transcritical bifurcation occurs only in the
region c1 > ĉ1 = 10.115 where the reduced system (15a–15b) with y = 0
exhibits a stable limit cycle. If c1 is fixed and m2 crosses the bifurcation
value m∗

2, the stable limit cycle bifurcates into the coexistence region
x, y > 0.

with y = 0 in forward time to approximate Γ and then use (16) to find
m∗

2. The output of this numerical procedure is shown in Figure 2.
In the remainder of this section, we present a numerical study of

the dynamics exhibited by solutions which correspond to competitive
coexistence in the case λ1 < λ2 < 1, c > ĉ and m2 > m∗

2. Considering
the dynamics on the invariant planes Fx = {S, x ≥ 0, y = 0} and
Fy = {x = 0, S, y ≥ 0}, this is the case when almost all positive
solutions correspond to coexistence, that is,

lim sup
t→∞

x(t) > 0, lim sup
t→∞

y(t) > 0.

To see this, let W s(E) and W u(E) denote the stable and unstable
manifold of the equilibrium E, respectively. Observe that both Fx

and Fy contain the (trivial) equilibrium E0 = (1, 0, 0) which is a sad-
dle with dim W u(E0) = 2. In addition, Fx contains the equilibrium
E1 = (λ1, x

∗, 0) and Fy contains the equilibrium E2 = (λ2, 0, y∗). Since
y has a constant yield, E2 is a local attractor relative to Fy, that is,
dim W s(E2) = 2 with W s(E2) ⊂ Fy and the inequality λ1 < λ2 guaran-
tees that dim W u(E2) = 1 with W u(E1) ⊂ R

3
+. Thus, E1 repels towards
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FIGURE 3: A cascade of period-doubling bifurcations leading to a
chaotic attractor shown here with m2 = 10.0.

the interior of R
3
+. If c > ĉ, then dim W u(E1) = 2 with W u(E1) ⊂ Fx

and dim W s(E1) = 1 with W s(E1) ⊂ R
3
+. Furthermore, since c > ĉ and

m2 > m∗
2, there exists an unstable limit cycle Γ sitting in Fx that is a

saddle with respect to R
3. It is attracting in Fx, but repels into the in-

terior of R
3 and dim W s(Γ) = 2, dim W u(Γ) = 2, and W u(Γ)∩R

3
+ 6= ∅

so that Γ repels towards the interior of R
3
+. Using the Butler-McGehee

lemma, we conclude that no solution except those on W s(E1) can have
their ω-limit sets contained entirely in Fx or Fy. Consequently, almost
all positive solutions correspond to coexistence.

4.1.2 Period-doubling cascade leads to chaos The proven tool for study-
ing periodic solutions is the Poincaré map. We observe that any positive
solution of (15) that corresponds to coexistence must have the property
that S(t) attains the values S = λ1 and S = λ2 infinitely often with the
signs of S′ alternating. Therefore, it is natural to study the Poincaré
map defined on one of these surfaces. Since we decided to fix m1 and a1,
it is appropriate to consider the Poincaré map P on S = λ1 = 0.7. For
convenience, we define the Poincaré map to be the second return map
so that the sign of S′ is the same for all consecutive intersections.

Our first finding is that the periodic solution that bifurcates into
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the positive cone giving coexistence can undergo a cascade of period-
doubling bifurcations ultimately resulting in a chaotic attractor. The
bifurcation diagram illustrating the period-doubling cascade is shown
in Figure 3. Figure 4(a) shows the forward trajectory approximating
the attractor and Figure 4(b), the cross-section of the attractor with
m2 = 10.0, c1 = 45.0. Numerically, we computed the cross-section by
constructing a sequence {(xn, yn)|n = 1, ..., N} (N = 5000) with

(xn+1, yn+1) = P (xn, yn)

by performing a different forward integration for each n to avoid error
accumulation for long trajectories.
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FIGURE 4: (a) Chaotic attractor corresponding to m2 = 10.0, c1 =
45.0. (b) The cross-section S = λ1 of the attractor.

4.1.3 A nontrivial periodic trajectory A natural consequence of a period-
doubling cascade is the existence of periodic trajectories of arbitrarily
large periods. In addition to these, we have found periodic trajectories
that have a rather peculiar geometry. We present a numerical example
of such a trajectory in Figure 5(a). We speculate that this trajectory
switches between the domains of influence of W s(E1) (when it spirals
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towards the lower values of y) for small amplitudes and of W u(Γ) (when
it spirals towards the higher values of y) for large amplitudes.

We obtained the periodic trajectory shown in Figure 5(a) by integra-
tion in forward time and then determined the period by minimizing the
distance between the initial point (S(0), x(0), y(0)) and
(S(T ), x(T ), y(T )) so that

T = arg min
T

√
(S(T ) − S(0))2 + (x(T ) − x(0))2 + (y(T ) − y(0))2.

If we write (13) using vector notation z = (S, x, y) as ż = F (z), the vari-
ational system of (13) along the periodic solution z(t) = (S(t), x(t), y(t))
is expressed as φ̇(t) = ∂F/∂z(z(t))φ(t). After obtaining an estimate of
the period T , we numerically integrated the initial value problem

Ẋ(t) =
∂F

∂z
(z(t))X(t), X(0) = I,

where I is the 3 × 3 identity matrix, from t = 0 to t = T . Then
we estimated the Floquet multipliers of the periodic solution z(t) =
(S(t), x(t), y(t)) as the eigenvalues of X(T ).

The estimates of Floquet multipliers are

µ1 = 1.0008, µ2 = 0.827, µ3 = 6.73 · 10−6.

Of course, the actual value of the first multiplier should be µ1 = 1. But
the fact that µ2, µ3 < 1 supports the evidence that this periodic solution
is stable.

4.1.4 Existence of linked attractors Here, we present the case c1 =
38.3, m2 = 10.1 where we found two stable periodic trajectories shown
in Figure 5(b). The most interesting feature of these trajectories is
that they are topologically linked. The first trajectory (thick line) has
the period T1 = 17.055 and the second trajectory (thin line) has the
period T2 = 98.933. The linking exists because the second trajectory
passes inside of the thick loop on its way “down” and outside of the loop
on its way “up”. Both periodic trajectories were obtained by forward
integration.
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FIGURE 5: (a) A periodic solution of period T = 672.713 for c1 =
55.0 and m2 = 10.1809 with initial conditions S(0) = 0.711, x(0) =
3.199, y(0) = 9.779. The numerical values of Floquet multipliers are
µ1 = 1.0008, µ2 = 0.827, µ3 = 6.73·10−6 . Of course, the true value of µ1

must be unity. Since |µ2|, |µ3| < 1, we believe that this solution is stable.
(b) Two stable periodic trajectories shown here for c1 = 38.3, m2 = 10.1
are topologically linked. The first trajectory (thick line) has the period
T1 = 17.055 and initial conditions S(0) = 0.547, x(0) = 1.282, y(0) =
2.227. The second trajectory (thin line) has the period T2 = 98.933 and
initial conditions S(0) = 0.808, x(0) = 1.823, y(0) = 4.033.

4.1.5 Neimark-Sacker bifurcation In a Neimark-Sacker bifurcation, both
eigenvalues of the Poincaré map cross the unit circle. The periodic orbit
persists but changes its stability. The stable limit cycle is replaced by a
stable invariant torus that may have either rational or irrational rotation
number. In either case, the species still coexist although the correspond-
ing orbit may no longer be periodic. Specifically, in case of an irrational
rotation number, such an orbit will be dense on the invariant torus pro-
duced via the Neimark-Sacker bifurcation. Figure 6(a) is a bifurcation
diagram that shows one instance of the (supercritical) Neimark-Sacker
bifurcation. This diagram was computed with c1 = 37.0, and it shows
quite nicely how the stable periodic orbit is replaced by an invariant
torus, and then the torus itself is replaced by a more complicated strange
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FIGURE 6: (a) The bifurcation diagram for c1 = 37.0. Here m2 is the
bifurcation parameter. (b) The cross-section of the strange attractor
with c1 = 37.0, m2 = 10.181.

attractor. Figure 6(b) shows a cross section of the strange attractor when
the invariant torus loses its smoothness and breaks up.

4.2 Yield included in the growth equation In the following, we
specialize system (13) to the case of three competing species and assume
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that xi models the concentration of species i. We assume that ui(S)
models the uptake of nutrient and that the growth term takes the form
gi(S) = Yi(S)ui(S). One interpretation of the yield Yi(S) in this section
is to model the efficacy of the conversion process and allow it to depend
on the substrate concentration.

We will study an example in which Y1(S) depends on substrate con-
centration, and hence is variable, whereas the Yi(S) = Yi, i = 2, 3 are
constant. Our aim here is not only to show three species coexistence
is possible in this setting providing another example that contradicts
the principle of competitive exclusion, but also to show that competitor-
mediated coexistence is possible. In particular, it is possible that all
three species can coexist, but that if one of the species is removed, then
only one species is able to survive.

Since Yi, i = 2, 3 are constant, in the absence of species x1, under very
general assumptions on the form of ui(S), i = 2, 3 (see e.g., [30, 45, 46])
at most one species can survive and the concentrations of substrate and
organisms equilibrate. Thus we will try to show that by introducing
population x1 with a variable yield, we can obtain coexistence of all
three populations, and hence competitor-mediated coexistence.

As discussed in the previous subsection, in order to obtain coexis-
tence it is necessary to have oscillatory solutions. By (7), if we re-
strict ourselves to (S − x1)-space, and assume xi(t) ≡ 0, i = 2, 3,
then a Hopf bifurcation can only occur at an equilibrium of the form
E∗

λ1
where g′1(λ1) > 0 and u′

1(λ1) < 0. Here we also assume that
g1(S) = Y1(S)u1(S). Therefore, u1(S) must be inhibitory at high con-
centrations, and hence we use unimodal functions to model uptake.

Since the input concentration S0 is one of the parameters that the
experimenter often has control over, in this section we consider S0 as a
bifurcation parameter.

For our purposes, the uptake functions ui, i = 1, 2, 3, are taken to be
the following one humped functions:

u1(S) =
4S

0.25S2 + 0.5S + 0.2
,

u2(S) =
11S

S2 + S + 2
,

u3(S) =
2.98S

1.227S2 + 3.5S + 3.225
.

They have the relative forms shown in Figure 7(a).
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FIGURE 7: (a) Consumption rates ui(S), i = 1, 2, 3. (b) Yield functions
Yi(S), for i = 1, 2, 3. Only species x1 has a variable yield. All yields
are fractions (less than one). (c) Per capita growth rate, gi(S) − Di for
values of substrate on a coexistence periodic orbit, 1.475 < S < 4.24,
and S0=9.3.
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Since we are interpreting the yield as the efficacy of the conversion
process, we expect the yield to be a positive fraction. Since we have not
been able to find any experimental support for any particular functional
form modeling this efficacy, we assume that it is unimodal, initially
increasing. In our example, we take Yi(S) to have the form:

Yi(S) =
1

1 + εi + αi(S − ki)2
.

Since we assume that only species x1 has a variable yield, this means
that α2 = α3 = 0. We set α1 = 0.5, ε1 = 0.5, ε2 = 6, ε3 = 0.15,
and k1 = 7. Figure 7(b) shows the yield functions Yi(S), for the three
species.

The dilution rate is assumed to be D = 0.31. We take D1 = 0.33, D2 =
0.345, D3 = 0.315. Thus the per capita growth rate of the various pop-
ulations is given by:

g1(S) − D1 =
u1(S)

1 + 0.5 + 0.5(S − 7)2
− 0.33,

g2(S) − D2 =
u2(S)

7
− 0.345,

g3(S) − D3 =
u3(S)

1.15
− 0.315.

The graphs of these functions, demonstrating how they intersect, are
shown in Figure 7(c). Here, S is in the range 1.475 < S < 4.24. This
corresponds to values on a periodic orbit in which all three species co-
exist, shown later in this section (see Figure 10(d)). It is clear that
each population has an advantage over both of its competitors at some
concentrations of the substrate and that the hypotheses of Theorem 4.3
and Corollary 4.4 are not satisfied.

Recall that by definition the break-even concentrations λi and µi are
the solutions of gi(S)−Di = 0. For the parameters that we have selected,

λ1 = 3.1239, µ1 = 9.3421;

λ2 = 0.7007, µ2 = 2.8541;

λ3 = 0.8865, µ3 = 2.9657.
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Hence, if we were in the case of constant yield, based on the relative
values of these break-even concentrations, if S0 > λ2, we would conclude
that species x3 would be driven to extinction, if x2(0) > 0. Whether pop-
ulation x1 or x2 would win the competition or whether both populations
would wash out of the chemostat would depend on the initial conditions
and the concentration of S0.

To obtain coexistence of all three species, it is important that the sub-
strate concentration oscillates between values where each of the species
has an advantage. The “trick” to obtain coexistence in the variable
yield model is to set things up so that as the bifurcation parameter S0

varies, there is a Hopf bifurcation in the (S − x1) plane, followed by a
transcritical bifurcation of limit cycles, resulting in a periodic orbit with
two species coexisting, and finally another transcritical bifurcation of
limit cycles involving all three species. Of course, to claim coexistence,
the resulting limit cycle involving all three species must be orbitally
asymptotically stable in some open set of parameter space.

We illustrate this in the following sequence of bifurcation diagrams
and numerical simulations. We use the XPPAUT interface to Auto (see
[5]) to produce the bifurcation diagrams shown in Figures 8(a), 9(a)-
9(c) and 10(a)-10(c). In these figures solid lines indicate asymptotically
stable equilibria, dashed lines, indicate unstable equilibria, filled in dots
indicate orbitally asymptotically stable periodic orbits, and open dots
indicate unstable periodic orbits. For periodic orbits, we use the “Hi-
Lo feature”, i.e. for each value of the bifurcation parameter S0, the
largest and smallest value of the coordinate labeled on the ordinate axis
is graphed.

First we restrict our attention to the (S−x1)-face. Figure 8(a) shows
two bifurcations with the stability with respect to this face only. An
analogous bifurcation diagram is shown in Figure 9(a) with the stability
given with respect to (S, x1, x2, x3)−space. This diagram was plotted
with XPPAUT, and shows the minimal and maximal value of x1, along
the periodic orbit, for different values of S0. There is a subcritical
Hopf bifurcation at S0 = 8.984, and a saddle node of limit cycles at
S0 = 8.833. Figure 8(b), shows two periodic orbits in the (S, x1)-face,
for S0 = 8.92. There are two periodic orbits. The inner orbit is unstable
and the outer one is asymptotically stable. The unstable orbit was
plotted using reversed time integration.

Figure 9 shows bifurcation curves for which x1 and x2 are nonneg-
ative, but x3 = 0. In this figure the stability is given with respect to
(S, x1, x2, x3)-space. Comparing Figure 8(a) with Figure 9(a), we see
that besides the Hopf bifurcation and the saddle node of limit cycles
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(a)

(b)

FIGURE 8: (a) Bifurcation diagram with stability with respect to (S −
x1)-space only. This figure shows two bifurcations: at S0 = 8.984, there
is a subcritical Hopf bifurcation; at S0 = 8.833, a saddle node of limit
cycles. (b) Numerical simulation showing two periodic orbits in the
(S − x1)-face when S0 = 8.92, as predicted by the bifurcation diagram.
The inside one is unstable and the outside one is orbitally asymptotically
stable.
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FIGURE 9: (a)–(c) Bifurcation diagrams showing stability with respect
to (S, x1, x2, x3)-space. (a) Bifurcations in the (S, x1)-face. Besides
the Hopf and saddle node bifurcations shown in Figure 8(a), there is a
branch point at S0 = 8.899. Only bifurcations with x1 > 0 and xi =
0, i = 2, 3 are shown. (b) and (c) Only bifurcation curves with species
x1 and x2 nonnegative and x3 = 0 are shown. There is stable coexistence
of species x1 and x2 for 8.833 < S0 < 8.968 and 9.155 < S0 < 9.315.
(d) A numerical simulation showing stable oscillatory coexistence of x1

and x2, for S0 = 8.92.

in the (S, x1)-face, there is a branch point at S0 = 8.899. The outer
periodic orbit that is stable with respect to (S, x1)-space is unstable for
8.833 < S0 < 8.899 with respect to (S, x1, x2, x3)-space. There is a tran-
scritical bifurcation of limit cycles as S0 increases through the branch
point S0 = 8.899, resulting in a branch of unstable periodic orbits with
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xi > 0, i = 1, 2. Along this branch, when S0 increases through 9.315 this
branch stabilizes and the periodic orbits remain stable until S0 decreases
through 9.155. Hence, there is stable coexistence of species x1 and x2

for 9.155 < S0 < 9.315. Continuing along this branch, it stabilizes
again as S0 decreases through 8.968 and remains stable until it collapses
into the plane via a transcritical bifurcation at approximately 8.833. So
there is also stable coexistence of x1 and x2 for 8.833 < S0 < 8.968. An
example of this oscillatory coexistence of x1 and x2 is shown shown in
Figure 9(d).

Figure 10 shows bifurcation curves for which xi ≥ 0, i = 1, 2, 3. There
is a transcritical bifurcation of the limit cycle in the (S, x1, x2)-face (with
x3 ≡ 0) into the positive cone. This branch of periodic orbits remains
stable until S0 increases through 9.479. Hence there is stable coexistence
of all three species for 8.965 < S0 < 9.479. Examples of such stable limit
cycles, for different values of S0, are shown in Figure 10(d).

Note that Figure 10(d) shows that at one of the boundaries of the
coexistence state, S0 = 9.479, a Neimark-Sacker is detected, and hence
more complex dynamics is likely for S0 > 9.479.

Finally, we note that this is an example of competitor-mediated co-
existence. For 8.965 ≤ S0 ≤ 9.479, all three species coexist. However,
x3 cannot survive in the presence of x2 unless x1 is also present.

5 Discussion Clearly, the fact that the yield may vary with the nu-
trient concentration has profound implications for coexistence of several
microbial species. The principle of competitive exclusion states that at
most one species can survive on a single nutrient at steady state. If one
of the competitors exhibits a variable yield, then oscillatory coexistence
of more than one species becomes possible.

We have presented one scenario in which the variable yield resulted in
the coexistence of two species. Variable yield of the stronger competitor
x was beneficial to the weaker competitor y. Specifically, we demon-
strated that if the stronger competitor x has a variable yield which
generates a stable limit cycle in the plane y = 0, than the limit cy-
cle can bifurcate into the coexistence region so that both x and y can
stably coexist in oscillatory fashion. Interestingly, a weaker competitor
can also benefit if its own yield is variable. If x is a weaker competitor
than y at steady state and x exhibits variable yield, then it is possible
that both the steady state with x = 0 and the limit cycle with y = 0
are stable and therefore the outcome of competition will depend on the
initial conditions. This is a clear benefit to the weaker competitor x
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FIGURE 10: (a)-(c) Bifurcation diagrams showing branches where
xi ≥ 0, i = 1, 2, 3. There is stable coexistence of all three species for
8.965 < S0 < 9.479. (a) x1 on the ordinate axis, (b) x2 on the ordinate
axis, (c) x3 on the ordinate axis. (d) Three species stable oscillatory
coexistence for a range of values 8.965 < S0 < 9.479. This figure was
done using CONTENT (see [26]). At S0 = 8.965, a branch point is
detected corresponding to a transcritical bifurcation of limit cycles, and
at S0 = 9.479, a Neimark-Sacker bifurcation is detected.

because it enables x to outcompete y for some open nonempty set of
initial conditions. The second scenario corresponds to bistability.

We also demonstrated that three species coexistence in this context
is possible and that competitor-mediated coexistence can occur. In this
case, two competitors x2 and x3 with fixed yields, a situation that would
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normally lead to competitive exclusion, are lead to coexistence by the
intervention of a third competitor with variable yield, x1. The latter acts
as a mediator, causing oscillations in the substrate density that make
the value of S alternatively beneficial for x2 and x3.

In addition to facilitating oscillatory coexistence, the model with vari-
able yield can display much more complicated dynamics. We have pre-
sented several examples of dynamically nontrivial attractors correspond-
ing to coexistence (long periodic orbits, invariant tori, linked stable pe-
riodic orbits). In a special limiting case, model (15) can exhibit in-
termittent trajectories if the break-even concentrations of x and y are
sufficiently close.

We also explained why it is important to understand how the yield
depends on the substrate in order to incorporate the term correctly in
the model. In any model in which the yield is considered a measure
of the efficacy of the conversion process, the growth and uptake terms
are related by the equation g(S) = Y (S)u(S). In order for such a single
species growth model to exhibit a Hopf bifurcation, the uptake rate u(S)
must be decreasing at high substrate concentrations. In formulating
such a model, one therefore must assume that uptake of the substrate
is inhibited by high concentrations of substrate. This observation may
prove important if one is actually going to try to find organisms in order
to observe this phenomenon in the laboratory.

Appendix – Proof of Theorem 2.6 Equation (8) is the transver-
sality condition.

Let ω0 =
p

x∗u(S∗)g′(S∗), denote the imaginary part of the eigenvalue at
the critical value αc, of the Hopf bifurcation parameter. Take

T =

2
4

0 −1

ω0

u(S∗)
0

3
5 and T−1 =

2
4 0

u(S∗)

ω0

−1 0

3
5 ,

„
r
v

«
= T−1

„
S
x

«
=⇒

8
<
:

r = x
u(S∗)

ω0

v = −S

.

Thus, in canonical form the system is

dr

dt
= r(−D1 + g(−v)) ≡ f(r, v),

dv

dt
= −(S0 + v)D + r

ω0

u(S∗)
u(−v) ≡ g(r, v).
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Now the system is in the canonical form so that a straight forward application
of the formula in Marsden and McCracken [34] shows that the sign of CH

determines the criticality of the Hopf bifurcation as indicated in Theorem 2.6.

Alternatively, defining h(s) = D(S0 − S)/u(S), one can write the system
(1) in the form:

dS

dt
=

„
D(S0 − S)

u(S)
− x

«
u(S) ≡ (h(S) − x)u(S),

dx

dt
= (g(S) − D1) x.

In [44] the criterion for the criticality of the Hopf bifurcation based on the

sign of bCH was derived.
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