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Abstract

Some analytical results are given for a model that describes the prop-
agation of a disease in a population of individuals who travel between n
cities. The model is formulated as a system of 2n2 ordinary differential
equations with terms accounting for disease transmission, recovery, birth,
death, and travel between cities. The mobility component is represented
as a directed graph with cities as vertices and arcs determined by outgo-
ing (or return) travel. An explicit formula that can be used to compute
the basic reproduction number R0 is obtained, and explicit bounds on
R0 are determined in the case of homogeneous contacts between individ-
uals within each city. Numerical simulations indicate that R0 is a sharp
threshold, with the disease dying out if R0 < 1 and reaching an endemic
level in all connected cities if R0 > 1.

INTRODUCTION

The spatial spread of infectious diseases is a phenomenon that involves many
different components. Modeling this spread is a complex task. Spatial hetero-
geneity can be incorporated by formulating small household models; a recent
overview of such stochastic models with references is given by Ball and Lyne
(2002). A more general model that allows for larger households was formulated
by Arrigoni and Pugliese (2002) as a continuous time Markov chain. Another
typical approach introducing spatial variation in epidemic models involves the
use of partial differential equations (see, e.g., Bailey (1980)). There are how-
ever cases where the latter type of spatial approach may not be appropriate.
Consider a human specific disease that is spread by person to person contact in
the context of a large country with a small number of potentially large cities, a
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very sparse or even nonexistant rural population and a good transportation sys-
tem. Then the movements from one city to another are fast, and the (eventual)
propagation of an epidemic takes place only at the destination location. In this
setting, travel of individuals between discrete geographical regions (cities) must
play some role in the spreading of the disease. The situation is then that of a
directed graph, with the vertices representing the cities (or discrete geographical
regions or patches) and the arcs representing the links between these cities.

Most spatial models with this latter approach originate from mathematical
ecology, and concern the behavior of competing and/or predator-prey metapop-
ulations living in various patches (Hanski and Gilpin 1997, Levin, Powell and
Steele 1993). The main disadvantage of this approach is the high dimensionality
of the resulting models. For example a model for n cities and p different classes
of individuals can have pn2 equations. Thus, such models are often studied by
computer simulations.

In mathematical epidemiology a few models have been studied that incorpo-
rate discrete geographical regions. Discrete time difference equations in a con-
tinuous state space were used by Rvachev and Longini (Longini 1988, Rvachev
and Longini 1985) to study the global spread of influenza taking into account
the airline network. Sattenspiel and Dietz (1995) introduced a model with travel
between populations. They proceeded to an identification of the parameters in
the case of the transmission of measles in the Caribbean island of Dominica, and
numerically studied the behavior of the model. Sattenspiel and Herring (1998)
considered the same type of model but applied to travel between populations in
the Canadian subartic, which can be thought of as a closed population where
travel is easily quantified. Recently, the same authors (Sattenspiel and Herring
2003) formulated a model that includes quarantine, and applied it to data of the
1918-19 influenza epidemic in central Canada. Fulford et al (Fulford, Roberts
and Heesterbeek 2002) and Wang and Zhao (Wang and Zhao 2002) have also re-
cently formulated and discussed other models for the spread of a disease among
patches.

We first formulate a mobility model for residents of n cities (or discrete
geographical regions) who may travel between them. The demographic model
formulated here is adapted from (Sattenspiel and Dietz 1995). Although the
justification for our approach is here geographical, it should be noted that there
is an obvious connection to the modeling of heterogeneous populations (Satten-
spiel and Simon 1988). Then we consider the time evolution of a disease that
confers no immunity upon recovery superimposed on this demographic struc-
ture. We give a rigorous derivation of the basic reproduction number R0, which
is the average number of new infectives produced by one infective introduced
into a susceptible population; see, e.g., (Diekmann and Heesterbeek 2000). We
also give some bounds on R0, as well as some numerical simulations indicating
that R0 = 1 acts as a sharp threshold between the disease dying out (R0 < 1)
and endemic disease (R0 > 1).
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THE MOBILITY MODEL

In the model introduced in (Sattenspiel and Dietz 1995) there is no intracity
demography (no birth or natural death of individuals), only intercity travel. To
make the model a little more realistic, but in order to work with a constant
overall population, we suppose that birth and death occur with the same rate.
In addition, we suppose that individuals who are out of their home city do not
give birth, and so birth occurs in the home city at a per capita rate d > 0, and
death takes place anywhere with a per capita rate d.

Suppose that the total number of cities is n. In the following, we call res-
idents of a city i the individuals who were born in and normally live in that
city, and travelers the individuals who at the time they are considered, are not
in the city they reside in. We denote the number of residents of city i who are
present in city j at time t by Nij . Letting Nr

i be the resident population of city
i at time t, then

Nr
i =

n∑
j=1

Nij (1)

Also, letting Np
i be the population of city i at time t, i.e., the number of

individuals who are physically present in city i, both residents and travellers,
then

Np
i =

n∑
j=1

Nji (2)

As in (Sattenspiel and Dietz 1995) residents of city i leave the city at a per capita
rate gi ≥ 0 per unit time. A fraction mji ≥ 0 of these outgoing individuals go to
city j. Thus if gi > 0, then

∑n
j=1 mji = 1, with mii = 0, and gimji is the travel

rate from city i to city j. Residents of city i who are in city j return to i with a
per capita rate of rij ≥ 0, with rii = 0. Obviously with these assumptions, an
individual resident in a given city, say city i, who is present in some city j, must
first return to city i before travelling to another city k, where i, j, k are distinct.
The different processes taking place are summarized in Figure 1, in which only
the movements between two cities i and j are detailed.

Taking the previous assumptions into account, and assuming that popu-
lation numbers are sufficiently large for a deterministic formulation, ordinary
differential equations can be derived for the dynamics of the population. Firstly,
the evolution of the number of residents of city i present in city i is given by

dNii

dt
= d(Nr

i −Nii) +
n∑

j=1

rijNij − giNii (3a)

The evolution of the number of residents of city i who are present in city j 6= i
is

dNij

dt
= gimjiNii − rijNij − dNij (3b)
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Figure 1: Travel component of the model.

Two composite quantities obtained from the previous equations are the evo-
lution of the resident population of city i

dNr
i

dt
=

d

dt

n∑
j=1

Nij =
d

dt
Nii +

n∑
j=1
j 6=i

d

dt
Nij

= d(Nr
i −Nii) +

n∑
j=1

rijNij − giNii +
n∑

j=1
j 6=i

[gimjiNii − rijNij − dNij ]

= 0, (4)

and the change of the population of city i

dNp
i

dt
= d(Nr

i −Nii) +
n∑

j=1

rijNij − giNii +
n∑

j=1
j 6=i

[gjmijNjj − rjiNji − dNji]

= d(Nr
i −Np

i ) +
n∑

j=1

rijNij −
n∑

j=1
j 6=i

rjiNji +
n∑

j=1
j 6=i

gjmijNjj − giNii

= d(Nr
i −Np

i ) +
n∑

j=1
j 6=i

(rijNij − rjiNji) +
n∑

j=1
j 6=i

gjmijNjj − giNii (5)

From (4), it follows that the number of residents of city i is a fixed quantity,
but from (5), the number of individuals present in city i is in general a variable
quantity. Finally an important observation is that the total population in the
n-city system is given by

N =
n∑

i=1

Nr
i =

n∑
i=1

Np
i =

n∑
i=1

n∑
j=1

Nij (6)
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Since from (4) the resident population of each city is constant, it follows that
N is constant.

The outgoing travel rates as well as the rates of returning to the home city
define two digraphs with cities as vertices and arcs between these vertices where
the coefficients are nonzero. As the model describes travels, it is natural to
assume that if individuals travel between one city and another, then at least
some of these travelers return home. Thus the outgoing matrix MT = [gimji]
and the return matrix R = [rij ], which represent the outgoing travel from i to
j and the return to i from j, respectively, have the same zero/nonzero pattern.
Either matrix then determines the arcs for the mobility digraph. Note that
the distance between cities i and j is not explicitly taken into account, but is
implicitly in the terms mji and rij .

Consider a given city i, and define the following subsets of indices (or ver-
tices). First, the indices of cities that can be accessed directly from city i

Vi→ = {k 6= i : gimki > 0}

Because of the above assumption on MT and R, the union of the return digraph
and the outgoing digraph is a symmetric digraph (Bang-Jensen and Gutin 2001),
and thus Vi→ = {k 6= i : rik > 0}. Consider also the converse relation, cities
that have a direct travel access to city i,

V→i = {k 6= i : gkmik > 0}

As for Vi→, the assumptions on MT and R imply that V→i = {k 6= i : rki > 0}.
By continuing the definition of Vi→

Ai→ = {k 6= i : ∃ distinct (k1, . . . , kq), mk1imk2k1 · · ·mkkq
> 0 and gigk1 · · · gkq

> 0}

is the set of cities that can be accessed from city i. Similarly

A→i = {k 6= i : ∃ distinct (k1, . . . , kq), mk1kmk2k1 · · ·mikq
> 0 and gkgk1 · · · gkq

> 0}

is the set of cities that have an access to city i.

Equilibrium of the Mobility Model

Equations (3) subject to the initial values Nij ≥ 0 at t = 0 with fixed Nr
i > 0

constitute the mobility model, which is linear. Since d > 0, this model has a
unique equilibrium as given in the following result.

Theorem 1 The mobility model (3) has the (globally) asymptotically stable
equilibrium

N̂ii =
(

1
1 + giCi

)
Nr

i (7)

and, for j 6= i

N̂ij = gi
mji

d + rij

(
1

1 + giCi

)
Nr

i (8)

where Ci =
∑n

k=1
mki

d+rik
for i = 1, . . . , n.
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Proof It follows from equation (3b) that at the equilibrium, for j 6= i,

Nij =
gimji

d + rij
Nii

Summing for j 6= i gives

n∑
j=1
j 6=i

Nij = giNii

n∑
j=1
j 6=i

mji

d + rij
= giCiNii

since mii = 0. Now using (1)

Nr
i =

n∑
j=1

Nij =
n∑

j=1
j 6=i

Nij + Nii

= (1 + giCi) Nii

from which (7) follows, which in turns implies (8) for j 6= i. For given Nr
i > 0,

these determine the unique equilibrium for the distribution of the residents of
city i. Note that N̂ij = 0 iff gimji = 0.

Now ordering the state variables as N = (N11, . . . , N1n, N21, . . . , Nnn)T , the
mobility model (3) can be written as the linear cooperative system

d

dt
N = MN

where M = diag(Mii) is the block-diagonal mobility matrix with birth and
death, with each block Mii given by

Mii =


−gi ri2 + d ri3 + d · · · rin + d

gim2i −ri2 − d 0 · · · 0
gim3i 0 −ri3 − d · · · 0

gimni 0 · · · 0 −rin − d


Thus if Ni = (Ni1, . . . , Nin)T the behavior of dNi/dt = MiiNi can be considered
independently for each i = 1, . . . , n.

Let vi = Card(Vi→) be the number of cities that can be accessed directly
from city i. Then, by reordering if necessary, each of the Mii matrices can be
partitioned as

Mii =
[

Pi11 Pi12

0 Pi22

]
Two cases must then be distinguished. In the degenerate case gi = 0 (i.e., no
residents leave city i), Pi11 is the zero scalar, and Pi22 is a diagonal matrix with
every entry negative. For gi > 0, Pi11 is an irreducible vi × vi-matrix, Pi12 has
nonzero d entries only on the first row and Pi22 = diag(−d) is a (n−vi)×(n−vi)-
matrix. If vi = n, then Pi22 is vacuous. If vi < n then Pi22 has the eigenvalue
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−d of multiplicity vi. By Gerschgorin’s theorem (see, e.g., (Horn and Johnson
1990, Th. 6.1.1)) and the fact that it is diagonally similar to a symmetric
matrix, Pi11 has all eigenvalues real and nonpositive. Each column sum of Pi11

is zero, thus Pi11 has a simple zero eigenvalue. The zero eigenvalue comes from
the fact that the system is overdetermined since Nr

i is constant. Thus N̂i is
(globally) asymptotically stable. �

Note that, if the return rate is equal in all cities, i.e., rij = r, then N̂ii =
(d + r)Nr

i /(d + r + gi) and for j 6= i, N̂ij = gimjiN
r
i /(d + r + gi).

THE EPIDEMIC MODEL

In each of the n cities, an epidemic model can be constructed. In (Sattenspiel
and Dietz 1995), an SIR model is formulated in each city (called region), with
two types of mobility (infants and adults) in each region. In (Sattenspiel and
Herring 1998), each region has an SIR model. For a disease that confers no
immunity (e.g., gonnorhea), we construct an SIS model and superimpose this
on the demographic model formulated in the previous section.

The SIS Model

Let Sij and Iij denote the number of susceptible and infective individuals res-
ident in city i who are present in city j at time t; thus Nij = Sij + Iij for
all i, j = 1, . . . , n. Disease transmission is modelled using standard incidence,
which, for human diseases, is considered more accurate than mass action (see,
e.g., (Hethcote 2000, McCallum, Barlow and Hone 2001)). In city j, this gives

n∑
j=1

n∑
k=1

κjβikj
SijIkj

Np
j

(9)

where the disease transmission coefficient βikj > 0 is the proportion of adequate
contacts in city j between a susceptible from city i and an infective from city
k that actually results in transmission of the disease and κj > 0 is the average
number of such contacts in city j per unit time. Let γ > 0 denote the recovery
rate of infectives, thus 1/γ is the average infective period. Note that γ is assumed
to be the same for all cities.

In each city, there are 2n equations. The first n equations describe the
dynamics of the susceptibles, and the n others describe the dynamics of the
infectives. Since there are n cities, there is a total of 2n2 equations for n cities.
The dynamics of the number of susceptibles and infectives originating from city
i (with i = 1, . . . , n) is given by the following system.

dSii

dt
=

n∑
k=1

rikSik − giSii −
n∑

k=1

κiβiki
SiiIki

Np
i

+ d(Nr
i − Sii) + γIii (10a)

dIii

dt
=

n∑
k=1

rikIik − giIii +
n∑

k=1

κiβiki
SiiIki

Np
i

− (γ + d)Iii (10b)
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and, for j 6= i,

dSij

dt
= gimjiSii − rijSij −

n∑
k=1

κjβikj
SijIkj

Np
j

− dSij + γIij (10c)

dIij

dt
= gimjiIii − rijIij +

n∑
k=1

κjβikj
SijIkj

Np
j

− (γ + d)Iij (10d)

Equations (10a) and (10b) describe the evolution of the number of susceptibles
and infectives, residents of city i who are present in city i, while equations (10c)
and (10d) describe the residents of city i who are currently present in city j.
These equations, together with nonnegative initial conditions, constitute the
SIS epidemic model.

Proposition 2 The nonnegative orthant R2n2

+ is positively invariant under the
flow of (10), and for all t > 0, Sii > 0 and Sij > 0 provided that gimji > 0.
Furthermore, solutions of (10) are bounded.
Proof The fact that solutions remain nonnegative follows naturally from
(10). From (10a), if Sii = 0 at t = 0, then dSii/dt > 0 and thus Sii > 0 for
t > 0. This, together with (10c), implies that for all t > 0, Sij > 0 for j 6= i.
Since there is no disease specific mortality, the constant population property of
the mobility model still holds. The boundedness then follows from the positive
invariance of R2n2

+ and the constant population property. �

For parameters relevant to a specific disease, system (10) can be solved numer-
ically. Before reporting on numerical results, we consider the case where the
system is at equilibrium. The system is at an equilibrium if the time derivatives
in (10) are zero. City i is at the disease free equilibrium (DFE) if Iji = 0 and
Sji = N̂ji given by (7) and (8) for all j = 1, . . . , n. The n-city model given by
(10) is at the DFE if every city is at the DFE, i.e., Iji = 0 and Sji = N̂ji for
all i, j = 1, . . . , n. The DFE of (10) always exists, and in the case in which the
disease is absent in all cities, the metapopulation model reduces to that of the
previous section.

Theorem 3 Suppose that system (10) is at an equilibrium, and that a given
city i is at the DFE. Then all cities that can be accessed from city i and all
cities that have an access to city i are at the DFE. In particular, if the outgoing
matrix MT is irreducible, then all cities are at the DFE.
Proof For simplicity, suppose that city 1 is at the DFE, i.e., Ik1 = 0 for all
k = 1, . . . , n. Consider (10b) with i = 1, namely

dI11

dt
=

n∑
k=1

r1kI1k

As city 1 is at the DFE, dI11/dt = 0, and thus, since r1v > 0 for all v ∈ V1→,
it follows that I1v = 0 for all v ∈ V1→. Now consider (10d) with i = 1 and
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v ∈ V1→, giving
dI1v

dt
=

n∑
k=1

κvβ1kv
S1vIkv

Np
v

Since κvβ1kv > 0, and from Proposition 2, S1j > 0 for t > 0, this implies that
if v ∈ V1→, then Ikv = 0 for all k. Hence a city that can be accessed directly
from city 1 is at the DFE. By induction, all cities in A1→ are at the DFE.

Consider (10d) with j = 1,

dIi1

dt
= gim1iIii

Thus, since the system is at an equilibrium, Iii = 0 for i ∈ V→1. So consider a
city v ∈ V→1 and use (10b) with i = v

dIvv

dt
=

n∑
k=1

rvkIvk +
n∑

k=1

κvβvkv
SvvIkv

Np
v

As the system is at an equilibrium, this implies in particular that SvvIkv = 0
for all k ∈ V→v. From Proposition 2, Svv > 0 for t > 0, and therefore Ikv = 0
for all k ∈ V→v. If v 6= k and gkmvk = 0 (i.e., k 6∈ V→v), then Ikv = 0, thus
Ikv = 0 for all k, and cities v ∈ V→1 are at the DFE. By induction, all cities in
A→1 are at the DFE.

A sufficient condition for city 1 to have an access to all cities is for the
outgoing matrix to be irreducible. �

The disease is endemic in a population if the number of infectives is positive
in this population. The disease is endemic in city i if there is a population in
city i in which the disease is endemic, i.e., there exists k ∈ {1, . . . , n} such that
Iki > 0.

Theorem 4 Suppose that system (10) is at an equilibrium, and that the disease
is endemic in city i. Then the disease is endemic in all cities that can be accessed
from city i. In particular, if the mobility matrix MT is irreducible, then the
disease is endemic in all cities.
Proof Assume that the disease is endemic in city 1, i.e., there exists q such
that Iq1 > 0. For the second part of the proof, we need to show that if the
disease is endemic in city 1, then necessarily I11 > 0.

If q = 1 then we can proceed. So suppose q 6= 1, and assume that I11 = 0.
Since the system is at an equilibrium, from (10b)

0 =
dI11

dt
=

n∑
k=1

r1kI1k +
n∑

k=1

κ1β1k1
S11Ik1

Np
1

Since κ1β1k1 > 0 and S11 > 0 for t > 0, it follows that Ik1 = 0 for all k, which
is a contradiction (since Iq1 > 0). Therefore I11 > 0 if the disease is endemic in
city 1, which we now assume.
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Now consider (10d) with i = 1 and j 6= i. Further assume that I1j = 0.
Since the system is at an equilibrium,

0 =
dI1j

dt
= g1mj1I11 +

n∑
k=1

κjβ1kj
S1jIkj

Np
j

If j ∈ V1→, this implies that I11 = 0, which is a contradiction. Thus I1j > 0
(i.e., the disease is endemic) for all j ∈ V1→, and in particular Ijj > 0 from the
first part of the proof. Continuing the argument, the disease is endemic in all
cities j ∈ A1→. �

The above two results rule out certain types of equilibria. In particular, they
imply that it is not possible, in a connected component, to have one city with-
out any disease with related cities with an endemic disease. In most practical
situations, interest is focussed on cities belonging to one connected component.

The Basic Reproduction Number

Firstly, note that if a city i is isolated from the others, i.e., that Ai→ = A→i = ∅,
then the basic reproduction number in city i is

Ri
0 =

κiβiii

d + γ
(11)

For city i, this is the average number of new infections produced by one infective
introduced into a susceptible population. To discuss local stability of the DFE
in the n-city model given by (10), we use the next generation matrix (Diekmann
and Heesterbeek 2000) and the method of (van den Driessche and Watmough
2002). Ordering the infective variables as

I11, . . . , I1n, I21, I22, . . . I2n, . . . Inn

gives the diagonal block matrix V = diag(Vii), where for i = 1, . . . n, Vii is an
n× n matrix with

Vii =


ri1 + γ + d 0 · · · 0 −gim1i 0 · · · 0

0 ri2 + γ + d −gim2i 0 · · · 0

−ri1 −ri2 gi + γ + d −rin

0 · · · −gimni 0 rin + γ + d


For a fixed i, and k 6= i, the (i, k) entry of Vii is −rik, the (k, i) entry is −gimki,
the kth diagonal entry is rik +γ+d, the (i, i) entry is gi+γ+d, and other entries
are zero. Since Vii has the Z-sign pattern and has all positive column sums, Vii

is a nonsingular M-matrix (Berman and Plemmons 1979, p. 136). The inverse
of V is then easily computed as a nonnegative matrix V −1 = diag(V −1

ii ). Matrix
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F is a block matrix with n2 blocks, where each block Fij is n× n diagonal and
has the form Fij = diag(fijq), where

fijq = κqβijq
N̂iq

N̂p
q

(12)

for q = 1, . . . , n.
Since V −1 is block diagonal, FV −1 can be given by blocks, where the i, j

block is FijV
−1
jj . By (van den Driessche and Watmough 2002, Theorem 2), the

basic reproduction number for system (10) is

R0 = ρ(FV −1) (13)

where ρ(·) is the spectral radius, and the DFE is locally asymptotically stable
if R0 < 1, and unstable if R0 > 1.

To summarize, we have the following result.

Theorem 5 Let R0 be defined as in (13). If R0 < 1, then the DFE of (10) is
locally asymptotically stable. If R0 > 1, then the DFE of (10) is unstable.

In the case of disease transmission coefficients equal for all populations
present in a city, i.e., βijk = βk for all i, j, giving Ri

0 = κiβi/(d + γ), the
following bounds hold for R0.

Theorem 6 Suppose that βijk = βk for all i, j = 1, . . . , n. Then

min
i=1,...,n

Ri
0 ≤ R0 ≤ max

i=1,...,n
Ri

0

Proof Suppose that βijk = βk for all i, j. Then

fijq = κqβq
N̂iq

N̂p
q

thus Fij = Fi1 for all i, j, and the i, j block of FV −1 is Fi1V
−1
jj for all i, j. As Fi1

is diagonal, left multiplication with V −1
jj amounts to multiplying row q of V −1

jj

by κqβqN̂iq/N̂p
q for q = 1, . . . , n. Let v−1

kl (j) denote the (k, l) entry of V −1
jj , for

k, l = 1, . . . , n. Consider the first column of Fi1V
−1
11 , and let [1lT Fi1V

−1
11 ]1 denote

the sum of the entries in the first column of Fi1V
−1
11 , with 1lT = (1, . . . , 1). Then

[1lT Fi1V
−1
11 ]1 = κ1β1

N̂11

N̂p
1

v−1
11 (1) + κ2β2

N̂12

N̂p
2

v−1
21 (1) + · · ·+ κnβn

N̂1n

N̂p
n

v−1
n1 (1)

+κ1β1
N̂21

N̂p
1

v−1
11 (1) + κ2β2

N̂22

N̂p
2

v−1
21 (1) + · · ·+ κnβn

N̂2n

N̂p
n

v−1
n1 (1)

+ · · ·

+κ1β1
N̂n1

N̂p
1

v−1
11 (1) + κ2β2

N̂n2

N̂p
2

v−1
21 (1) + · · ·+ κnβn

N̂nn

N̂p
n

v−1
n1 (1)

= κ1β1v
−1
11 (1) + · · ·+ κnβnv−1

n1 (1) (14)
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in which the last equality follows from (2). Without loss of generality, suppose
that

min
i=1,...,n

Ri
0 = R1

0 ≤ R2
0 ≤ . . . ≤ Rn

0 = max
i=1,...,n

Ri
0

Then
κ1β1 ≤ κ2β2 ≤ . . . ≤ κnβn

Using these inequalities in (14),

κ1β1

(
v−1
11 (1) + · · ·+ v−1

n1 (1)
)
≤ [1lT Fi1V

−1
11 ]1 ≤ κnβn

(
v−1
11 (1) + · · ·+ v−1

n1 (1)
)

Each diagonal block Vii of V has column sum γ + d, i.e., 1lT V = (γ + d)1lT .
Hence 1lT V −1 = 1/(γ + d)1lT . Therefore,

R1
0 =

κ1β1

d + γ
≤ [1lT Fi1V

−1
11 ]1 ≤

κnβn

d + γ
= Rn

0

The same argument shows that this inequality remains true for every column
of FV −1. A standard result on the localization of the dominant eigenvalue of
a nonnegative matrix (see, e.g., (Minc 1988, Theorem 1.1)) then implies that
mini=1,...,nRi

0 ≤ ρ(FV −1) ≤ maxi=1,...,nRi
0, and the result follows from (13). �

Note that ifRi
0 < 1 for all i, thenR0 < 1, thus the DFE is locally asymptotically

stable. Similarly, if Ri
0 > 1 for all i, then R0 > 1, thus the DFE is unstable. In

these cases, mobility does not induce a bifurcation. Note also that if the disease
transmission coefficients are identical in all cities, then R0 is κβ/(d+γ), as in a
classical SIS model. Indeed, we have the following corollary, in which mobility
plays no role.

Corollary 7 Suppose that for all i, j, k, βijk = β and κi = κ. Then the basic
reproduction number of (10) is

R0 =
κβ

d + γ

Proof The result follows from Theorem 6 since under the current hypotheses,
Ri

0 = κβ/(d + γ) for all i = 1, . . . , n. �

Numerical Simulations

Consider the case of three cities and the computation of R0 using the method
of the previous section, namely the one leading to (13). Parameters are chosen
to be relevant for a disease like gonorrhea (Hethcote and Yorke 1984): recovery
takes 25 days on average, i.e., γ = 1/25 with the time unit taken as 1 day.
Initially, Sij > 0 for all i, j and the disease is only present in city 1, i.e., I11 > 0
and all other Iij = 0. We use κi = κ = 1 for i = 1, 2, 3 and taking the average
life time as 75 years, d = 1/(75× 365). Values in the vector g and the matrix R
are random numbers chosen from (0, 0.05) and [0.01, 0.11), respectively. Finally,

12



(a) (b)

Figure 2: Birth of an endemic equilibrium point through a forward bifurcation
at the point R0 = 1. Parameters as given in the text. (a) Total number
of infectives in the population. (b) Number of infectives in each subpopulation
(plain lines show resident populations, dotted lines show travelling populations).

for i 6= j, mji = 1/2. Transmission coefficients are chosen equal for all contact
types (i.e., βijk = β for all i, j, k = 1, 2), thus R0 = κβ/(d+γ) from Corollary 7.
All the parameters are then fixed, except for β, which is varied in such a way
that 0 ≤ R0 ≤ 2.5. Numerical simulation of system (10) with n = 3 is carried
out, and the equilibrium numbers of infectives in the different subpopulations
as a function of R0 are shown in Figure 2. These numerical simulations show
that (for these parameter values) when R0 > 1, the total number of infectives∑3

i=1

∑3
j=1 Iij goes to a unique endemic equilibrium. This is also the case for

each of the 9 subpopulations Iij , as can be inferred from Figure 2(b). AtR0 = 1,
there is a forward bifurcation, with the disease dying out if R0 < 1, but present
in each city and each subpopulation if R0 > 1.

CASE OF TWO CITIES

As can be inferred from the previous section, the high dimensionality of the
model makes it difficult to give analytical results. Even running numerical
simulations is slow. In order to gain more understanding of some of the processes
involved, we consider the case of two cities.

The SIS model in two cities, with g1, g2 > 0 has m12 = m21 = 1. From
Theorems 3 and 4, the DFE exists in each city, and if both cities are at an
equilibrium with the DFE in one of the cities, then the other city is at the DFE.
Similarly, if both cities are at an equilibrium with one of the two cities at an
endemic equilibrium, then the disease is endemic in the other city.

13



Suppose that the disease transmission coefficients are equal in each city for
all contact types (i.e., βijk = βk, i, j = 1, 2). Then using the notation as in the
previous section,

F = 1
N̂p

1 N̂p
2


κ1β1N̂11N̂

p
2 0 κ1β1N̂11N̂

p
2 0

0 κ2β2N̂12N̂
p
1 0 κ2β2N̂12N̂

p
1

κ1β1N̂21N̂
p
2 0 κ1β1N̂21N̂

p
2 0

0 κ2β2N̂22N̂
p
1 0 κ2β2N̂22N̂

p
1



= 1
N̂p

1 N̂p
2

[
F̃11 F̃11

F̃22 F̃22

]

which has rank 2, and

V =


g1 + γ + d −r12 0 0
−g1 r12 + γ + d 0 0
0 0 r21 + γ + d −g2

0 0 −r21 g2 + γ + d

 =
[

V11 0
0 V22

]

Here

V −1
11 =

1
∆1

[
r12 + γ + d r12

g1 g1 + γ + d

]
=

1
∆1

Ṽ −1
11

and

V −1
22 =

1
∆2

[
g2 + γ + d g2

r21 r21 + γ + d

]
=

1
∆2

Ṽ −1
22

with ∆1 = (γ + d)(γ + d + g1 + r12) and ∆2 = (γ + d)(γ + d + g2 + r21). Note
that each column sum of V −1 is 1/(γ + d). Thus,

FV −1 =
1

∆1∆2N̂
p
1 N̂p

2

[
∆2F̃11Ṽ

−1
11 ∆1F̃11Ṽ

−1
22

∆2F̃22Ṽ
−1
11 ∆1F̃22Ṽ

−1
22

]
(15)

and the basic reproduction number R0 = ρ(FV −1) from (13) is the largest
eigenvalue of FV −1, since this positive matrix has rank 2. This is easy to
compute from (15) for a given set of parameter values.

Numerical Simulations for Two Cities

The following simulations give some insight into the effect of the mobility on the
propagation of the epidemic. Suppose initially that cities 1 and 2 are discon-
nected (zero mobility), and that city 1 is such that the disease is absent, while
city 2 is such that the disease is endemic, i.e., R1

0 < 1 while R2
0 > 1. Then the

cities become connected. If all parameters are equal in the two cities except for
βi, then varying the value of the migration rate gi, i = 1, 2, results in a change
of the value of R0 as computed from (15). From Theorem 6, R0 ∈ [R1

0,R2
0].
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(a) (b)

Figure 3: Level curves of R0 in the (g1, g2)-plane, for two cities. (a) Case
R1

0 = 0.4 and R2
0 = 1.2. (b) Case R1

0 = 0.9 and R2
0 = 1.2.

Suppose that Nr
1 = Nr

2 = 1500, d = 1/(75 × 365), γ = 1/25, κ1 = κ2 = 1
and r12 = r21 = 0.05. We then obtain Figure 3, which shows the level curves
of R0 in the (g1, g2)-plane, in the two cities case when βijk = βk. In the case
of Figure 3(a), parameters are such that R1

0 = 0.4, i.e., β1 ' 0.016, whereas
in Figure 3(b), R1

0 = 0.9 (i.e., β1 ' 0.036). In both cases, R2
0 = 1.2, i.e.,

β2 ' 0.048.
From the numerics, as R1

0 becomes closer to 1, the region in the (g1, g2)-
plane where R0 < 1 becomes smaller. For small g1 and large g2, R0 ≈ R1

0 since
the population of city 2 spends most time in city 1. Similarly, for small g2 and
large g1, R0 ≈ R2

0. A change in mobility can induce a bifurcation from R0 < 1
to R0 > 1 or vice versa. Thus mobility can stabilize or destabilize the DFE.
The same possibilities were observed in the 2-patch model of (Wang and Zhao
2002) that assumes mass action incidence and nonlinear birth. Furthermore, for
the Ri

0 values of Figure 3(a), if g1 = 0.4 and g2 is increased, then there are two
successive bifurcations. For small g2, there is a unique endemic equilibrium; for
intermediate g2, there is no endemic equilibrium and the disease dies out; for
large g2 a unique endemic equilibrium is again present. Also from Figure 3(a) if
the rate of leaving is the same in each city (g1 = g2), then two bifurcations are
also observed, with an endemic equilibrium present for large gi. For Figure 3(b),
theR1

0 value is larger, and for most of the (g1, g2)-plane there is a unique endemic
equilibrium. These figures illustrate the complexity of behavior possible when
intercity travel is present.
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DISCUSSION

The SIS epidemic model formulated in (10) describes the travels of individuals
between discrete geographical regions as incorporated in a model by Sattenspiel
and Dietz (Sattenspiel and Dietz 1995). The mobility (travel) component of the
system, namely (3), has a unique stable equilibrium, with population numbers
given by (7) and (8). These numbers serve as the disease free equilibrium of
the epidemic model (10). If the system is at an equilibrium and one city is at
the disease free equilibrium, then all cities that can be accessed from or have an
access to this city are also at the disease free equilibrium. When the system is at
an equilibrium and one city has an endemic disease level then all cities that can
be accessed from this city are also at an endemic level. These results assume that
the system is at a steady state. At the start of a disease outbreak in a certain
city (or cities), the number of infectives in each city as a function of time can
be determined by numerically solving system (10). An explicit formula for the
computation of the basic reproduction number R0 is derived; the DFE of (10)
is locally asymptotically stable if R0 < 1, and unstable if R0 > 1. Numerical
simulations indicate that R0 acts as a threshold between the extinction and
the invasion of the disease. They also indicate that the endemic equilibrium is
unique with infective numbers tending to this equilibrium whenever R0 > 1.
Thus to control the disease, measures should be taken to reduce R0 below 1.
Note that R0 = ρ(FV −1), in which both F and V depend on the migration
and return matrices. Thus more analysis is needed to quantify the effect of
travel between cities on R0, and consequently on control strategies. To strive
for greater realism, stochastic effects (as for example in (Arrigoni and Pugliese
2002, Ball and Lyne 2002)) should also be included.
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