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A multi-species epidemic model with spatial dynamics
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A model is formulated that describes the spatial propagation of a disease that can be transmitted between
multiple species. The spatial component consists, for each species, of a certain number of patches that
make up the vertices of a digraph, the arcs of which represent the movement of the various species
between the patches. In each of the patches and for each species, a susceptible-exposed-infectious-
recovered (SEIR) epidemic model describes the evolution of the disease status of individuals. Also in
each patch, there is transmission of the disease from species to species. An analysis of the system is
given, beginning with results on the mobility component. A formula is derived for the computation of
the basic reproduction numberR0 for s species and n patches, which then determines the global stability
properties of the disease free equilibrium. Simulations for the spread of a disease in one species and two
patches are presented.
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1. Introduction

The spatial and temporal spread of infectious disesases is of considerable practical importance. The
world has observed the efficient spatial spread of infection following the introduction of agents at dis-
crete locations and times; plague in Europe in the 1300s, smallpox in the New World in the 1500s
(Zinsser, 1935), West Nile virus in North America in the 1990s (Petersen & Roehrig, 2001) and SARS
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in Asia in 2003 (World Health Organization, 2003) are but a few examples. Concern over potential bio-
logical terrorism (Henderson, 1999) further highlights the need to understand the dynamics of disease
outbreaks. To the extent that population and geographic heterogeneities play key roles in the infection-
spread process, epidemiology models must include them, in order to capture the necessary character of
the epidemic and endemic states. Population heterogeneities, such as age structure, multiple risk groups
and the existence of vector species are routinely handled in models, see, e.g. Grenfell & Dobson (1995),
Isham & Medley (1996) and Mollison (1995). However, much of classical mathematical epidemi-
ology tends to minimize geographic heterogeneity and related spatial aspects of deterministic epidemic
models.

One notable example of a deterministic disease model that includes spatial heterogeneity is provided
by the work of Baroyan et al., which is applied to the spatial spread of influenza between cities in the
Soviet Union (Baroyan & Rvachev, 1967; Baroyan et al., 1971). In their approach, a large geographic
region (country) is partitioned into smaller sub-regions (cities). Migration and transportation between
these sub-regions are explicitly incorporated. Within a given sub-region, transmission is handled ac-
cording to a discrete deterministic compartmental susceptible-infectious-recovered (SIR) model. The
spread of infection from city to city could be modeled, given appropriate transportation data. Such an
approach is appealing because it allows infection to be modeled on single-patch, as well as multi-patch,
scales, preserving patch-to-patch heterogeneity. A general compartmental model can be formulated and
applied on a patch-by-patch basis, allowing for variations in population and immunological attributes.
If information on the flow of individuals between patches is known, or if reasonable estimates can be
made, then the spread of contagion between patches can be investigated.

Theoretical analysis of such migration models has until recently been confined to limiting cases,
wherein the model reduced to the more familiar reaction–diffusion formulation (Murray, 1993). Models
with a multi-patch formulation have recently been considered by Sattenspiel & Dietz (1995), Arino &
van den Driessche (2003) and Wang & Zhao (2004). The desirability of having analytic, as opposed to
purely numerical, tools to analyze this class of multi-patch models is evident: such tools should allow
for valuable predictions and analysis of the behavior of solutions for the model. For example, it is de-
sirable to be able to determine the linear stability of the disease free equilibrium (DFE) (i.e. compute
the basic reproduction number R0) explicitly in terms of model parameters. Similarly, a detailed theo-
retical analysis can be expected to suggest whether migration between arbitrary patches tends to have a
stabilizing or a destabilizing effect.

We undertake such a theoretical analysis of a general multi-species, multi-patch model with four dis-
ease status compartments (an SEIR model). In Section 2, the model is described, in Section 3 it is
analyzed and a general formula for R0 is derived; a proof of the global stability of the DFE in the case
R0 < 1 is given. In Section 4, we consider the case of a single species on multiple patches, including
numerical simulations of the spread of disease concentrating on the case of two patches.

2. The model

An SEIR epidemic model with spatial dynamics is considered for a population consisting of s species
and occupying n spatial patches. The numbers of susceptible, exposed (latent), infective (infectious) and
recovered individuals of species i in patch p at time t are denoted by Sip, Eip, Iip and Rip, respectively,
with the total number of individuals of species i in patch p denoted by Nip. Note that, unlike the
single-species models introduced by Sattenspiel & Dietz (1995) and further analyzed by Arino & van
den Driessche (2003), we do not keep track of where an individual usually resides, but only where an
individual is at time t . The dynamics for species i = 1, . . . , s in patch p = 1, . . . , n is given by the
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following system of 4sn equations;

dSip

dt
= dip(Nip − Sip) −

s∑
j=1

βi j p Sip
Ijp

Njp
+

n∑
q=1

mipq Siq −
n∑

q=1

miqp Sip, (2.1a)

dEip

dt
=

s∑
j=1

βi j p Sip
Ijp

Njp
− (dip + εi p)Eip +

n∑
q=1

mipq Eiq −
n∑

q=1

miqp Eip, (2.1b)

dIip

dt
= εi p Eip − (dip + γi p)Iip +

n∑
q=1

mipq Iiq −
n∑

q=1

miqp Iip, (2.1c)

dRip

dt
= γi p Iip − dip Rip +

n∑
q=1

mipq Riq −
n∑

q=1

miqp Rip, (2.1d)

where Nip = Sip + Eip + Iip + Rip. Here 1/dip > 0, 1/εi p > 0, 1/γi p > 0 are the average lifetime,
latent period and infectious period for species i in patch p, respectively. All newborns are assumed to be
susceptible with birth term dip Nip, and disease related mortality is neglected. The disease is assumed
to be horizontally transmitted within and between species according to standard incidence (see, e.g.
Hethcote, 2000; McCallum et al., 2001) with βi j p � 0 the rate of disease transfer from species j to
species i in patch p. The rate of travel, for species i , from patch q to patch p, is given by mipq with
mipq � 0 and is assumed to be the same for each type of individual of species i . We set mipp = 0,
but note that the mipp terms cancel in each equation. We use the terms movement, travel, migration and
mobility interchangeably throughout the text. The population of species i in patch p is Nip, and the
total population for species i is

∑n
p=1 Nip = N 0

i , a fixed constant. The initial value problem is given by
(2.1) together with initial conditions Nip > 0 and Sip, Eip, Iip, Rip � 0 at time t = 0. The system (2.1)
is well posed, with all variables remaining non-negative and Nip positive for t � 0.

By adding the equations in (2.1), the mobility equation for the population of species i in patch p is

dNip

dt
=

n∑
q=1

mipq Niq −
n∑

q=1

miqp Nip. (2.2)

With Ni = [Ni1, . . . , Nin]t , this can be written as the linear system

dNi

dt
= Mi Ni , (2.3)

with mobility matrix for species i

Mi =
⎡⎢⎣− ∑n

q=1 miq1 mi12 · · · mi1n
...

. . .

min1 min2 · · · − ∑n
q=1 miqn

⎤⎥⎦ . (2.4)

Note that (−Mi ) has the Z-sign pattern and (since there is no birth and death during travel) each column
sum of Mi is zero, i.e. 1ltn(−Mi ) = 0 for all i , where the 1 × n vector 1ltn = [1, . . . , 1]. Thus, (−Mi ) is
a singular M-matrix (see, e.g. Fiedler, 1986, Theorem 5.11).

The zero/non-zero structure of the mobility matrix Mi specifies the arcs of a directed graph (digraph)
describing how the patches as vertices are connected. For species i , a patch q has direct access to patch
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p (Berman & Plemmons, 1979, p. 39) if mipq > 0 (i.e. qp is an arc in the digraph). Patch q has an
access to patch p if there exists a path in the digraph from q to p. Patch q has an access to patch p for
all p, q if and only if Mi is irreducible.

3. Analysis of the general model

System (2.1) is at an equilibrium if all time derivatives are zero. There is no disease in species i if
Eip = Iip = 0 for p = 1, . . . , n. Similarly there is no disease in patch p if Eip = Iip = 0 for
i = 1, . . . , s. If patch p is at an equilibrium and has no disease, then it is at the DFE. The system is at
the DFE if Eip = Iip = 0 for all i, p. From (2.1d) with Iip = 0 and Ri = (Ri1, . . . , Rin)

t , it follows that
dRi/dt = (Mi − diag(di1, . . . , din))Ri . The matrix Mi − diag(di1, . . . , din) is non-singular, implying
that at the DFE, Ri = 0, and so Ŝi p = N∗

i p, where N∗
i p is a constant. The disease in patch p is at an

endemic equilibrium in species i if Eip + Iip > 0 for some i .
The graph theoretic ideas introduced above are used in the following two results; in particular, to

determine where the endemic equilibrium in one patch propagates by mobility.

THEOREM 3.1 Suppose that system (2.1) is at an equilibrium and that there is no disease in patch p.
Then for a given species i , Ei j = Ii j = 0 for each patch j that has an access to patch p. In particular, if
the matrices Mi are irreducible, then the system is at the DFE.

Proof. Fix the species index at i . For simplicity suppose that p = 1, i.e. that there is no disease in
patch 1, thus Ei1 = Ii1 = 0. Then for p = 1, (2.1c) is

0 = dIi1

dt
=

n∑
r=2

mi1r Iir .

For a given patch r define
Ir

da = {q : mirq > 0},
as the subset of patches with a direct access to patch r , and

Ir
nda = {q �= r : mirq = 0},

as the subset of patches with no direct access to r . Using these subsets of indices for patch 1, it follows
from the non-negativity of Iir and

n∑
r=2

mi1r Iir =
∑

r∈I1
da

mi1r Iir +
∑

r∈I1
nda

mi1r Iir = 0

that Iir = 0 for r ∈ I1
da. Similarly, setting p = 1 in (2.1b) and using I1

da it follows that Eir = 0
for r ∈ I1

da. Thus, all patches r with a direct access to patch 1 have no disease, i.e. are such that
Eir = Iir = 0.

Now consider a patch r in I1
da. Using the same argument as previously, it follows that Eiw = Iiw = 0

for all w ∈ Ir
da. Patches that are in Ir

da \ I1
da have a length 2 access to patch 1. By induction, all patches

belonging to the same strongly connected component of the digraph as patch 1 are at the DFE if patch 1
is at the DFE.
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A sufficient condition for all patches to be disease free (if one patch is disease free) is for Mi to be
irreducible. If Mi is reducible, then all patches belonging to the strongly connected component of patch
1 are at the DFE. �

THEOREM 3.2 Suppose that system (2.1) is at an equilibrium. If the disease in patch p is at an endemic
equilibrium in species i , then the disease is also at an endemic equilibrium in species i in all patches to
which patch p has an access. In particular, if matrix Mi is irreducible, then the disease is at an endemic
equilibrium in species i in all patches.

Proof. Fix the species index i . For simplicity suppose that p = 1, i.e. Ei1 + Ii1 > 0. From (2.1b) and
(2.1c) with q �= 1,

0 = d

dt
(Eiq + Iiq) =

s∑
j=1

βi jq Si j
Iiq

Niq
− diq(Eiq + Iiq) − γiq Iiq

+
n∑

r=1

miqr (Eir + Iir ) −
n∑

r=1

mirq(Eiq + Iiq).

Assume that Eiq + Iiq = 0 (i.e. Eiq = Iiq = 0) and miq1 > 0, i.e. patch 1 has access to patch q. Then
the above equation reduces to

0 =
n∑

r=1

miqr (Eir + Iir ),

and implies that Ei1 + Ii1 = 0, giving a contradiction. Thus, the disease in patch q is at an endemic
equilibrium. The remainder of the proof follows as in the proof of Theorem 3.1. �

We now assume that matrix Mi is irreducible for each species i ; i.e. there exists a path in the digraph
from patch q to patch p for all p, q.

THEOREM 3.3 The mobility equation (2.3) subject to the constraint of constant total population for
species i has a positive equilibrium, which is asymptotically stable.

Proof. Without loss of generality, the species index i can be dropped. Finding the equilibrium amounts
to solving the n + 1 linear equations in n variables

⎡⎣ 1ltn
· · · · · ·

M

⎤⎦
⎡⎢⎢⎢⎣

N1
N2
...

Nn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
N 0

0
...
0

⎤⎥⎥⎥⎦ . (3.1)

All column sums of the last n rows are zero, thus the second equation (e.g.) can be eliminated. Now
perform column operations cr ← cr −c1 for r = 2, . . . , n on the determinant of the resulting coefficient
matrix, reducing it to the n −1 determinant det(M(1)+ T1), where M(1) denotes matrix M with its first
row and column deleted, thus

M(1) =
⎡⎢⎣− ∑n

q=1 mq2 m23 · · · m2n
...

. . .

mn2 mn3 · · · − ∑n
q=1 mqn

⎤⎥⎦ ,
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and T1 = m11ltn−1 = [−m21, . . . , −mn1]t [1, . . . , 1], where m1 is the vector formed from the first
column of M by omitting the first entry.

By Berman & Plemmons (1979, M35, p. 127) since mpq � 0, −M(1) is a non-singular M-matrix
(it has the Z-sign pattern and 1ltn−1(−M(1)) � 0 and is not the zero vector by the assumption that
M is irreducible). Thus, det(−M(1)) > 0 and so det M(1) has sign (−1)n+1. Since T1 has rank
1, it follows from the linearity of the determinant subject to rank 1 perturbations (see, e.g. Rump,
1997, Corollary 4.2), that det(M(1) + T1) = det M(1)(1 + 1ltn−1M(1)−1m1). As −M(1) is an M-
matrix, (−M(1)−1) � 0, thus M(1)−1 � 0. But m1 � 0, thus 1 + 1ltn−1M(1)−1m1 is positive and so
det(M(1) + T1) has the sign of det M(1), namely (−1)n+1.

By Cramer’s Rule,

N1 = det M(1)N 0

det(M(1) + T1)
= N 0

1 + 1ltn−1(M(1))−1m1
> 0.

Similarly, by deleting the (p + 1)-st equation in (3.1),

Np = det M(p)N 0

det(M(p) + Tp)
= N 0

1 + 1ltn−1(M(p))−1mp
> 0,

where Tp = mp1ltn−1 = [−m1p, . . . , −mp−1,p, −mp+1,p, . . . , −mnp]t 1ltn−1 for p = 1, . . . , n. Here mp

is the vector formed from the p-th column of M by omitting the p-th entry. Thus, given a value of N 0,
there is a unique positive solution Np = N∗

p for p = 1, . . . , n.
Since (−M) is an irreducible singular M-matrix, 0 is a simple eigenvalue and all the non-zero

eigenvalues of M have negative real parts. The zero eigenvalue occurs as a consequence of the constant
population constraint. Thus, the population Np in each patch tends to N∗

p . �

From the above result, the DFE for species i in patch p exists with Ŝi p = N∗
i p. Note that N∗

i =
(N∗

i1, . . . , N∗
in)

t is a right null vector of Mi . An example for three species on two patches is given below
in Section 3.1.

The local stability of the DFE of system (2.1) is governed by the basic reproduction number R0,
which depends in general on the demographic, disease and mobility parameters. A formula for the basic
reproduction number R0 for system (2.1) is derived using the next generation matrix (Diekmann &
Heesterbeek, 2000; van den Driessche & Watmough, 2002) and can be used to determine numerically
the value of R0 for a given set of parameter values. This method involves writing the flows of in-
dividuals between the different compartments as two vectors F and V . The former describes the in-
flow of new infected individuals, hence here corresponds to the infection terms for each exposed class.
The vector V then summarizes all other flows occuring in the system. Differentiating with respect to
the state variables, keeping only those parts of DF and DV relative to the infected classes (i.e. Eip

and Iip here), and evaluating at the DFE gives matrices F and V . The value of R0 can be deduced
as R0 = ρ\(FV −1), where ρ is the spectral radius. The basic reproduction number acts as a threshold
for stability of the DFE; if R0 < 1 then the DFE is locally asymptotically stable (all eigenvalues of
F − V have negative real parts), whereas it is unstable if R0 > 1 (van den Driessche & Watmough,
2002, Theorem 2).

To determine the matrices F and V , order the infected variables by type, then by patch, i.e.

E11, E21, . . . , Es1, E12, . . . , Esn, I11, I21, . . . , Is1, I12, . . . , Isn .
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Then the non-negative matrix F has the form

F =
[

0 G
0 0

]
=

⎡⎢⎢⎢⎢⎢⎣
0

n⊕
k=1

Gk

0 0

⎤⎥⎥⎥⎥⎥⎦ ,

and the matrix V is the block matrix

V =
[

A 0
−C B

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 · · · A1n

...
. . .

...

An1 · · · Ann

0

−
n⊕

k=1

Ck

B11 · · · B1n

...
. . .

...

Bn1 · · · Bnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here Gk is an s×s matrix with (i, j) entry equal to βi jk N∗
ik/N∗

jk . Matrix A is the block matrix A = Ajk ,
with each Ajk block an s × s diagonal matrix. The (i, i) entry of Akk is equal to dik + εik + ∑n

l=1 milk ,
whereas for j �= k the (i, i) entry of Ajk is −mi jk . Matrix B is the same as A but with εik replaced by
γik . Finally, Ck is an s × s diagonal matrix with (i, i) entry equal to εik .

Matrices G, A, B and C are sn × sn matrices. Matrices A and B are non-singular M-matrices since
they have the Z-sign pattern and are diagonally dominant by columns (Berman & Plemmons, 1979,
M35, p. 127). Thus, A−1 and B−1 are non-negative.

THEOREM 3.4 For model (2.1) with s species and n patches,

R0 = ρ\(G B−1C A−1)

IfR0 < 1, then the DFE is globally asymptotically stable, ifR0 > 1 then the DFE is unstable.

Proof. Due to the particular structure of F and V , the computation of ρ\(FV −1) is greatly simplified.
Indeed, the inverse V −1 of V keeps its block triangular structure

V −1 =
[

A−1 0

B−1C A−1 B−1

]
,

and

FV −1 =
[

0 G
0 0

] [
A−1 0

B−1C A−1 B−1

]
=

[
G B−1C A−1 G B−1

0 0

]
.

Thus,
R0 = ρ\(G B−1C A−1).
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Since G B−1C A−1 is a non-negative matrix, its spectral radius is attained at the largest real eigenvalue.
If R0 < 1, then the DFE is locally stable, whereas if R0 > 1, then the DFE is unstable (van den
Driessche & Watmough, 2002, Theorem 2).

To establish the global stability of the DFE, consider the non-autonomous system consisting of
(2.1b), (2.1c) and (2.1d) written in the form

dEip

dt
=

s∑
j=1

βi j p(Nip − Eip − Iip − Rip)
Ijp

Njp

− (dip + εi p)Eip +
n∑

q=1

mipq Eiq −
n∑

q=1

miqp Eip, (3.2)

in which Sip has been replaced by Nip − Eip − Iip − Rip, and Nip is a solution of (2.2). Write this
system as

x ′ = f (t, x), (3.3)

where x is the 3sn-dimensional vector consisting of the Eip, Iip and Rip. The DFE of (2.1) corres-
ponds to the equilibrium x = 0 in (3.3). System (2.2), i.e. (2.3) and (2.4), can be solved for Nip(t)
independently of the epidemic variables, and Theorem 3.3 implies that the time dependent functions
Nip(t) → N∗

i p as t → ∞. Substituting this large time limit value N∗
i p for Nip in (3.2) gives

dEip

dt
=

s∑
j=1

βi j p(N∗
i p − Eip − Iip − Rip)

Ijp

N∗
j p

− (dip + εi p)Eip +
n∑

q=1

mipq Eiq −
n∑

q=1

miqp Eip. (3.4)

Therefore, system (3.3) is asymptotically autonomous, with limit equation

x ′ = g(x). (3.5)

To show that 0 is a globally asymptotically stable equilibrium for the limit system (3.5), consider
the linear system

x ′ = Lx, (3.6)

where x is the 3sn-dimensional vector consisting of the Eip, Iip and Rip. In L , we replace Sip/Njp with
N∗

i p/N∗
j p. Equations (2.1c) and (2.1d) are not affected by this transformation, whereas (2.1b) takes the

form
dEip

dt
=

s∑
j=1

βi j p
N∗

i p

N∗
j p

Ijp − (dip + εi p)Eip +
n∑

q=1

mipq Eiq −
n∑

q=1

miqp Eip. (3.7)

Comparing (3.4) and (3.7), we note that g(x) � Lx for all x ∈ R
3sn+ . In system (3.6), the equations

for Eip and Iip do not involve Rip. Let x̃ be the part of the vector x corresponding to the variables Eip

and Iip, and L̃ be the corresponding sub-matrix of L . The method of van den Driessche & Watmough
(2002) as used to prove local stability can also be applied to study the stability of the x̃ = 0 equilibrium
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of the sub-system x̃ ′ = L̃ x̃ , with L̃ = F − V . Therefore, if R0 < 1, then the equilibrium x̃ = 0 of the
sub-system x̃ ′ = L̃ x̃ is stable. When x̃ = 0, (2.1d) takes the form

dRi

dt
= (Mi − Di )Ri ,

with Ri = (Ri1, . . . , Rin)
t and Di is the diagonal matrix with p-th diagonal entry equal to dip. It was

shown in the proof of Theorem 3.3 that (−Mi ) is a singular M-matrix. Using the result (Berman &
Plemmons, 1979, A3, p. 149), it follows that −Mi + Di is a non-singular M-matrix for each Di . Thus,
the equilibrium Ri = 0 of this linear system in Ri is stable. As a consequence, the equilibrium x = 0 of
(3.6) is stable when R0 < 1. Using a standard comparison theorem (see, e.g. Lakshmikantham et al.,
1989, Theorem 1.5.4), it follows that 0 is a globally asymptotically stable equilibrium of (3.5).

For R0 < 1, the linear system (3.7) and (2.1c) has a unique equilibrium (the DFE) since its co-
efficient matrix F − V is non-singular. The proof of global stability is completed using results on
asymptotically autonomous equations; see, e.g. Thieme (1992, Theorem 4.1) and Castillo-Chavez &
Thieme (1995). �

3.1 Example of three species on two patches

Consider a special case of three species on two patches, which might model, e.g. the spread of bubonic
plague between an urban area (patch 1) and the surrounding suburbs (patch 2), the species being fleas,
rodents and humans. Likewise, the dynamics of many vector-borne diseases could be modeled this way.

For each species i = 1, 2, 3, the null vector of the mobility matrix Mi under the constraint of total
population N 0

i is

(N∗
i1, N∗

i2) =
(

mi12

mi12 + mi21
N 0

i ,
mi21

mi12 + mi21
N 0

i

)
.

The matrices G, A, B and C are as follows.

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β111 β121
Ŝ11
N∗

21
β131

Ŝ11
N∗

31

β211
Ŝ21
N∗

11
β221 β231

Ŝ21
N∗

31

β311
Ŝ31
N∗

11
β321

Ŝ31
N∗

21
β331

0

0

β112 β122
Ŝ12
N∗

22
β132

Ŝ12
N∗

32

β212
Ŝ22
N∗

12
β222 β232

Ŝ22
N∗

32

β312
Ŝ32
N∗

12
β322

Ŝ32
N∗

22
β332

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let

M̃ =

⎡⎢⎢⎢⎢⎢⎢⎣

−m121 0 0 m112 0 0
0 −m221 0 0 m212 0
0 0 −m321 0 0 m312

m121 0 0 −m112 0 0
0 m221 0 0 −m212 0
0 0 m321 0 0 −m312

⎤⎥⎥⎥⎥⎥⎥⎦
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Then

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d11 + ε11 0 0
0 d21 + ε21 0

0 0 d31 + ε31

0

0

d12 + ε12 0 0
0 d22 + ε22 0

0 0 d32 + ε32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− M̃,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d11 + γ11 0 0
0 d21 + γ21 0

0 0 d31 + γ31

0

0

d12 + γ12 0 0
0 d22 + γ22 0

0 0 d32 + γ32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− M̃

and C = diag\(ε11, ε21, ε31, ε12, ε22, ε32).
To obtain R0 for a given set of parameter values, we compute the spectral radius of the 6×6 matrix

G B−1C A−1 (see Theorem 3.4).

4. Case of one species

System (2.1), specialized to one species on n patches could model, e.g. the spread of pneumonic plague,
measles or influenza between distinct cities or blocks within a single city. For convenience, drop the
species index, thus βp is the disease transmission rate in patch p.

THEOREM 4.1 For model (2.1), in the case of one species on n patches,

R0 = ρ\(diag\(βp)B−1diag\(εp)A−1).

Furthermore, if R0 < 1, then the DFE is globally asymptotically stable, if R0 > 1, then the DFE is
unstable.

Proof. In the notation of Section 3, G = diag\(βp), M is given by (2.4) with the species index i dropped,
A = diag(dp + εp) − M , B = diag(dp + γp) − M and C = diag\(εp) where the matrices are n × n.
Thus, the results of Theorem 3.4 apply, with

R0 = ρ\(diag\(βp)B−1diag\(εp)A−1). �
In the special case of isotropic mobility, i.e. mpq = m > 0 for all p, q �= p, matrix M = −nmIn +

m Jn , where In is the n × n identity matrix and Jn is the n × n matrix of all ones. If, in addition,
all parameters are equal in each patch, then the model behavior reduces to that of a one-species SEIR
epidemic model with no spatial dynamics.

THEOREM 4.2 Consider the case of model (2.1) with one species, isotropic mobility and equal par-
ameters in each patch. Then R0 = βε

(d+ε\)(d+γ \ ). For R0 < 1, the DFE is globally asymptotically
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stable. For R0 > 1, there is a unique endemic equilibrium (S∗
p, E∗

p, I ∗
p , R∗

p) given by S∗
p = N0

nR0
, I ∗

p =
εd N0

n(d+ε\)(d+γ \ )(1 − 1
R0

), E∗
p = d+γ

ε I ∗
p and R∗

p = γ
d I ∗

p for p = 1, . . . , n.

Proof. Since parameters are equal in each patch, let βp = β, εp = ε, γp = γ and dp = d for
p = 1, . . . , n. For isotropic mobility the matrices in the proof of Theorem 4.1 are A = (d +ε+nm)In −
m Jn , B = (d + γ + nm)In − m Jn and C = ε In . Since these matrices commute and the smallest
eigenvalues of A and B are (d + ε\)and (d + γ \ ), respectively, Theorem 4.1 givesR0 = βε

(d+ε\)(d+γ \ )and
global asymptotic stability when R0 < 1. For R0 > 1, system (2.1) can be solved to give the unique
endemic equilibrium as stated so that

∑n
p=1 Np = N 0. �

Numerical simulations in the special case of Theorem 4.2 indicate that, if R0 > 1, then solutions
tend to this unique endemic equilibrium. Numerical simulations for the general case of one species and
n patches with R0 as given by Theorem 4.1, indicate that for R0 > 1 this model also tends to a unique
endemic equilibrium with disease present in each patch (recall that M is assumed to be irreducible).

4.1 Two patches case

In this case, the null vector of the mobility matrix M is

(N∗
1 , N∗

2 ) =
(

m12

m12 + m21
N 0,

m21

m12 + m21
N 0

)
from Theorem 3.3. The basic reproduction number R0 can then be obtained by Theorem 4.1 as the
largest root of a quadratic equation.

The influence of small migration on the reproduction number can be found by neglecting terms of
second order in mpq . Provided parameter values are not all equal in the two patches, then small mobility

can help to stabilize the DFE. LetRp
0 = βpεp

(dp+εp)(dp+γp) be the basic reproduction number in patch p.
Consider the case of model (2.1) with one species, two patches and small rates of travel, i.e.

m12, m21 
 1, with not all parameters equal in the two patches.
ThenR0 is approximated by the spectral radius of diag(h1, h2)/(det A det B), where

hr = βrεr

2∏
p=1
p �=r

⎧⎨⎩
⎛⎝dp + εp +

2∑
q=1

mqp

⎞⎠ ⎛⎝dp + γp +
2∑

q=1

mqp

⎞⎠
⎫⎬⎭ .

But (det A det B) is approximately equal to

2∏
p=1

⎧⎨⎩
⎛⎝dp + εp +

2∑
q=1

mqp

⎞⎠ ⎛⎝dp + γp +
2∑

q=1

mqp

⎞⎠
⎫⎬⎭ .

Neglecting terms in m2
pq , this givesR0 approximately equal to

max
p=1,2

{
βpεp

(dp + εp + ∑2
q=1 mqp)(dp + γp + ∑n

q=1 mqp)

}

= max
p=1,2

{
Rp

0

(
1 −

∑2
q=1 mqp

dp + εp

)(
1 −

∑2
q=1 mqp

dp + γp

)}
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FIG. 1. Effect of small migration on a two-patch, one-species system. The initial population is of 20,000 individuals per patch,
including 50 infectives. Parameters as in the text. Displayed are the infectious fractions in each patch, I1/N1 and I2/N2, as
functions of time. (a) No migration; (b) very small migration (m12 = m21 = 0.001) and (c) small migration (m12 = m21 = 0.05).

= max
p=1,2

⎧⎨⎩Rp
0

⎛⎝1 −
2∑

q=1

mqp
2dp + εp + γp

(dp + εp)(dp + γp)

⎞⎠
⎫⎬⎭

< max
p=1,2

Rp
0

by the irreducibility assumption.
To illustrate the above results, we have carried out numerical simulations for a single species on two

spatial patches. We have chosen parameter values compatible with influenza, and such thatR1
0 is slightly

larger than 1 and R2
0 is slightly less than 1. Specifically, 1/γ1 = 1/γ2 = 2 days, 1/d1 = 1/d2 = 77
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years, 1/ε1 = 1/ε2 = 4 days. Using β1 = 0.5076, β2 = 0.4761 gives R1
0 = 1.015 and R2

0 ≈ 0.952.
The initial population in each patch is 20,000, with 19,950 susceptible and 50 infectious individuals.
When there is no movement between patches, an endemic equilibrium is reached in patch 1, while in
patch 2 the disease dies out (Fig. 1(a)). If mobility is introduced, but is sufficiently small, as in Fig. 1(b),
where m12 = m21 = 0.001, R0 is greater than 1 (R0 ≈ 1.0095 from Theorem 4.1) and the system
approaches an endemic equilibrium in both patches. As mobility is increased, R0 becomes less than 1
(R0 ≈ 0.985 from Theorem 4.1) and a disease free state is approached in both patches. This is illustrated
in Fig. 1(c), in which m12 = m21 = 0.05.
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