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Abstract. Vaccination that gives partial protection for both newborns and

susceptibles is included in a transmission model for a disease that confers no
immunity. A general form of the vaccine waning function is assumed, and
the interplay of this together with the vaccine efficacy and vaccination rates is

discussed. The integro-differential system describing the model is studied for a
constant vaccine waning rate, in which case it reduces to an ODE system, and
for a constant waning period, in which case it reduces to a system of delay dif-
ferential equations. For some parameter values, the model is shown to exhibit

a backward bifurcation, leading to the existence of subthreshold endemic equi-
libria. Numerical examples are presented that demonstrate the consequence
of this bifurcation in terms of epidemic control. The model can alternatively

be interpreted as one consisting of two social groups, with education playing
the role of vaccination.

1. Introduction. A classical SIS epidemic model for a disease that confers no
immunity has only a disease free equilibrium (DFE) when parameters render the
basic reproduction number R0 < 1, and has one endemic stable equilibrium for
parameters making R0 > 1. Thus the disease dies out if R0 < 1. By definition
(see e.g., Anderson and May [1]), R0 is “the expected number of secondary cases
produced, in a completely susceptible population, by a typical infective individual”.
A precise definition of R0 for an ODE model can be given as the spectral radius of
the next generation matrix, see, e.g., [4, 25]. In terms of stability, R0 is a threshold
parameter, such that if R0 < 1, then the DFE is locally asymptotically stable,
and unstable if R0 > 1. In the latter case, the disease can go to an endemic level
and control strategies are usually implemented to eradicate the disease or at least
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to lower its prevalence to reasonable levels. Such strategies include treatment to
cure or increase the life expectancy of infected individuals, and vaccination as a
prophylactic measure to prevent infection. In modeling such strategies, the aim is
to determine the necessary amount of treatment or vaccination (usually modeled
as number of individuals treated or vaccinated per unit time) so that the disease
dies out. However, treatment and vaccination are not completely efficient. Vaccines
may have low efficacy and be “leaky” (i.e., successfully vaccinated individuals may
have only partial protection from infection). Data support the fact that a vaccine
usually wanes, thus providing only temporary protection (i.e., after a certain time
vaccinated individuals become susceptible again). Different ways in which a vaccine
can fail are discussed by McLean and Blower [20] and references therein.

Kribs-Zaleta and Velasco-Hernández introduced in [18] a model of infectious dis-
ease transmission for a disease that confers no immunity in which the susceptible
population is vaccinated at a rate φ but the vaccine gives only partial protection.
This SIS with vaccination model is appropriate for diseases such as pertussis, tu-
berculosis [18], and hepatitis B [17]. They showed that under certain parameter
conditions this quite simple ODE model [18] admits a backward bifurcation. To
show the dependence of the basic reproduction number with vaccination on the
vaccination rate, they denoted it R(φ), with R(0) = R0. For certain parameter
values, there exists a critical value Rc such that for Rc < R(φ) < 1 a hysteresis
effect may arise with multiple endemic equilibria. In this case, there are three equi-
libria for the system: a stable trivial one (corresponding to the DFE), an unstable
endemic equilibrium and a larger stable endemic equilibrium. This result has im-
portant consequences for the vaccination strategy, and the aim of the campaign
must be to reduce R(φ) below Rc, not merely below one. For values of R(φ) such
that Rc < R(φ) < 1, the success or failure of the strategy depends on the number
of individuals who are initially infected. The range of parameter values for which
backward bifurcation is possible in this model is not negligible [18]. A backward
bifurcation is also found when this ODE model is extended to include a recovered
class [2].

Backward bifurcation has also been observed in some other ODE epidemic mod-
els, including HIV/AIDS models [5, 7, 16] and multigroup models [8, 9], in which
the backward bifurcation is connected to asymmetries between the different groups.
Greenhalgh et al [6] used an SISI model with vaccination for animal infections with
incomplete immunity (e.g., bovine respiratory syncytial virus, pseudorabies virus
in pigs) and found that a backward bifurcation can occur. This phenomenon is also
found in a simple SIS model, but with a nonconstant contact rate [24].

Other models with vaccination have been considered in the literature. For ex-
ample, Hethcote and Yorke [15, Section 4.5] formulated an SIS core/noncore ODE
model for gonorrhea and examined the effectiveness of two vaccination strategies.
If a vaccine for gonorrhea becomes available, they predicted that it is likely to give
only temporary immunity [15, p. 45] and they assumed that such a vaccine would
be totally effective. Their model with vaccination of individuals chosen at random
from the population at risk shows that such a strategy would be very effective in
controlling gonorrhea. Multigroup models that include totally effective vaccination
of newborns and susceptibles have also been considered (see, e.g., [11, 13]). In
[8, 9] models for two social groups “normal” and “educated” were formulated. The
educated group can be regarded as a vaccinated group having a lower transmission
rate for the disease. Individuals can move back and forth between the two groups,
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according to such changes as educational status, public health policies. The SIS
models studied in [8] and [9, Equation(6)] are similar to the ODE model that we
analyze in Section 3.

In the SIS model with vaccination formulated in [18], the vaccine is assumed to
wane exponentially. In Section 2, we assume a more general form of the waning
function in formulating an SIS model with vaccination of the population at risk
and a fraction of the newborns. Our aim is to demonstrate the interplay between
vaccine efficacy, vaccination rates and vaccine waning on the dynamics of a disease
that confers no immunity. As noted in [18], the limiting case of no recovery leads
to an SI model that is more appropriate for fatal diseases with vaccination or
education. In Section 3, we specialize to the case in which the vaccine wanes
exponentially and in Section 4 we specialize to the case in which the vaccine waning
time is a constant. We take parameters relevant for some human diseases and
use a combination of analytical and numerical techniques to consider ranges of
the vaccination rates for which backward bifurcation can occur. This shows that
subthreshold endemic equilibria are possible, which may be important when it
comes to designing vaccination strategies.

2. Formulation of the model. Our model has the transfer diagram shown in
Figure 1. There are three classes S, I and V , corresponding respectively to sus-
ceptible, infective and vaccinated individuals, with numbers in each class given by
S(t), I(t), V (t), respectively. As noted in the introduction, V (t) may alternatively
correspond to an educated class, but we continue to refer to it as vaccinated. Indi-
viduals move from one class to the other as their status with respect to the disease
evolves. New individuals are born with a birth rate d > 0, and as we do not account
for vertical transmission or immigration of infectives, this inflow does not enter the
I class. All individuals, whatever their status, are subject to death, which occurs
with the rate d. Since it is assumed that the disease does not cause death, the total
population N = S + I + V is constant. We assume that a proportion α ∈ [0, 1) of
newborns are vaccinated at birth; thus αdN enter the V class, and the remainder
(1 − α)dN enter the S class. Susceptible individuals (regardless of whether they
have been previously vaccinated) are further vaccinated at the rate φ.

β

S

SI/N

I
γ

V

VI/N

φ

dS dI

dV

S

σβ

I

(1-   )dN

dNα

α
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Figure 1. The flow diagram for the general model.

Disease transmission is assumed to be of standard incidence type (see [19] for a
recent discussion of transmission terms), so that the number of infectives produced
by random contacts between I infective and S susceptible individuals is given by
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βIS/N , where β > 0 is the transmission coefficient, representing the number of
adequate contacts per individual per time unit. Disease immunity is induced by
vaccination, but those successfully vaccinated may be only partially protected from
infection, resulting in infected individuals coming from the vaccinated class. The
number 1 − σ is the degree of vaccine efficacy, with σ ∈ [0, 1]. If 0 < σ < 1, then
the vaccine is leaky. If σ = 0, then the vaccine is totally effective. If σ = 1, then
the vaccine is useless, the V and S classes are identical and the model reduces to a
classical SIS model. Henceforth we consider 0 ≤ σ < 1. The number of infectives
produced by random contact between I infective and V vaccinated individuals is
given by σβIV/N . The parameter σ can be interpreted as the factor by which
vaccination reduces disease transmission. For simplicity, it is assumed that if an
individual in the V class is infected, then that individual is equally as infectious as
an individual infected from the S class.

The vaccinated individuals can then either

• die (at the natural death rate d),
• or become infective if the vaccine is leaky (i.e., σ > 0),
• or have the vaccine protection wear off, that is, reenter the S class.

This last point is one of interest here. In [18] it is supposed that the vaccine wanes
exponentially but here we assume a more general waning function P (t) for the
vaccine. We suppose that there is a fraction P (t) of the vaccinated individuals who
are still under protection of the vaccine t units after being vaccinated. We suppose
that P (t) is a nonnegative and nonincreasing function with P (0+) = 1, and such
that

∫

∞

0
P (u)du is positive and finite. Two special forms of P (t), namely a negative

exponential and a step function are considered in Sections 3 and 4, respectively.
Finally, we suppose that any infective individuals can be cured: members of the

I class can return to the susceptible class (with no immunity), and do so at a rate
γ ≥ 0 (the recovery rate). The effect of vaccination is assumed to disappear after
an infection: there is no recovery to the V class.

Since the total population remains constant, it is more convenient to use pro-
portions in each class. Hereafter, we use I(t) and V (t) to denote the proportion of
infective and vaccinated individuals, respectively, with S(t) = 1 − I(t) − V (t), the
proportion of susceptibles. Let the initial susceptible and infective proportions be
S(0) > 0, I(0) > 0 and let V0(t) be the proportion of individuals who are initially
in the vaccinated class and for whom the vaccine is still effective at time t. An
expression for V0(t) is obtained from the vaccination class-age derivation, see (4)
below.

With the above assumptions, we obtain the following integro-differential system.

dI(t)

dt
= β(S(t) + σV (t))I(t) − (d + γ)I(t) (1a)

V (t) = V0(t) +

∫ t

0

(φS(u) + αd)P (t − u)e−d(t−u)e−σβ
∫

t

u
I(x)dxdu (1b)

In the integral term in (1b), αd is the proportion of vaccinated newborns, φS(u) is
the proportion of vaccinated susceptibles, P (t−u) is the fraction of the proportion
vaccinated still in the V class t − u time units after going in (i.e., not returned to
S), e−d(t−u) is the fraction of the proportion vaccinated not dead due to natural

causes, and e−σβ
∫

t

u
I(x)dx is the fraction of the proportion vaccinated not gone to
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the infective class. Thus the integral in (1b) sums the proportion of those who were
vaccinated at time u and remain in the V class at time t.

For easy reference, the parameters are collected below.

• d > 0: natural death rate.
• γ ≥ 0: recovery rate.
• β > 0: disease infectivity.
• φ ≥ 0: vaccination rate of susceptibles.
• α ∈ [0, 1): fraction of newborns vaccinated.
• 0 < 1 − σ ≤ 1: degree of vaccine efficacy.

A method to obtain (1b) and an expression for V0(t) is to formulate the model
with vaccination class-age τ . Consider the equation for v(t, τ), the density with
respect to vaccination class-age τ of the proportion of individuals in vaccination
class-age τ who are still vaccinated at time t,

(

∂

∂t
+

∂

∂τ

)

v(t, τ) = −(σβI(t) + d + η(τ))v(t, τ) (2)

where V (t) =
∫

∞

0
v(t, τ)dτ . Here η(τ) is the vaccine waning rate coefficient,

with the proportion still in the V class at vaccination class-age τ being P (τ) =

e−
∫

τ

0
η(q)dq, which is assumed to satisfy the previous assumptions on the general

waning function. The inflow at vaccination class-age zero is v(t, 0) = φS(t) + αd,
and v(0, τ) ≥ 0 is specified. Integrating along characteristics yields

v(t, τ) = v(t − τ, 0)e−
∫

t

t−τ
(σβI(q)+d)dq−

∫

τ

0
η(q)dq

for 0 ≤ τ ≤ t

v(t, τ) = v(0, τ − t)e−
∫

t

0
(σβI(q)+d)dq−

∫

τ

τ−t
η(q)dq

for t ≤ τ ≤ ∞

Dividing the integral for V (t) at t, substituting in the solutions, and changing
integration variables gives

V (t) =

∫ t

0

(φS(u) + αd)P (t − u)e−
∫

t

u
(σβI(x)+d)dxdu

+ e−
∫

t

0
(σβI(x)+d)dx

∫

∞

0

v(0, u)
P (t + u)

P (u)
du

(3)

where the above definitions of v(t, 0) and P (τ) have been used. This is equivalent
to (1b) with

V0(t) = e−
∫

t

0
(σβI(x)+d)dx

∫

∞

0

v(0, u)
P (t + u)

P (u)
du (4)

The ratio P (t + u)/P (u) = e−
∫

t+u

u
η(q)dq is well defined for t + u ≥ u ≥ 0 and

bounded above by 1. Since V (0) is finite, the integral in (3) and (4) converges.
Thus V0(t) is nonnegative, nonincreasing and limt→∞ V0(t) = 0. This vaccination
class-age approach (similar to that used for an infection class-age in [14]) gives an
explicit expression for V0(t).

To begin analysis of the model, define the subset D of the nonnegative orthant
by

D = {(S, I, V );S ≥ 0, I ≥ 0, V ≥ 0, S + I + V = 1}

To ensure that the model is well posed, and thus biologically meaningful, we need
to verify that solutions remain in D.
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Theorem 2.1. The set D is positively invariant under the flow of (1) with I(0) >
0, S(0) > 0.

Proof. From (1a), and the initial condition I(0) > 0,

I(t) = I(0)e
∫

t

0
(β(S(u)+σV (u))−(d+γ)du > 0

for all t ≥ 0. Note that I(t) can approach zero as t approaches infinity.
Differentiating (1b) gives

d

dt
V (t) =

d

dt
V0(t) + φS(t) + αd − (d + σβI(t))(V (t) − V0(t)) + Q(t) (5)

where to simplify notation, we denote

Q(t) =

∫ t

0

(φS(u) + αd)dt(P (t − u))e−d(t−u)e−σβ
∫

t

u
I(x)dxdu

Suppose that S(t) > 0 until some finite time t1, and that S(t1) = 0. Then, using
(1a) and (5),

d

dt
(I + V )(t1) = −d(I(t1) + V (t1)) − γI(t1) + Q(t1) + αd

+
d

dt
V0(t1) + (d + σβI(t1))V0(t1)

Since S(t1) = 0, I(t1)+V (t1) = 1. From the hypotheses on P (v), dt(P (t−u)) ≤ 0.
So Q(t1) ≤ 0, since S(t) ≥ 0 for 0 ≤ t ≤ t1. Therefore

−
d

dt
S(t1) =

d

dt
(I + V )(t1)

= −d(1 − α) − γI(t1) + Q(t1) +
d

dt
V0(t1) + (d + σβI(t1))V0(t1)

< 0

since d(1−α) > 0 and, by (4), d
dt

V0(t1) ≤ −(d + σβI(t1))V0(t1). Thus dS1/dt > 0,
and so S(t) ≥ 0 for all t ≥ 0. This in turn implies that Q(t) ≤ 0 for all t ≥ 0.
From (1b), since S and I as well as P (v) are nonnegative, it follows directly that
V (t) ≥ 0 for all t. Since the three variables are nonnegative, it then follows from
I(t) + S(t) + V (t) = 1 that each variable stays less than or equal to 1 for all t and
thus the solutions remain in D.

With the assumed initial conditions in D, it can be shown that the system
defined by (1a) and (1b) is equivalent to the system defined by (1a) and (5). The
equivalence of (5) with (1b) can be seen by using an integrating factor to write (5)
as

d

dt

[

(V (t) − V0(t))e
∫

t

0
(d+σβI(x))dx

]

= (φS(t) + αd + Q(t)) e
∫

t

0
(d+σβI(x))dx

and noting that the right hand side is

d

dt

[
∫ t

0

(φS(u) + αd)P (t − u)e
∫

u

0
(d+σβI(x))dxdu

]

The system defined by (1a) and (5) is of standard form, therefore results of Hale and
Verduyn Lunel [10, p. 43] ensure the local existence, uniqueness and continuation
of solutions of model (1).
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Define the basic reproduction number with vaccination as

Rvac = R0

[

1 −
(1 − σ)(φ + αd)P̃

1 + φP̃

]

(6)

in which

R0 =
β

d + γ

is the basic reproduction number with no vaccination and

P̃ = lim
t→∞

∫ t

0

P (v)e−dvdv

is the average length of time that an individual remains vaccinated before losing
protection or dying. Note that P̃ < 1/d. The number Rvac, which depends on P̃ ,
is the important quantity in the model with vaccination. When only one parameter
varies in Rvac, we sometimes make this dependence explicit, e.g., Rvac(φ) indicates
that φ is the bifurcation parameter that varies. Note that Rvac ≤ R0, and in the
case of no vaccination, that is α = φ = 0, Rvac = R0. From the values of S and
V at the DFE (given in the proof of the following theorem), Rvac is equal to the
product of the mean infective period 1/(d + γ) and the sum of the contact rate
constant in each of the susceptible and vaccinated classes multiplied respectively
by the proportion in that class at the DFE, namely βSDFE + σβVDFE .

Theorem 2.2. For model (1) with a general waning function, there is always the
DFE. If R0 < 1, then this is the only equilibrium, the disease dies out. If Rvac < 1,
the DFE is locally asymptotically stable (l.a.s.), if Rvac > 1 it is unstable.

Proof. Equation (1a) has I = 0 as an equilibrium and using I = 0 in equation (1b)
gives

V (t) = V0(t) + (φ(1 − V (t)) + αd)

∫ t

0

P (t − u)e−d(t−u)du

In the limit V0(t) = 0, therefore V = (φ(1 − V ) + αd)P̃ as t → ∞, and the disease
free equilibrium point

IDFE = 0, VDFE =
(φ + αd)P̃

1 + φP̃
, SDFE = 1 − VDF =

(1 − αdP̃ )

1 + φP̃

always exists. Since if R0 < 1 the only equilibrium of (1a) is IDFE = 0, it follows
from above that the DFE is the only equilibrium of system (1) when R0 < 1.

Suppose now that R0 < 1, i.e., that β < d + γ. Then equation (1a) gives

dI

dt
< (d + γ) ((S + σV ) − 1) I

Since I ≥ 0 and S + σV ≤ S + V ≤ 1, this inequality implies that dI/dt < 0, and
so I(t) → 0 = IDFE as t → ∞, for all initial conditions I(0) > 0.

Linearizing (1a) and (1b) about the DFE by setting I(t) = q(t), V (t) = VDFE +
r(t) gives the equations

dq(t)

dt
= (β(SDFE + σVDFE) − (d + γ)) q(t)
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r(t) = −φ

∫ t

0

(r(u) + q(u))P (t − u)e−d(t−u)du

−σβ

∫ t

0

(φ(1 − VDFE) + αd)P (t − u)e−d(t−u)

∫ t

u

q(x)dxdu.

Letting q(t) = C1e
zt and r(t) = C2e

zt, the above system becomes triangular and
has a non trivial solution if and only if

z = β(SDFE + σVDFE) − (d + γ) = (d + γ)(Rvac − 1) (7a)

or

1 = −φ

∫

∞

0

P (v)e−(d+z)vdv (7b)

as t → ∞. These equations give the eigenvalues z at the DFE. Let z = x + iy be a
root of equation (7b). Then by the proof of Lemma 2 in [24], if x ≥ 0, then y = 0.
But since φ ≥ 0, equation (7b) has no nonnegative real root, thus all of its roots
have negative real parts. Hence by (7a) the DFE is l.a.s if Rvac < 1, and unstable
if Rvac > 1.

3. Case reducing to an ODE system. If we assume that the vaccine waning

rate is a constant θ > 0, i.e., P (v) = e−θv, and V0(t) = V0(0)e−(d+θ)te−
∫

t

0
σβI(x)dx

from (4), then (1a) and (5) give the ODE system

dI

dt
= β(1 − I − (1 − σ)V )I − (d + γ)I (8a)

dV

dt
= φ(1 − I − V ) − σβIV − (d + θ)V + αd (8b)

which with no newborn vaccination (α = 0) is the model studied in [18]. From

Theorem 2.2, the DFE with IDFE = 0, SDFE = θ+d(1−α)
d+θ+φ

, VDFE = φ+αd
d+θ+φ

always

exists. Assume that R0 > 1, then endemic equilibria (positive I equilibria, denoted
by I∗) can be obtained analytically from the quadratic equation

P(I) = AI2 + BI + C = 0

where

A = −σβ

B = σ(β − (d + γ)) − (d + θ + σφ)

C = (d + γ)(d + θ + φ)(Rvac − 1)/β

with

Rvac = R0

(

1 −
(1 − σ)(φ + αd)

d + θ + φ

)

from (6). If I∗ is a positive solution of P(I) = 0, then (8a) implies that V ∗ =
(d + γ − βS∗)/(σβ). Substituting this value into the equation d(I + V )/dt = 0,
shows that S∗ > 0. Then (8b) gives V ∗ > 0. Thus all solutions with I∗ > 0 lie in
D and are biologically feasible. Note from (8a) that I∗ ≤ 1 − 1/R0.

Backward bifurcation leading to two endemic equilibria occurs for σ > 0 (i.e., a
leaky vaccine) if P ′(0) = B > 0, P(0) = C < 0 and B2 > 4AC. On an (Rvac(φ), I)
bifurcation diagram (see Figure 2), this occurs for Rc(φ) < Rvac(φ) < 1, where
Rc(φ) is the value of Rvac(φ) at the saddle node bifurcation point where the two
values of I coincide, i.e., I = Ic = B/(−2A). For Rvac(φ) < Rc(φ), there is no
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endemic equilibrium (EEP). For Rvac(φ) > 1, the constant term C > 0, and there
is a unique EEP. Note that if the vaccine is totally effective (σ = 0), there is no
endemic equilibrium for Rvac(φ) ≤ 1, and no backward bifurcation occurs.

By standard planar ODE arguments (see e.g., [21]), the following behavior can
be shown, for which a sketch of the proof is given.

Theorem 3.1. For the ODE system (8) with V (0) ≥ 0, I(0) > 0,
(i) if Rvac < Rc, then the disease dies out,
(ii) if Rc < Rvac < 1, then the EEP with larger I is l.a.s., and the EEP with

smaller I is unstable, and
(iii) if Rvac > 1, then the unique EEP is globally asymptotically stable in D−{I =

0}.

Proof. The Jacobian matrix J of the linearized system at an endemic equilibrium
I∗ has tr(J) < 0 and det(J) = 2σβ2I∗(I∗ − Ic). If Rc < Rvac < 1, then two EEP
exist, with det(J) > 0 for I∗ > Ic, giving linear stability for the larger I∗ value,
whereas det(J) < 0 for I∗ < Ic, giving instability at the smaller I∗ value. This
proves (ii). With 1/(IV ) as a multiplier, the Bendixson-Dulac criterion [21, p. 265]
rules out periodic solutions in the interior of D. The global results in (i) and (iii)
are completed by using the Poincaré Bendixson theorem [21, p. 245].

Using [25, Theorem 4] the nature of the bifurcation at Rvac = 1 is determined
by sgn(a) where

a = γ − βSDF − θ − σφ − σ2βVDF (9)

at Rvac = 1. If sgn(a) < 0 then the bifurcation is forward; whereas if sgn(a) > 0
the bifurcation is backward.

We illustrate the backward bifurcation with a numerical bifurcation diagram
(Figure 2) using parameters appropriate for a human disease, e.g., pertussis (see,
e.g., [3]), with a 3 week average disease duration (γ = 0.04762) taking the time unit
as one day. Average lifetime is assumed to be 75 years (d = 3.6530E − 05), and
the average number of adequate contacts per infective per day is estimated at 0.4
(β = 0.4). Assume that most babies are vaccinated in the first few months of life,
and that the vaccine is effective, thus that α = 0.9 (90% of newborns vaccinated)
and σ = 0.1 (90% protection). Pertussis vaccine begins to wane after about 3 years
[3, p. 378], and the average waning time of the vaccine 1/θ is assumed to be 5
years, giving θ = 5.4794E − 04. With these parameter values, there is backward
bifurcation for a range of φ values given by 0.0254 ≤ φ ≤ 0.1506 (i.e., vaccination
of susceptibles on average every 1 to 8 weeks).

With the above parameter values, R0 = 8.3936 and Rvac = 0.8807 for φ = 0.1,
which is in the range of backward bifurcation since the critical value Rc = 0.8669 <
Rvac < 1, see Figure 2. In the backward bifurcation range, the value of Rvac(φ)
must be decreased below Rc to ensure that the disease is controlled, i.e., I → 0;
otherwise, if I is above the unstable EEP, then I tends to the stable endemic value.
Note that from Figure 2, values of this endemic equilibrium mean that between
50% and 80% of the population is infective for most of the backward bifurcation
range.

This backward bifurcation persists (with the other parameter values fixed as
above) even in the case in which the vaccine does not wane (θ = 0, giving Rvac(φ) =
0.8396 and a critical value Rc(φ) = 0.7599). Varying one parameter, but keep-
ing the other parameters fixed as above, the backward bifurcation persists for all
α ∈ [0, 1), but not for the case in which only newborns are vaccinated (φ = 0). If
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there is no recovery (i.e., γ = 0), it can be seen from (9) that there is no backward
bifurcation in this ODE model. However, for a corresponding ODE model with
disease induced mortality (i.e., nonconstant population) and no newborn vaccina-
tion, backward bifurcation is possible for γ = 0 (see Figure 4 [18]). This case may
be relevant for HIV/AIDS, since there is currently great effort to find a vaccine for
this disease, and such a vaccine is unlikely to give complete protection.
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Figure 2. Backward bifurcation in the ODE vaccination model,
obtained by varying φ in [0.01, 0.2] with other parameters as given
in the text. Here and in other bifurcation diagrams, only the en-
demic equilibria are shown (the solid curve is the locally stable
EEP, the dashed curve is the unstable EEP).

4. Step function (delay) case. Suppose that the vaccine waning period is con-
stant and equal to ω, that is the function P (v) takes the form of a step function on
a finite interval:

P (v) =

{

1 if v ∈ [0, ω]
0 otherwise

Since V0(t) = 0 for t > ω, with S = 1 − I − V the integral equation (1b) becomes,
for t > ω

V (t) =

∫ t

t−ω

(φ(1 − I(u) − V (u)) + αd)e−d(t−u)e−σβ
∫

t

u
I(x)dxdu (10)

Differentiating this last expression (see equation (5)) gives the delay differential
equation (DDE) model as the two dimensional system, for t > ω

d

dt
I(t) =β(1 − I(t) − (1 − σ)V (t))I(t) − (d + γ)I(t) (11a)

d

dt
V (t) =φ(1 − I(t) − V (t))

− φ(1 − I(t − ω) − V (t − ω))e−dωe−σβ
∫

t

t−ω
I(x)dx

− σβIV − dV + αd
(

1 − e−dωe−σβ
∫

t

t−ω
I(x)dx

)

(11b)
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Hereafter, we shift time by ω so that these equations hold for t > 0.
The well posedness of the problem follows from Theorem 2.1 and from the fact

that solutions of (1) exist and are unique. For a constant waning period, the basic
reproduction number with vaccination from (6) is

Rvac = R0

(

1 −
(1 − σ)(φ + αd)(1 − e−dω)

d + φ(1 − e−dω)

)

(12)

With IDFE = 0, from Theorem 2.2

SDFE =
d − αd(1 − e−dω)

d + φ(1 − e−dω)
, VDFE =

(φ + αd)(1 − e−dω)

d + φ(1 − e−dω)
(13)

From nullclines, there exists one (or more) (EEP) iff there exists 0 < I∗ ≤ 1 such
that

V ∗ = f(I∗) = g(I∗) (14)

where

f(I) =
1 − 1/R0 − I

1 − σ
(15)

for σ < 1, and

g(I) =
(φ(1 − I) + αd)(1 − e−dω−σβωI)

φ(1 − e−dω−σβωI) + d + σβI
(16)

This seems hard, if not impossible, to solve explicitly. It is however possible to
tackle the problem numerically as described in the following subsections.

4.1. Visualising and locating the bifurcation. From the nullcline equations,
an EEP exists iff there exists an I∗ ∈ (0, 1] such that equation (14) holds. So we
study the zeros of

H(I) = f(I) − g(I) =
1 − 1/R0 − I

1 − σ
−

(φ(1 − I) + αd)(1 − e−dω−σβωI)

φ(1 − e−dω−σβωI) + d + σβI

To state the problem in a formal way, with fixed d, let A = {α, β, γ, ω, φ, σ} be the
set of parameters of interest, and denote

H(I,A) = f(I) − g(I) (17)

to show the dependence on these parameters. We proceed as follows.

1. Choose a parameter ai ∈ A.
2. Fix all other aj ’s (j 6= i).
3. Choose ai,min, ai,max and ∆ai for ai.
4. For all ai,k = ai,min +k∆ai (k such that ai,k ≤ ai,max), compute I∗ such that

H(I∗, ai,k) = 0.

Step 4 is carried out using the MatLab fzero function.
In the DDE case, analytically finding the point where (17) has a unique zero in

(0, 1] is impossible (compare H(I) with the quadratic found for the ODE case in
Section 3). It is however possible to obtain a better estimate than by mere obser-
vation of the numerically obtained bifurcation diagram, by making the following
observations. It can be shown that

H(0) =
Rvac − 1

(1 − σ)R0

and that, for σ < 1

H(1) = −
1

(1 − σ)R0
−

αd(1 − e−dω−σβω)

φ(1 − e−dω−σβω) + d + σβ
< 0
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Therefore for Rvac < 1, there are several possibilities, which are illustrated in
Figure 3.

• If Rvac < Rc, then there is no EEP. H(0) and H(1) are strictly negative, and
numerical simulations seem to indicate that H has no roots in (0, 1] (i.e., that
H < 0 on this interval).

• If Rc < Rvac < 1, then there are endemic equilibria. Here, since H(0) and
H(1) are strictly negative, the only possibility is thus to have an even number
of zeros of H. Numerical simulations appear to indicate that the number of
endemic equilibria is 2.

In between these two situations Rvac = Rc and there is one endemic equilibrium I∗.
Using the same procedure as for the visualisation of the bifurcation, it is possible
to compute Rc by finding the value I∗ such that H(I∗,A) = 0 and H ′(I∗,A) = 0,
for a given parameter ai ∈ A.

If Rvac > 1 then H(0) > 0 and so there is an odd number of endemic equilibria.
Numerical simulations indicate that there is a unique EEP, see Figure 3.

4.2. Numerical simulations. We use the same parameter values as in the ODE
case of Section 3, except that the constant waning time (the delay) ω has to be

substituted for θ. We take ω = 1767, so the average length of time P̃ that an
individual stays vaccinated is the same as in the ODE model of Section 3. These
parameters give R0 = 8.3936 and Rvac(φ) = 0.8808, which is in the range of
the backward bifurcation since (using the above method) Rc(φ) = 0.8684. The
bifurcation diagram is very like that depicted in Figure 2. Numerical simulations of
the DDE model indicate that there are no additional bifurcations; solutions either
go to the DFE or to the (larger) EEP.

As a function of σ or β (rather than φ), the bifurcation has the shape shown
on Figure 2, whereas for the other parameters, it appears “reversed” if plotted as
a function of the parameter. Indeed, Rvac is an increasing function of σ and β,
while it is a decreasing function of the other parameters for σ < 1, but changes very
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Figure 3. Value of the function H(I), in three cases correspond-
ing to three different values of β (from bottom to top): 0.2, 0.4
and 0.6. Other parameters as in Section 4.2. The corresponding
values of Rvac are indicated as legend. In all three cases, R0 > 1.
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little as α changes. Figure 4(a) shows the bifurcation for these parameter values
as a function of ω. The situation is clearly different from that of Figure 2, since in
Figure 4(a) every value of ω gives at least one endemic equilibrium.

It should be noted that this behavior is quite interesting in terms of epidemic
control. Let ωm be the value of ω determined by solving Rvac(ω) = 1 with Rvac

given by (12). If all other parameters are fixed as above, and for small waning
time, 0 < ω < ωm = 457.032, giving Rvac(ω) > 1, the only stable equilibrium
is a large endemic one. This is of course a highly undesirable state in terms of
epidemic control. Then increasing ω (i.e., increasing the waning time) past ωm

allows the DFE to become locally stable, and it is found numerically that solutions
starting with I(0) below the unstable endemic equilibrium tend to the DFE. Indeed,
consider Figure 4(b), which shows the behavior of I(t) as a function of time. This is
obtained by running numerical integrations of system (11) using the package dde23
[23] with I(t) = c for t ∈ [−ω, 0], c varying from 0 to 1 by steps of 0.02. The value
of the unstable EEP (0.088) is shown as a dashed line, which seems to separate an
endemic from the disease free asymptotic state. Increasing ω more is inefficient in
terms of disease control, since (see Figure 4(a)) increasing ω beyond 1000 days does
not further raise the value of the unstable endemic equilibrium and thus does not
allow larger initial values of infectives to tend to the DFE.
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Figure 4. (a) Values of I∗ as a function of ω by solving H(I,A) =
0 with ai = ω. (b) Value of I(t) versus time, obtained by numerical
integration of system (11) with ω = 1767 and initial data I(t) = c,
for t ∈ [−ω, 0], c varying from 0 to 1 by steps of 0.02. Other
parameter values as in the text.

The following table shows, for a given parameter, the (rounded) ranges in which
the different types of behaviors are obtained, when all other parameters have the
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values given in Section 3 (using ω = 1767). The switch from the two EEPs sit-
uation to the single EEP situation is obtained by solving, for the variable under
consideration, the equation Rvac = 1.

Parameter DFE only 2 EEPs 1 EEP
σ (0, 0.085) (0.085, 0.114) (0.114, 1)
φ (0.143,∞) (0.025, 0.143) [0, 0.025)
β (0, 0.362) (0.362, 0.454) (0.454,∞)
γ (0.055,∞) (0.042, 0.055) [0, 0.042)
ω impossible (457.032,∞) (0, 457.032)
α impossible [0,1] impossible

5. Special cases of the DDE model.

5.1. Case σ = 0 (vaccine totally effective). Consider the case where the vaccine
is totally effective giving complete protection, i.e., that vaccinated individuals can
never make the V to I direct transition. In this case, system (11) reduces to

dI(t)

dt
=β(1 − I(t) − V (t))I(t) − (d + γ)I(t) (18a)

dV (t)

dt
=φ(1 − I − V ) − φ(1 − I(t − ω) − V (t − ω))e−dω

− dV (t) + αd(1 − e−dω) (18b)

Here

Rvac = R0

(

1 −
(φ + αd)(1 − e−dω)

d + φ(1 − e−dω)

)

and we have the following result.

Theorem 5.1. If Rvac > 1, then system (18) admits a unique, locally asymptoti-
cally stable EEP.

Proof. Here (15) is f(I) = 1 − 1/R0 − I while (16) is

g(I) =
(φ(1 − I) + αd)(1 − e−dω)

φ(1 − e−dω) + d

Therefore solving (14) yields the explicit value of I∗, namely

I∗ =

(

1 −
1

Rvac

)

(1 − α(1 − e−dω))

(which is biologically meaningful if Rvac > 1), and in turn gives

V ∗ =
φ(1 − e−dω)

dR0
+ α(1 − e−dω)

Linearization about the EEP yields the characteristic equation

det

[

β(1 − 2I∗ − V ∗) − (d + γ) − z −βI∗

−φ + φe−zωe−dω −φ + φe−zωe−dω − d − z

]

= 0

Using the EEP, the (1,1) entry is −βI∗−z. So the characteristic equation becomes

z2 + z[φ + d + βI∗] + dβI∗ − zφe−ω(z+d) = 0 (19)

When ω = 0, this reduces to (z + d)(z + βI∗) = 0 and the EEP is l.a.s. when the
delay is zero.
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Suppose z = iy, y > 0. Then (19) is

−y2 + iy(φ + d + βI∗) + dβI∗ = iyφe−dω(cos ωy − i sin ωy)

Taking the absolute value of each side gives

(−y2 + dβI∗)2 + y2(φ + d + βI∗)2 = y2φ2e−2dω

Now setting y2 = Y gives

Y 2 + Y (φ2(1 − e−2dω) + d2 + β2I∗2 + 2φ(d + βI∗)) + d2β2I∗2 = 0

Since for ω ≥ 0 each coefficient is positive, Y cannot be positive and there can be
no pure imaginary solution. Also, z = 0 is not a solution, as setting z = 0 in (19)
gives dβI∗, which is strictly positive. So, by continuity, the EEP is l.a.s. for all
ω ≥ 0 when it exists, namely for Rvac > 1.

Combining the above result with Theorem 2.2 shows that for a totally effective
vaccine, the bifurcation is forward and Rvac behaves as a (local) threshold as in a
classical model; see the Introduction. Multigroup models with a totally effective
vaccine also have no backward bifurcation [11, 13, 15].

5.2. No recovery case. Another interesting special case is the one in which there
is no recovery (i.e., γ = 0), corresponding to vaccination for a disease with no cure.
For example, were a vaccine available for HIV/AIDS, this model could roughly fit.

In the DDE model, considering the bifurcation diagram of Figure 5 (in which
the direction of the bifurcation is reversed, since as was pointed out in Section 4.1,
Rvac is a decreasing function of γ), we can observe that for the parameter values
used, there only exists one stable EEP for γ = 0. Numerical simulations with other
parameter values seem to indicate that for γ = 0 the bifurcation is always forward
(as observed in the ODE model of Section 3).
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Figure 5. Bifurcation diagram of the DDE model, as a function
of γ: value of I∗ as a function of γ, other parameters as in Sec-
tion 4.1.

6. Concluding remarks. The qualitative behavior of the model appears to be
robust with respect to the nature of the general waning function P (t). Our re-
sults, based on numerical evidence, show that P (t) for the two cases examined here
preserves the phenomenon of multistability. Backward bifurcation can occur for a
range of waning periods (both for exponential waning and constant waning time),
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for a leaky vaccine (one that does not give total protection), and for a range of
susceptible vaccination rates.

Our model and the parameters chosen are relevant to the transmission of per-
tussis [3]. However, a more detailed model of pertussis should include age structure
and more classes, for example, classes corresponding to individuals with infection
acquired immunity [12]. Some diseases may need other classes to make the model
more realistic; for example, a chronic carrier stage needs to be incorporated in a
model for feline calicivirus [17, 22]. However, the backward bifurcation found here
should be expected to persist in similar models with more classes.

The presence of backward bifurcation has consequences for epidemic control,
since the presence of a hysteresis loop and a separatrix between a stable DFE and
a stable EEP means that the endemic state persists for a larger range of Rvac and
also that the outcome is initial value dependent. To achieve disease control (I → 0
for all initial values), the value of Rvac(φ), which depends on the vaccination policy,
must be lowered to less than Rc(φ). For a given vaccine, the vaccination rate of
susceptibles (φ) can in principle be controlled. This simple model indicates that
it is important that parameter values be accurately estimated before a vaccination
strategy is established for a particular disease.

Another interpretation, similar to that of [8, 9], can be given for our model. Con-
sider a population in which there exist two social groups of individuals susceptible
to a given pathogen. Thus V represents individuals with different susceptibility
to the particular pathogen (due to education, behavioral changes, environmental
conditions, biological characteristics, etc.) Then φ is a rate of changing behav-
ior, σ is a measure of the difference in susceptibility to infection brought about
by this change, and ω is the length of time during which this change of behavior
occurs. If the change of behavior decreases the risk of contagion, as assumed in
[8, 9] then V individuals are less likely (σ < 1) to contract the disease, and the
possibility of backward bifurcation exists. This should be taken into consideration
when designing education and other public health policies.
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