
Three different outcomes to the same
problem in population dynamics

Consider a population of rabbits and suppose that the
rate at which new rabbits are born depends on the current
number of rabbits. Also, suppose that rabbits eat only
carrots, for which they compete with each other: if there
are too many rabbits, some rabbits starve to death; this is
known as intraspecific competition, because it takes place
within a species (interspecific competition occurs when
rabbits compete for carrots with, say, the Green Giant).

Let t be a real number representing days and N(t) be
the number of rabbits on day t (t can take any positive
value). The logistic equation,

N ′(t) = rN(t)
(

1− N(t)
K

)
,

describes the evolution of the rabbit population. Remark
that it involves a derivative, N ′(t); it is called an ordinary
differential equation (ODE), and the unknown, N(t), is a
function rather than a number.

Solving ODEs requires advanced mathematics, but the
logistic equation is not too difficult (although well beyond
the scope of this presentation). The constant r is the
intrinsic growth rate, that is, how many new rabbits would
be born every day if there were an unlimited supply of
carrots, and K is the carrying capacity of the environment,
the number of rabbits that can survive with the limited
number of carrots that is effectively there.

In the following figure, several solutions to the ODE
logistic are represented, corresponding to different initial
numbers of rabbits; the horizontal axis shows time and
the vertical axis shows the number of rabbits, so following
a curve from left to right indicates the evolution of the
population through time. All the solutions tend to the
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same value, which turns out to be K, the carrying capacity
of the environment.

Now suppose that it takes τ days between the instant
rabbits compete for a carrot and the outcome of this com-
petition, that is, the death of a rabbit. In this case, we
use a delay differential equation (DDE),

N ′(t) = rN(t)
(

1− N(t− τ)
K

)
.

The constant τ is called the time delay. DDEs are much
more complicated than ODEs, and have been studied only
since the 1950s. In the next figure, a solution to the DDE
logistic is represented. The big difference with the ODE
logistic is that the population of rabbits oscillates.
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The last version of the logistic equation uses discrete
time, where time is an integer quantity instead of varying
continuously as in the previous two equations. The solu-
tion is a sequence where the number of rabbits on day t+1
is given as a function of the number of rabbits on day t by
the following equation,

N(t + 1) = rN(t)
(

1− N(t)
K

)
.

Because the solution is not continuous, this is also more
difficult than the ODE logistic. The next figure shows a
solution to this equation. Such a solution is chaotic: it os-

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

Time (days)

N
um

be
r 

of
 r

ab
bi

ts

cillates, but in a very irregular way, and two solutions that
start very close to each other will be very different after a
small time. The discrete logistic equation was among the
first to be discovered that show this type of behavior.

In conclusion, three different modeling paradigms pro-
duce three very different types of behaviors, even though
the phenomenon being described is the same. This is a sit-
uation that mathematical modelers often encounter, and
good modeling requires an understanding of both the phe-
nomenon being modeled, and of the tools used.


