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Abstract. A directed graph with cities as vertices and arcs determined by outgoing
(or return) travel represents the mobility component in a population of individuals
who travel between n cities. A model with 4 epidemiological compartments in each
city that describes the propagation of a disease in this population is formulated
as a system of 4n2 ordinary differential equations. Terms in the system account for
disease transmission, latency, recovery, temporary immunity, birth, death, and travel
between cities. The basic reproduction number R0 is determined as the spectral
radius of a nonnegative matrix product, and easily computable bounds on R0 are
obtained.

1 Introduction

Modeling the spatial spread of infectious diseases is a complex task. One
possible approach is to consider the travel of individuals between discrete
geographical regions (cities), considering that the transmission does not take
place during travel. The situation is then that of a directed graph, with the
vertices representing the cities and the arcs representing the links between
these cities. Disease transmission is assumed to occur between individuals
present in a given city.

Sattenspiel and Dietz [7] introduced such a model with travel between
cities, and a similar type of model was considered in [8]. More recently Fulford
et al [4] and Wang and Zhao [10] have formulated and discussed other models
for the spread of a disease among discrete geographical regions.

We consider the time evolution of a disease with 4 epidemiological com-
partments in each city for residents of n cities who may travel between them.
The model formulated here is an extension of that of [1], which is adapted from
[7]. We give a rigorous derivation of the basic reproduction number R0, which
represents the average number of new infections produced in a totally suscep-
tible population by the introduction of an infective individual (see [3, 5, 9]).
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Easily computable bounds on R0 are derived. Local analysis and numerical
simulations indicate that R0, is a sharp threshold with the disease dying out
or becoming endemic according as R0 < 1 or R0 > 1.

2 The SEIRS epidemic model

The total number of cities considered is n. The number of residents of (i.e.,
individuals who normally live in) city i who are present in city j at time t is
denoted by Nij , and Nr

i =
∑n

j=1 Nij denotes the resident population of city
i at time t. Also, Np

i =
∑n

j=1 Nji denotes the population of city i at time t,
i.e., the number of individuals who are physically present in city i.

As in [1, 7], residents of city i leave this city at a per capita rate gi ≥ 0 per
unit time with a fraction mji ≥ 0 of these outgoing individuals going to city j.
If gi > 0, then

∑n
j=1 mji = 1, with mii = 0, and gimji is the travel rate from

city i to city j. Residents of city i who are in city j return to i with a per capita
rate of rij ≥ 0, with rii = 0. With these assumptions, an individual resident
in a given city who is present in another city, must first return to their city
of residence before travelling to a third city. The outgoing matrix [gimji] and
the return matrix [rij ], which represent the outgoing travel from i to j and the
return to i from j, respectively, are assumed to have the same zero/nonzero
pattern. Thus the directed graph with vertices representing cities and arcs
representing travel between these cities can be determined by either matrix.
The terms mji and rij implicitly take into account the distance between cities
i and j.

In each of the n cities, an epidemic model is superimposed; see Hethcote
[5] for a recent review of mathematical models of infectious diseases. In [7], an
SIR epidemic model with 3 compartments (susceptible, infective, recovered)
is formulated in each city (called region), with two types of mobility (infants
and adults) in each region. In [8], each region has an SIR model and, as in [7],
there is no birth or natural death of individuals. Here we construct an SEIRS
model with 4 compartments (susceptible, exposed, infective, recovered) and
include birth in the city of residence and natural death in any city. Our general
SEIRS model is applicable for diseases with a latent period that confers im-
munity upon recovery (e.g., pertussis), and can be reduced to simpler models
by formally setting parameter(s) (or inverse(s)) to zero. For example, tuber-
culosis has a long latent period and treated infectives move back into the
susceptible class; thus an SEIS model is appropriate. Some childhood diseases
(e.g., scarlet fever) have short latent periods and confer permanent immunity
upon recovery, thus an SIR model is appropriate; others (e.g., measles) have
a longer latent period, thus an SEIR model is preferred. For a disease with no
latent period and that confers no immunity (e.g., gonnorhea) an SIS model,
as formulated and analyzed in [1], is adequate.

Let Sij , Eij , Iij and Rij denote respectively the number of susceptible,
exposed, infective and recovered individuals resident in city i who are present
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in city j at time t; thus Nij = Sij + Eij + Iij + Rij for all i, j = 1, . . . , n.
Disease transmission is modelled using standard incidence, namely

n∑
j=1

n∑
k=1

κjβikj
SijIkj

Np
j

(1)

where the disease transmission coefficient βikj > 0 is the proportion of ade-
quate contacts in city j between a susceptible from city i and an infective
from city k that actually results in transmission of the disease and κj > 0
is the average number of such contacts in city j per unit time. Let 1/d, 1/ε,
1/γ and 1/ν denote the average lifetime, exposed period, infective period and
period of temporary immunity, respectively. Note that d, ε, γ and ν are assu-
med to be positive and the same for all cities. Birth and death are assumed to
occur with the same rate constant, thus the total population remains a fixed
constant.

For residents of city i present in city i (with i = 1, . . . , n), the following
4 differential equations describe the dynamics of the susceptible, exposed,
infective and recovered individuals,

dSii

dt
=

n∑
k=1

rikSik − giSii −
n∑

k=1

κiβiki
SiiIki

Np
i

+ d(Nr
i − Sii) + νRii (2a)

dEii

dt
=

n∑
k=1

rikEik − giEii +
n∑

k=1

κiβiki
SiiIki

Np
i

− (ε + d)Eii (2b)

dIii

dt
=

n∑
k=1

rikIik − giIii + εEii − (γ + d)Iii (2c)

dRii

dt
=

n∑
k=1

rikRik − giRii + γIii − (ν + d)Rii (2d)

and, for j 6= i, the following equations describe the dynamics of residents of
city i present in city j,

dSij

dt
= gimjiSii − rijSij −

n∑
k=1

κjβikj
SijIkj

Np
j

− dSij + νRij (2e)

dEij

dt
= gimjiEii − rijEij +

n∑
k=1

κjβikj
SijIkj

Np
j

− (ε + d)Eij (2f)

dIij

dt
= gimjiIii − rijIij + εEij − (γ + d)Iij (2g)

dRij

dt
= gimjiRii − rijRij + γIij − (ν + d)Rij (2h)

As there are n cities, there are 4n2 equations. These equations, together with
nonnegative initial conditions and fixed Nr

i , constitute the SEIRS epidemic
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model. The following result is easily shown and assures that the system is well
posed.

Proposition 1. The nonnegative orthant R4n2

+ is positively invariant under
the flow of (2), and for all t > 0, Sii > 0 and Sij > 0 provided that gimji > 0.
Furthermore, solutions of (2) are bounded.

2.1 The underlying travel model

Summing (2a) to (2d) gives the evolution of the number of residents of city i
present in city i,

dNii

dt
= d(Nr

i −Nii) +
n∑

k=1

rikNik − giNii (3a)

Similarly, summing (2e) to (2h) gives the evolution of the number of residents
of city i who are present in city j 6= i,

dNij

dt
= gimjiNii − rijNij − dNij (3b)

From (3), it can be shown that the resident population Nr
i of city i is con-

stant, whereas the current population Np
i need not be. The total population∑n

i=1 Nr
i =

∑n
i=1 Np

i in the system is constant.
Equations (3) subject to the initial values Nij ≥ 0 at t = 0 with fixed

Nr
i > 0 constitute the travel model, which is identical to that in the SIS

model [1], where the following is proved.

Theorem 1. The travel model (3) has the (globally) asymptotically stable
equilibrium

N̂ii =
(

1
1 + giCi

)
Nr

i (4)

and, for j 6= i

N̂ij = gi
mji

d + rij

(
1

1 + giCi

)
Nr

i (5)

where Ci =
∑n

k=1
mki

d+rik
for i = 1, . . . , n.

2.2 The basic reproduction number

The system is at an equilibrium if the time derivatives in (2) are zero. City i
is at the disease free equilibrium (DFE) if Iji = 0 for all j = 1, . . . , n, giving
Eji = Rji = 0 and Sji = N̂ji from (4) and (5). The n-city model given by
(2) is at the DFE if every city is at the DFE. The DFE of (2) always exists,
and in the case in which the disease is absent in all cities, (2) reduces to the
underlying travel model (3).
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To discuss local stability of the DFE in the n-city model given by (2), we
use the method of [3, 9], and R0, the basic reproduction number for the whole
system, is the spectral radius of the next generation matrix.

Ordering the infected variables (exposed and infectives) as

E11, . . . , E1n, E21, . . . E2n, . . . Enn, I11, . . . , I1n, I21, . . . I2n, . . . , Inn

gives the lower triangular block matrix

V =
[

A 0
C B

]
=


n⊕

k=1

Ak 0

−diag(ε)
n⊕

k=1

Bk


where each block A, B and C is n2 × n2. For k = 1, . . . n, Ak is an n × n
matrix with

Ak =


rk1 + ε + d 0 · · · 0 −gkm1k 0 · · · 0

0 rk2 + ε + d −gkm2k 0 · · · 0

−rk1 −rk2 gk + ε + d −rkn

0 · · · −gkmnk 0 rkn + ε + d


For a fixed k, and j 6= k, the (k, j) entry of Ak is −rkj , the (j, k) entry is
−gkmjk, the jth diagonal entry is rkj + ε + d, the (k, k) entry is gk + ε + d,
and other entries are zero. Matrices Bk have the same entries as Ak but with
ε replaced by γ.

Since Ak and Bk have the Z-sign pattern and have all positive column
sums, Ak and Bk are nonsingular M-matrices [2, p. 136]. The inverse of V is
the nonnegative matrix

V −1 =


n⊕

k=1

(Ak)−1 0(
n⊕

k=1

(Bk)−1

)
diag(ε)

(
n⊕

k=1

(Ak)−1

)
n⊕

k=1

(Bk)−1


Matrix F is a block matrix

F =
[

0 G
0 0

]
where G is an n2× n2 matrix having n2 blocks, with each block Gij an n× n

diagonal matrix of the form Gij = diag(gijq), where gijq = κqβijqN̂iq/N̂p
q , for

q = 1, . . . , n.
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Since V −1 is lower triangular by blocks, FV −1 can be given by blocks. By
[9, Theorem 2], the basic reproduction number for system (2) is, factoring ε
out of the expression,

R0 = ε · ρ
{

G

(
n⊕

k=1

(AkBk)−1

)}
(6)

where ρ{·} is the spectral radius, and the following result holds.

Theorem 2. Let R0 be defined as in (6). If R0 < 1, then the DFE of (2) is
locally asymptotically stable. If R0 > 1, then the DFE of (2) is unstable.

From (6), to compute R0, it is sufficient to invert an n × n matrix. The
following bounds hold for R0.

Theorem 3. For system (2),

min
i,j,k=1,...,n

κkβijkε

(γ + d)(ε + d)
≤ R0 ≤ max

i,j,k=1,...,n

κkβijkε

(γ + d)(ε + d)

Proof. The i, j block of G
(⊕(AkBk)−1

)
is Gij(AjBj)−1 for all i, j. As

Gij is diagonal, left multiplication with (AjBj)−1 amounts to multiply-
ing row q of (AjBj)−1 by κqβijqN̂iq/N̂p

q for q = 1, . . . , n. Let v−1
kl (j) de-

note the (k, l) entry of (AjBj)−1, for k, l = 1, . . . , n. Consider the first co-
lumn of Gi1(A1B1)−1, and denote the sum of entries in the first column of
Gi1(A1B1)−1 by [1lT Gi1(A1B1)−1]1, with 1lT = (1, . . . , 1). Then

[1lT Gi1(A1B1)−1]1

=κ1β111
N̂11

N̂p
1

v−1
11 (1) + κ2β112

N̂12

N̂p
2

v−1
21 (1) + · · ·+ κnβ11n

N̂1n

N̂p
n

v−1
n1 (1)

+ κ1β211
N̂21

N̂p
1

v−1
11 (1) + κ2β212

N̂22

N̂p
2

v−1
21 (1) + · · ·+ κnβ21n

N̂2n

N̂p
n

v−1
n1 (1) + · · ·

+ κ1βn11
N̂n1

N̂p
1

v−1
11 (1) + κ2βn12

N̂n2

N̂p
2

v−1
21 (1) + · · ·+ κnβn1n

N̂nn

N̂p
n

v−1
n1 (1)

=
κ1

N̂p
1

(
β111N̂11 + β211N̂21 + · · ·+ βn11N̂n1

)
v−1
11 (1) + · · ·

+
κn

N̂p
n

(
β11nN̂1n + β21nN̂2n + · · ·+ βn1nN̂nn

)
v−1

n1 (1)
(7)

Suppose that

min
i,j,k=1,...,n

κkβijkε

(γ + d)(ε + d)
=

κkmβimjmkmε

(γ + d)(ε + d)

and



R0 in a Multi-city Epidemic Model 141

max
i,j,k=1,...,n

κkβijkε

(γ + d)(ε + d)
=

κkM
βiM jM kM

ε

(γ + d)(ε + d)

Then
κkmβimjmkmε ≤ . . . ≤ κkβijkε ≤ . . . ≤ κkM βiM jM kM ε

Using these inequalities in (7) and the definition of Np
i ,

κkmβimjmkmε
(
v−1
11 (1) + · · ·+ v−1

n1 (1)
) ≤ [1lT Gi1(A1B1)−1]1

≤ κkM
βiM jM kM

ε
(
v−1
11 (1) + · · ·+ v−1

n1 (1)
)

Note that 1lT Aj = (ε + d)1lT and 1lT Bj = (γ + d)1lT for all j. This implies
that 1lT (AjBj)−1 = 1/[(γ + d)(ε + d)]1lT , i.e., each column sum of (AjBj)−1

is equal to 1/[(γ + d)(ε + d)]. Therefore,

κkmβimjmkmε

(γ + d)(ε + d)
≤ [1lT Gi1(A1B1)−1]1 ≤ κkM βiM jM kM ε

(γ + d)(ε + d)

The same argument shows that this inequality remains true for every column
of G

(⊕(AkBk)−1
)
. From (6) and using a standard result on the localization

of the dominant eigenvalue of a nonnegative matrix (see, e.g., [6, Theorem
1.1]), the result then follows. ut

If city i is isolated from the others, then the basic reproduction number
in city i is Ri

0 = κiβiiiε/[(γ + d)(ε + d)]. This is the product of the average
number of contacts, the disease transmission coefficient, the average fraction
surviving the latent period ε/(ε+d), and the average time spent in the infective
compartment. In the case of disease transmission coefficients equal for all
populations present in a city, i.e., βijk = βk for all i, j, givingRi

0 = κiβiε/[(γ+
d)(ε + d)], the following easily computable bounds hold for R0.

Corollary 1. Suppose that βijk = βk for all i, j = 1, . . . , n. Then

min
i=1,...,n

Ri
0 ≤ R0 ≤ max

i=1,...,n
Ri

0

Note that in this case, if Ri
0 < 1 for all i, then R0 < 1, thus from Theorem 2,

the DFE is locally asymptotically stable. Similarly, if Ri
0 > 1 for all i, then

R0 > 1, thus the DFE is unstable. If κkβk = κβ (i.e., the disease transmission
parameters are identical in all cities), then R0 = κβε/[(γ + d)(ε + d)], as in a
classical SEIRS model with no mobility.

3 Discussion

The SEIRS epidemic model formulated in (2) describes the dynamics of an
infectious disease in a population of individuals with travels between discrete
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cities as incorporated in a model by Sattenspiel and Dietz [7]. The disease
free equilibrium of the epidemic model (2) has population numbers given
by (4) and (5). An explicit formula (6) for the basic reproduction number
R0 is derived; the DFE of (2) is locally asymptotically stable if R0 < 1,
and unstable if R0 > 1. Numerical simulations indicate that R0 acts as a
sharp threshold between the extinction(R0 < 1) and the invasion (R0 > 1) of
the disease. They also indicate that the endemic equilibrium is unique with
infective numbers tending to this equilibrium whenever R0 > 1. Thus to
control the disease, measures should be taken to reduce R0 below 1. However,
sinceR0 depends on the disease transmission parameters, the average lifetime,
the exposed and infective periods as well as the outgoing and return travel
matrices, such control strategies are not in general easily quantified. However,
with parameter values appropriate for a specific disease, R0 can be readily
computed from (6) and its variation with respect to some parameters can be
estimated.
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