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Disease Spread in Metapopulations
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Abstract. Some continuous time, discrete space, metapopulation mod-els that have been formulated for disease spread are presented. Motiva-tion for such a formulation with travel between discrete patches is pre-sented. A system of 4p ordinary di�erential equations describes diseasespread in an environment divided into p patches. The basic reproduc-tion number R0 is calculated, with the disease dying out in each patchif R0 < 1. If travel is assumed to be independent of disease status, thennumerical results are cited that indicate that for R0 > 1 solutions tendto an endemic equilibrium with the disease present in each patch. Thesystem is extended to include cross infection between several species. Asecond extension involves keeping track of both the current patch andthe patch in which an individual usually resides. Travel can changedisease spread in a complicated way; it may help the disease to per-sist or may aid disease extinction. Complexity that can be built intometapopulation models is illustrated by three case-study examples fromthe literature.
1 Motivation for Spatial Epidemic ModelsClassical deterministic epidemic models implicitly assume that space is homo-geneous, and so do not include spatial variation. There are, however, many reasonswhy epidemic models should include spatial variation. Firstly, initial conditions ofdisease are often heterogeneous, with disease spreading geographically with time.For example, plague (black death) spread east to west and south to north along thetrade routes of Europe between 1347 and 1350, and fox rabies spread west from theRussian-Polish border in 1940 to reach France by 1968. More recently, West Nilevirus arrived in New York in 1999 and spread to the west coast of North Ameri-can by 2004. Secondly, the environment is heterogeneous both in a geographicalsense and in a human sense with birth rates, death rates and health care facilities
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2 Julien Arino and P. van den Driessche
varying with location. Thirdly, di�erent species have di�erent travel rates, a factorthat is especially important for diseases involving many species (for example, thefoot-and-mouth disease outbreak in the UK in 2001) and for vector transmitteddiseases. For bubonic plague, the vectors, which are 
eas, travel quickly over shortdistances; whereas the reservoir mammals, which are rodents, travel more slowlybut over longer distances. Mosquitoes and birds, the vectors and reservoirs for WestNile virus, respectively, have di�erent 
ight patterns that also depend on season,topography, and geographic conditions. In the case of rabies, foxes have di�erenttravel patterns when infective. Fourthly, for human diseases, social groupings andmixing patterns vary with geography and age. This can be illustrated by comparinghumans in a hospital setting with those in isolated communities in Canada's Northand with children in schools. Currently most humans live in cities and travel alongde�ned routes. These in
uence the spatial spread of disease, for example, HIVspread along highways in the USA during the latter part of the twentieth century,and SARS in 2003 was spread by air travellers.Continuous spatial models with continuous time yield partial di�erential equa-tions of reaction-di�usion type. For example, such models have been formulatedand analyzed for rabies by Murray and coauthors, see [21], and for West Nile virusin [18]. Discrete spatial models with continuous time yield systems of ordinarydi�erential equations, which are metapopulation models involving movement of in-dividuals between discrete spatial patches. This movement is captured by a digraph(or a multi-digraph) with the patches as vertices. Such compartmental models havebeen discussed for in
uenza spread due to air travel between cities by Hyman andLaForce [15] using a model with structure similar to that developed by Rvachevand Longini [23]. Such models have also been formulated for measles and in
uenzaby Sattenspiel and coauthors [25, 26], further analyzed by Arino and coauthors[2, 3, 4, 5], and Wang and coauthors [16, 22, 30, 31, 32]. Here we review some ofthese models and survey other metapopulation models in the literature. We focusin particular on the basic reproduction number, R0, which is the average number ofsecondary cases produced by a single infected introduced into a totally susceptiblepopulation. This parameter R0 is a key concept in the study of infectious diseasesand can aid in guiding measures to control disease. If R0 < 1, then the diseaseshould die out if introduced at a low level, whereas if R0 > 1, then the disease isable to invade the population. To calculate R0, the next generation matrix methodis used, details are given in [10, 29].We remark that other types of spatial models have also been formulated in theliterature; see, for example, [19, Part 2]. Included there are papers by Cli� [8] ongeographic mapping methods to trace spatial disease spread, Metz and van denBosch [20] on velocities of epidemic spread and Durrett [11] on disease spread on alattice. Epidemics among a population partitioned into households are consideredby Ball and Lyne [6], disease dynamics in discrete-time patchy environments areformulated by Castillo-Chavez and Yakubu [9], the rate of spread of endemic infec-tions using integrodi�erence equations is investigated by Allen and Ernest [1], andurban social networks using a bipartite graph are explored by Eubank et al [12].Due in part to increasing capacities of computers and to advances in mathemat-ical analysis, there has been a recent surge of interest in metapopulation models.We hope that this review, although personal and not exhaustive, will encouragereaders to delve further into the literature and to formulate new metapopulationmodels for disease spread.



Disease Spread in Metapopulations 3
2 Metapopulation Model on p PatchesWe begin with the formulation of a general metapopulation SEIRS epidemicmodel. The structure of our model is based on that of Arino et al. [4], in whicha multi-species epidemic model is constructed with the assumption that travelrates are independent of disease status. However, our model here is for diseasetransmission in one species, but allows for travel rates to depend on disease sta-tus. To formulate the deterministic model, assume that the environment underconsideration is divided into p patches, which may be cities, geographic regions orcommunities. Within each patch conditions are assumed to be homogeneous. Thepopulation in patch i, is divided into compartments of susceptible, exposed (latent),infective and recovered individuals with the number in each compartment denotedby Si(t), Ei(t), Ii(t) and Ri(t), respectively, for i = 1; : : : ; p. The total numberof individuals in patch i is Ni(t) = Si(t) +Ei(t) + Ii(t) +Ri(t): The rates of travelof individuals between patches are assumed to depend on disease status, and indi-viduals do not change disease status during travel. Let mSij , mEij , mIij , mRij denotethe rate of travel from patch j to patch i of susceptible, exposed, infective, recov-ered individuals, respectively, where mSii = mEii = mIii = mRii = 0. This structurede�nes a multi-digraph with patches as vertices and arcs given by the travel rates,which can be represented by the nonnegative matrices MS = �mSij�, ME = �mEij�,M I = �mIij� and MR = �mRij�. It is assumed that these matrices are irreducible.Birth (or input) in patch i is assumed to be into the susceptible class at a rateAi (Ni) > 0 individuals per unit time, and natural death is assumed to be inde-pendent of disease status with rate constant di > 0. The disease is assumed to betransmitted by horizontal incidence �i (Ni)SiIi, thus an average individual makes�i (Ni)Ni contacts per unit time. It is reasonable to take �i (Ni) as a nonnegativenonincreasing function of Ni. Once infected, a susceptible individual harbors anagent of disease and moves to the exposed compartment, then into the infectivecompartment as the individual becomes able to transmit the disease. On recov-ering from the disease, an individual moves to the recovered compartment, andthen back to the susceptible compartment as disease immunity fades. The periodin the exposed, infective and recovered compartment is taken to be exponentiallydistributed with rate constant �i, 
i, �i, respectively. Thus 1=�i, 1=
i, 1=�i is theaverage period (without accounting for death) of latency, infection, immunity, re-spectively. For a disease that causes mortality, the death rate constant for infectivesis denoted by "i. The epidemic parameters are assumed to be nonnegative, withlimiting cases giving simpler models. For example, if a disease confers permanentimmunity, then �i = 0 and an SEIR model results. If a disease has a very shortlatent period that can be ignored, then �i !1 (an SIRS model); and if in additionthe period of immunity is so short that it can be ignored, then �i !1 and an SISmodel results. Such a model is appropriate for gonorrhea.
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The above assumptions lead to a system of 4p ordinary di�erential equations(ODEs) describing the disease dynamics. For i = 1; : : : ; p these equations are
dSidt = Ai (Ni)� �i (Ni)SiIi � diSi + �iRi + pX

j=1mSijSj � pX
j=1mSjiSi (2.1)

dEidt = �i (Ni)SiIi � (�i + di)Ei + pX
j=1mEijEj � pX

j=1mEjiEi (2.2)
dIidt = �iEi � ("i + 
i + di) Ii + pX

j=1mIijIj � pX
j=1mIjiIi (2.3)

dRidt = 
iIi � (di + �i)Ri + pX
j=1mRijRj � pX

j=1mRjiRi (2.4)
with initial conditions Si(0) > 0; Ei(0); Ii(0); Ri(0) � 0; pX

i=1 Ei(0) + Ii(0) > 0:
The population of patch i, namely Ni, evolves according to the sum of equations(2.1)-(2.4). Solutions of (2.1)-(2.4) remain nonnegative with Ni positive for allt � 0. The total population in all patches N = N1 +N2 + : : :+Np satis�es

dNdt = pX
i=1(Ai (Ni)� "iIi � diNi) (2.5)

The metapopulation model is at equilibrium if the time derivatives in (2.1)-(2.4) are zero. Patch i is at a disease free equilibrium (DFE) if Ei = Ii = 0, andthe p-patch model is at a DFE if Ei = Ii = 0 for all i = 1; : : : ; p. Thus at a DFE,for all i = 1; : : : ; p; Si = Ni and satis�es
Ai (Ni)� diNi + pX

j=1mSijNj � pX
j=1mSjiNi = 0 (2.6)

Assume that (2.6) has a solution that gives the DFE S�i = N�i , which is uniqueThis is certainly true if Ai (Ni) = diNi (i.e., birth rate equal to the death rate) and"i = 0 (i.e., no disease related death) giving a constant total population from (2.5).Arino et al [4] make these assumptions for a multi-species epidemic model. It isalso true if Ai (Ni) = Ai as assumed in [24].Linear stability of the disease free equilibrium can be investigated by usingthe next generation matrix [10, 29]. Using the notation of [29], and ordering theinfected variables as E1; : : : ; Ep; I1; : : : ; Ip the matrix of new infections F and thematrix of transfer between compartments V are given in partitioned form by
F = �0 F120 0

� and V = � V11 0�V21 V22
� (2.7)

Here F12 = diag (�i (N�i )N�i ), V11 = �ME + diag
0
@�i + di + pX

j=1mEji
1
A, V21 =

diag (�i), V22 = �M I + diag
0
@"i + 
i + di + pX

j=1mIji
1
A.
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Matrices V11 and V22 are p � p irreducible M -matrices [7] and thus have positiveinverses. The next generation matrix

FV �1 = �F12V �122 V21V �111 F12V �1220 0
�

has spectral radius, denoted by �, given by � �FV �1� = � �F12V �122 V21V �111 �. Asshown in [29], the Jacobian matrix of the infected compartments at the DFE,which is given by F � V , has all eigenvalues with negative real parts if and onlyif � �FV �1� < 1. The number � �FV �1� is the basic reproduction number R0 forthe disease transmission model, thusR0 = � �F12V �122 V21V �111 � ; (2.8)and the DFE is linearly stable if R0 < 1, but unstable if R0 > 1. If Ai (Ni) = Aiand �i (Ni) = �i=Ni (standard incidence), then a comparison theorem argumentcan be used to show that if R0 < 1, then the DFE is globally asymptoticallystable [24]. This extends the results for 2 patches given by [30, Theorem 2.1] for aconstant population. Wang and Zhao [31] assume mass action incidence and showthat population travel in an SIS model can either intensify or reduce the spreadof disease in a metapopulation. Moreover, for this SIS model, the disease persistsfor R0 > 1, and if susceptible and infective individuals have the same travel rates,then there exists a unique, globally attracting endemic equilibrium [16, Theorem3.1].
3 Travel Rates Independent of Disease StatusFor mild diseases it may be reasonable to simplify the model of the previoussection by assuming that individuals do not die from disease ("i = 0) and travelrates are independent of disease status, thus MS =ME =M I =MR =M = [mij ](irreducible). Travel rates are thus speci�ed on a digraph. These assumptions aremade in the multi-species model formulated by Arino et al. [4], in which it is alsoassumed that Ai(Ni) = diNi and �i(Ni) = �i=Ni (i.e., standard incidence). Withthese assumptions the one species given by model equations (2.1)-(2.4) becomes fori = 1; : : : ; p

dSidt = di (Ni � Si)� �iSiIiNi + �iRi + pX
j=1mijSj � pX

j=1mjiSi (3.1)
dEidt = �iSiIiNi � (�i + di)Ei + pX

j=1mijEj � pX
j=1mjiEi (3.2)

dIidt = �iEi � (
i + di) Ii + pX
j=1mijIj � pX

j=1mjiIi (3.3)
dRidt = 
iIi � (di + �i)Ri + pX

j=1mijRj � pX
j=1mjiRi (3.4)

Summing (3.1)-(3.4) gives
dNidt = pX

i=1mijNj � pX
j=1mjiNi (3.5)
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Thus the Ni equation uncouples from the epidemic variables. This linear system
of equations has coe�cient matrix M � diag

0
@ pX

j=1mji
1
A which is the negative of

a singular M-matrix (since each column sum is zero). From (3.5), see also (2.5),the total population N is constant. Subject to this constraint, it can be shownthat (3.5) has a unique positive equilibrium Ni = N�i that is asymptotically stable[4, Theorem 3.3]. Thus the disease free equilibrium of (3.1)-(3.4) is given by(Si;Ei;Ii;Ri) = (N�i ; 0; 0; 0) and is unique.
The basic reproduction number R0 is calculated as in Section 2 with F12 =diag (�i) and ME = M I = M: The linear stability result for R0 < 1 can bestrengthened to a global result as follows. Since Si � Ni; equation (3.2) gives theinequality

dEidt � �iIi � (�i + di)Ei + pX
j=1mijEj � pX

j=1mjiEi (3.6)
For comparison, de�ne a linear system given by (3.6) with equality, namely

dEidt = �iIi � (�i + di)Ei + pX
j=1mijEj � pX

j=1mjEi
and by equation (3.3). This system has coe�cient matrix F � V , and so by theargument in Section 2, satis�es limt!1Ei = 0 and limt!1 Ii = 0 for R0 = �(FV �1) < 1:Using a comparison theorem [17, Theorem 1.5.4], [28, Theorem B.1] and noting(3.6), it follows that these limits also hold for the nonlinear system (3.2) and (3.3).That limt!1Ri = 0 and limt!1Si = N�i follow from (3.4) and (3.1). Thus for R0 < 1,the disease free equilibrium is globally asymptotically stable and the disease diesout.The existence and stability of endemic equilibria if R0 > 1 are open analyticalquestions. As in many high dimensional epidemic models, these are hard problems.It is sometimes possible to prove that the disease is globally uniformly persistentby appealing to the techniques of persistence theory; see [33].Arino et al [4, Section 4] state that numerical simulations of (3.1)-(3.4) indicatethat solutions of their metapopulation model specialized to one species on p patcheswith R0 > 1 tend to a unique endemic equilibrium with disease present in eachpatch. They display [4, Figure 1] solutions in the case of p = 2 patches withparameter values compatible with in
uenza that give R(1)0 = 1:015 and R(2)0 =0:952: With no travel between patches, disease is endemic in patch 1, but diesout in patch 2. With small travel rates m12 = m21 = 0:001, equation (2.8)gives R0 � 1:0095 > 1; and the system approaches an epidemic equilibrium inboth patches. However if travel rates are increased to m12 = m21 = 0:05; thenR0 � 0:985 < 1 and the system approaches the DFE in both patches. Thussmall travel rates help the disease to persist, whereas slightly higher travel ratesstabilize the DFE. For a single species, the e�ect of quarantine where the patchesare arranged in a ring is numerically investigated in [5].
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4 Multi-Species ModelSpatial spread is all the more important for diseases that involve several species,for example, bubonic plague and West Nile virus. In [4] an SEIR epidemic model fora population consisting of s species and occupying p spatial patches is considered.This is extended in [5] to allow for temporary immunity, giving an SEIRS model.Here, we also allow rates of travel between patches to depend on disease status.With assumptions as in Section 2 and using standard incidence, the dynamics forspecies j = 1; : : : ; s in patch i = 1; : : : ; p is given by the following system of 4spequations

dSjidt = Aji(Nji)� sX
k=1�jkiSji

IkiNki � djiSji + �jiRji +
pX

q=1mSjiqSjq � pX
q=1mSjqiSji (4.1)

dEjidt = sX
k=1�jkiSji

IkiNki � (�ji + dji)Eji + pX
q=1mEjiqEjq � pX

q=1mEjqiEji (4.2)
dIjidt = �jiEji � ("ji + 
ji + dji)Iji + pX

q=1mIjiqIjq � pX
q=1mIjqiIji (4.3)

dRjidt = 
jiIji � (dji + �ji)Rji + pX
q=1mRjiqRjq � pX

q=1mRjqiRji (4.4)

where the total population of species j in patch i is denoted by Nji = Sji + Eji +Iji + Rji: The parameters are de�ned similarly to those in Section 2, but nowthe �rst subscript denotes the species, for example, 1=
ji is the average period ofinfection for species j in patch i and �jki is the rate of disease transfer from speciesk to species j in patch i. Each species has its own travel matrices, for exampleM Ij = [mIjiq] where mIjiq denotes the rate of travel of an infective individual ofspecies j from patch q to patch i. With nonnegative initial conditions havingNji(0) > 0 the solutions remain nonnegative with Nji(t) > 0 for all t � 0.For a simpli�ed version of (4.1)-(4.4) in which the birth (input) term Aji(Nji) =djiNji, recovered individuals have permanent immunity (�ji = 0) and travel isindependent of disease status, there is a unique DFE; see [4, Theorem 3.3]. Assumethis is true for (4.1)-(4.4) with S�ji = N�ji at the DFE. Then the basic reproductionnumber, R0, can be calculated by the method used in Section 2. This is illustratedfor the case of two species on three patches. The infected variables are ordered asE11; E21; E12; E22; E13; E23; I11; I21; I12; I22; I13; I23. The nonnegative matrix F hasthe form given by (2.7) with F12 = G1 �G2 �G3 where for r = 1; 2; 3;

Gr =
" �11r �12r N�

1rN�
2r�21r N�

2rN�
1r

�22r
#
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Matrices V11, V21 and V22 in V given by (2.7) are now block matrices with eachblock being a 2� 2 diagonal matrix. Writing

V11 =
2
4 A11 A12 A13A21 A22 A23A31 A32 A33

3
5

the (i; i) entry of Akk is �ik + dik + 3Pq=1mEiqk, and the (i; i) entry of Ajk for j 6= k
is �mEijk: Similarly writing V22 as the block matrix Bjk , the (i; i) entry of Bkk is
"ik+ 
ik+dik+ 3Pq=1mIiqk and for j 6= k, the (i; i) entry of Bjk is �mIijk: The matrix
V21 = C1 � C2 � C3 with Cr having (i; i) entry equal to �ir:

In terms of the above matrices, the basic reproduction number R0 is given by(2.8). The block structure enables R0 to be easily calculated for a given set ofdisease parameters. Note that R0 depends explicitly on the travel rates of exposedand infective individuals, and implicitly (through N�jr) on the travel rates of sus-ceptible individuals. In the case in which travel is independent of disease statusand there is no disease death, a comparison theorem argument can be used as inSection 3 to show that if R0 < 1, then the DFE is globally asymptotically stable;whereas if R0 > 1, then the DFE is unstable. A ring of patches with one-way travelis used to model low pathogenecity avian in
uenza in birds and humans [5].
5 Model Including Residency PatchSattenspiel and Dietz [26] introduced a single species, multi-patch model thatdescribes the travel of individuals, and keeps track of the patch where an individualis born and usually resides as well as the patch where an individual is at a giventime. This model has subsequently been studied numerically in various contexts,including the e�ects of quarantining [27]. We studied this model [2, 3] giving someanalytical results and calculating the basic reproduction number. In this model, ifa resident from patch i travels to patch j then they are assumed to return home topatch i before traveling to another patch k, i.e., such an individual does not traveldirectly from patch j to patch k (for j, k 6= i). We now extend the SIR modelin [26] by removing this restriction and allowing for such an individual to travelbetween two patches that are not their residency patch. The assumption of [26]may be appropriate for travel between isolated communities; see [25] and referencestherein for situations linked to the spread of in
uenza in the Canadian subarctic.However, our formulation allows for a wider range of travel patterns.To formulate our model, let Nij(t) be the number of residents of patch i whoare present in patch j at time t, with Sij(t); Iij(t) and Rij(t) being the numberthat are susceptible, infective and recovered, respectively. Matrix MSi = [mSijk]gives the travel rates of susceptible individuals resident in patch i from patch kto patch j. Similarly M Ii = [mIijk] and MRi = [mRijk] give these rates for infectiveand recovered individuals. Taking standard incidence as in previous models, �ikjdenotes the proportion of adequate contacts in patch j between a susceptible frompatch i and an infective from patch k that results in disease transmission and�j denotes the average number of such contacts in patch j. For all patches, therecovery rate of infectives is denoted by 
, the loss of immunity rate by �, birth is



Disease Spread in Metapopulations 9
assumed to occur in the residency patch at rate d and natural death to occur (inall disease states) at the same rate d. For p patches, the model takes the followingform for i; j = 1; : : : ; p.

dSiidt = d pX
k=1Nik � pX

k=1�i�ikiSii
IkiNi�dSii + �Rji + pX

k=1mSiikSik � pX
k=1mSikiSii

dIiidt = pX
k=1�i�ikiSii

IkiNi � (d+ 
)Iii + pX
k=1mIiikIik � pX

k=1mIikiIii
dRiidt = 
Iii � (d+ �)Rii + pX

k=1mRiikRik � pX
k=1mRikiRii

and for i 6= jdSijdt = � pX
k=1�j�ikjSij

IkjNi � dSij + �Rij + pX
k=1mSijkSik � pX

k=1mSikjSij
dIijdt = pX

k=1�j�ikjSij
IkjNj � (d+ 
)Iij + pX

k=1mIijkIik � pX
k=1mIijkIij

dRijdt = 
Iij � (d+ �)Rij + pX
k=1mRijkRik � pX

k=1mRijkRij
where Ni = pPj=1Nji, the number present in patch i. Properties of this model remain
to be explored.For the simpler case formulated in [26] in which travel is independent of diseasestatus and individuals return to their residency patch after traveling to anotherpatch, some analysis is given in [2, 3] for corresponding SIS and SEIRS models.These models have a unique DFE and the basic reproduction number is calculatedby the method used in Section 2 with F and V being block matrices. Numericalsimulations show that a change in travel rates can lead to a bifurcation at R0 = 1;thus travel can stabilize or destabilize the disease free equilibrium.

6 Other Discrete Spatial ModelsWe end this survey with a brief description of three other metapopulationmodels from the recent literature and we emphasize their novel features. The �rst isfor a human disease, whereas the last two model speci�c animal diseases. Togetherthey illustrate the possible complexity that can be built into patch models. Wehope that these descriptions encourage readers to consult the original papers aswell as to formulate and analyze other metapopulation models that are applicableto disease spread.
6.1 Spread of In
uenza. Hyman and LaForce [15] formulate a multi-citytransmission model for the spread of in
uenza between cities (patches) with theassumption that people continue to travel when they are infectious and there is nodeath due to in
uenza. Because in
uenza is more likely to spread in the winterthan in the summer, they assume that the infection rate has a periodic component.In addition, they introduce a new disease state P in which people have partial
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immunity to the current strain of in
uenza. Thus they have an SIRPS model inwhich both susceptible and partially immune individuals can be infected, but this ismore likely for susceptibles. A symmetric travel matrix M = [mij ] with mij = mjiis assumed, thus the population of each city remains constant. Their model for pcities is formulated as a 4p system of non autonomous ODEs.The authors take epidemic parameters appropriate for in
uenza virus, in par-ticular for strains of H3N2 in the 1996-2001 in
uenza seasons with an infectiousperiod of 1=� = 4:1 days in all cities. Parameters modeling the number of adequatecontacts per person per day and the seasonal change of infectivity are estimatedby a least squares �t to data. The populations of the largest 33 cities in the USare taken from 2000 census data, and migration between cities is approximatedby airline 
ight data. A sensitivity analysis reveals that the parameter � is themost single important parameter. From numerical simulations on the network of33 cities, the authors �nd that the peak of the epidemic lags behind the seasonalpeak in infectivity. A comparison of model results with data is given for severalcities, and the model is seen to capture the essential features of the yearly in
uenzaepidemics.

6.2 Tuberculosis in Possums. The spread of bovine tuberculosis amongstthe common brushtail possum in New Zealand, is modeled by Fulford et al [14].Since only maturing possums (1 to 2 year old males) travel large distances, theauthors formulate a two-age class metapopulation model with juvenile and adultpossums. As this disease is fatal, an SEI model is appropriate. In addition tohorizontal transmission between both age-classes, pseudo-vertical transmission isincluded since juveniles may become infected by their mothers. Susceptible and ex-posed juveniles (but not infective juveniles) travel between patches as they mature.For p patches, the authors formulate a system of 6p ODEs to describe the diseasedynamics. Using the next generation matrix method [10, 29], the authors explicitlycalculate R0 for p = 1 and for p = 2, and give the structures of the next generationmatrices for p = 4 and three spatial topologies, namely a spider, chain and loop.Fulford et al [14] give numerical results and compute R0 with appropriate pa-rameters [14, Table 1] for p = 2 and for p = 4 with the above topologies. The designof control strategies (culling) based on these three spatial topologies is considered.The critical culling rates are calculated and the spatial aspects are shown to beimportant.
6.3 Feline Leukemia Virus. Fromont et al [13] derive a model appropri-ate for Feline Leukemia Virus among a population of domestic cats. There are ppatches called farms or villages depending on the magnitude of the patch carryingcapacity. Dispersal (which depends on disease state) can take place between anypair of patches or into/out of non-speci�ed populations surrounding the patches(representing transient feral males). Infected cats become either infectious or im-mune and remain so for life, thus the model is of SIR type, but a proportion ofcats go directly from the susceptible to the immune state. A density dependentmortality function is assumed, as well as di�erent incidence functions depending onthe population density (mass action for cats on farms, but standard incidence forcats in villages).The model consists of 3p ODEs and is analyzed for the case p = 2. Fromont etal [13] take data appropriate for the virus with one patch being a village and onepatch being a farm, or both patches being farms. For a set of parameters such that
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in isolation the virus develops in the village but goes extinct on the farm, travelbetween the patches of either susceptible and immune cats or of infective cats canresult in the virus persisting in both patches. Thus results show that, in generalfor this model, spatial heterogeneity promotes disease persistence.
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