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1. Introduction
Continuous time deterministic epidemic models are traditionally for-

mulated as systems of ordinary differential equations for the numbers
of individuals in various disease states, with the sojourn time in a state
being exponentially distributed. Time delays are introduced to model
constant sojourn times in a state, for example, the infective or immune
state. Models then become delay-differential and/or integral equations.
For a review of some epidemic models with delay see van den Driess-
che [228]. More generally, an arbitrarily distributed sojourn time in a
state, for example, the infective or immune state, is used by some authors
(see [69] and the references therein).

When introduced in an explicit way, time delays may change the qual-
itative behavior of a model; for example, an epidemic model with gener-
alized logistic dynamics can have periodic solutions when the time in the
infective stage is constant [112]. Qualitative differences that arise from
including time delay in an explicit way in models that include vertical
transmission are explored in [38, Chapter 4]. In population biology, a
maturation time delay is used to explain observed oscillations [192]. This
delay is included in an epidemic model by Cooke, van den Driessche and
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Zou [47]. A fixed time delay in the recruitment function for a disease
model is considered by Brauer [33].

Many disease transmission models with delay are difficult to ana-
lyze, with even the linear stability problem reducing to a hard quasi-
polynomial; see, e.g., [27, 33] and references therein. Thus a combination
of analytical and numerical techniques is often employed.

Here we proceed along the lines of van den Driessche [229], giving
details about delay in models of disease transmission by concentrating
on one particular model, namely work with two other coauthors, K. L.
Cooke and J. Velasco-Hernández [13]. In Section 2, we first motivate the
introduction of delay in epidemic models in which this delay results from
assumptions on the sojourn time in a certain epidemiological state, e.g.,
the infective state. We then (in Section 3) formulate a model including
vaccination of susceptible individuals in which the vaccine waning time is
arbitrarily distributed [13]. In Section 4, we specialize to two particular
waning functions, concentrating on the step function case that leads
to a system of delay integro-differential equations. Numerics on this
system are reported in Section 5 (with program listings in Appendix 1).
Some numerical warnings are given in Section 6, and we conclude with
an annotated listing of available delay differential equations numerical
packages (Appendix 2).

2. Origin of time delays in epidemic models
Various biological reasons lead to the introduction of time delays in

models of disease transmission. Here we concentrate on one of the pos-
sible origins: the fact that sojourn times in certain states can have a
general form, for example, can be approximately constant, as opposed
to having an exponential distribution. A formal derivation of this uses
probability theory and, in particular, survival analysis. A brief summary
of these notions is given in Section 2.1. Then, survival analysis is tied
to dynamical models of disease transmission in Section 2.2; see [225] for
a more general and more detailed presentation.

2.1 Sojourn times and survival functions
Consider a system that can be in either one of two states A and B.

Suppose that at time t = 0, the system is in state A. Suppose that
when an event E takes place, the system switches to state B, and call X
the (positive) random variable “time spent in state A before switching
to state B”. The cumulative distribution function (c.d.f.) F (t) then
characterizes the distribution of X, with F (t) = Pr{X ≤ t}, and so does
the probability distribution function f(t), where F (t) =

∫ t
0 f(x)dx.
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Another characterization of the distribution of the random variable
X is the survival (or sojourn) function. The survival function of state
A is given by

S(t) = 1 − F (t) = Pr{X > t} (2.1)

This function gives a description of the sojourn time of a system in a
particular state. Note that S must be a nonincreasing function (since
S = 1−F with F a c.d.f., thus a nondecreasing function), and S(0) = 1
(since X is a positive random variable).

The average sojourn time τ in state A is given by

τ =
∫ ∞

0
tf(t)dt

Assuming that limt→∞ tS(t) = 0 (which is verified for most probability
distributions),

τ =
∫ ∞

0
S(t)dt

Suppose that the random variable X has exponential distribution f(t) =
θe−θt for t ≥ 0, with θ > 0. Then the survival function for state A is of
the form S(t) = e−θt, for t ≥ 0, and the average sojourn time in state A
is

τ =
∫ ∞

0
e−θtdt =

1
θ

If on the other hand, for some constant ω > 0,

S(t) =
{

1, 0 ≤ t ≤ ω
0, ω < t

which means that X has a Dirac delta distribution δω(t), then the aver-
age sojourn time is a constant, namely

τ =
∫ ω

0
dt = ω

These two distributions can be regarded as extremes.

2.2 Sojourn times in an SIS disease transmission
model

Consider a particular disease, and suppose that a population of in-
dividuals can be identified with respect to their epidemiological status:
susceptible to the disease, infected by the disease, recovered from the
disease, etc. To illustrate, consider a disease that confers no immunity.
This is modeled by a very simple SIS model. Individuals are thus either
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susceptible to the disease, with the number of such individuals at time
t denoted by S(t), or infected by the disease (and are also infective in
the sense that they propagate the disease), with the number of such in-
dividuals at time t denoted by I(t). Suppose for simplicity that there is
neither birth nor death. Hence N ≡ N(t) = S(t)+ I(t) is the (constant)
total population. Infection is assumed to take place following a standard
incidence pattern (see [181] for a discussion of transmission terms): the
number of new infectives resulting from random contacts between sus-
ceptible and infective individuals per unit time is given by βSI/N . Here
β is the transmission coefficient, it gives the probability of transmission
of the disease in case of a contact, times the number of such contacts
made by an infective per unit time.

Traditional epidemiological models assume that recovery from disease
occurs with a rate constant γ. However, as in [112], the assumption is
made here that, of the individuals who have become infective at time
t0, a fraction P (t− t0) remain infective at time t ≥ t0. Thus, considered
for t ≥ 0, the function P (t) is a survival function. As such, it satisfies
the properties given in Section 2.1, and in particular, P (0) = 1. The
transfer diagram for the system then has the form shown in Figure 13.1.

P(t)

β

S I
dN

dS dI

SI/N

Figure 13.1. The transfer diagram for the SIS model.

Since N is constant, it follows that S(t) = N − I(t) and the model
reduces to the following integral equation for the number of infective
individuals

I(t) = I0(t) +
∫ t

0
β

(N − I(u))I(u)
N

P (t − u)du (2.2)

Here I0(t) is the number of individuals who were infective at time t = 0
and who still are at time t. It suffices to assume that I0(t) is nonnegative,
nonincreasing, and such that limt→∞ I0(t) = 0. The term P (t−u) in the
integral is the proportion of individuals who became infective at time
u and who still are at time t. Multiplying this with the contact term
β(N−I(u))I(u)/N and summing over [0, t] gives the number of infective
individuals at time t.

The two extreme cases for P (t) considered in Section 2.1 illustrate
various possibilities. First, suppose that P (t) is such that the sojourn
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time in the infective state has an exponential distribution with mean
1/γ, i.e., P (t) = e−γt. Then (2.2) is

I(t) = I0(t) +
∫ t

0
β

(N − I(u))I(u)
N

e−γ(t−u)du

Taking the time derivative of I(t) yields

I ′(t) = I ′0(t) − γ

∫ t

0
β

(N − I(u))I(u)
N

e−γ(t−u)du + β
(N − I(t))I(t)

N

= I ′0(t) + β
(N − I(t))I(t)

N
+ γ (I0(t) − I(t))

In this case I0(t) = I0(0)e−γt, giving

I ′(t) = β
(N − I(t))I(t)

N
− γI(t)

which is the classical logistic type ordinary differential equation (ODE)
for I in an SIS model without vital dynamics (see, e.g., [34, p. 289]).

The basic reproduction number, denoted by R0, which is a key concept
in mathematical epidemiology, is now introduced. It is defined (see,
e.g., [12, 58]) as the expected number of secondary cases produced, in
a completely susceptible population, by the introduction of a typical
infective individual. For this ODE model, R0 = β/γ. In terms of
stability, the disease free equilibrium (DFE) with I = 0 is stable for
R0 < 1 and unstable for R0 > 1. At the threshold R0 = 1, there is a
forward bifurcation with a stable endemic equilibrium (with I > 0) for
R0 > 1. Thus the value of R0 determines whether the disease dies out
or tends to an endemic value.

The second case corresponds to P (t) being a step function:

P (t) =
{

1 if t ∈ [0, ω]
0 otherwise

i.e., the sojourn time in the infective state is a constant ω > 0. In this
case (2.2) becomes

I(t) = I0(t) +
∫ t

t−ω
β

(N − I(u))I(u)
N

du

which when differentiated, gives for t ≥ ω

I ′(t) = I ′0(t) + β
(N − I(t))I(t)

N
− β

(N − I(t − ω)) I(t − ω)
N
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Since I0(t) vanishes for t > ω, this gives the delay differential equation
(DDE)

I ′(t) = β
(N − I(t))I(t)

N
− β

(N − I(t − ω))I(t − ω)
N

cf. [34, Section 7.6] (where the disease transmission is modelled using
mass action). Note that every constant value of I is an equilibrium, thus
the integral form above gives a better description than the DDE. For this
case, R0 = βω again acts as a threshold. For R0 < 1, the DFE is stable;
whereas for R0 > 1, the endemic equilibrium is locally asymptotically
stable [34, Section 7.6].

More realistically, the survival function for the infective state is be-
tween an exponential and a step function (see, e.g., [12, 225]), thus the
two cases considered above can be regarded as extremes.

3. A model that includes a vaccinated state
We now use the ideas of the previous section in a different setting.

Consider a disease for which there exists a vaccine. Suppose that, al-
though there exists a vaccine, we can assume that developing the disease
confers no immunity. For example, at a given time, there are several
strains of influenza circulating in a given population. Vaccination usu-
ally focuses on particular strains, which are expected to be the dominant
ones in a particular year. Vaccination gives partial protection from other
strains as does contracting the disease. However, this protection is only
partial, and some individuals can contract the disease several times.
Thus if considered as one single disease, influenza can fit the above de-
scription. The assumptions also apply to models in which individuals
can be in two groups depending on their transmission coefficients with
respect to a given disease. They can move between these groups as
education campaigns or policies influence their behavior.

Our model, which is similar to that in [13], has the transfer diagram
shown in Figure 13.2. The number of individuals in the susceptible,
infective and vaccinated states are given by S(t), I(t), V (t), respectively.
As noted above, V (t) may alternatively correspond to an educated state,
but we refer to it as vaccinated. Individuals move from one state to the
other as their status with respect to the disease evolves. New individuals
are born into the susceptible state with a birth rate constant d > 0, and
all individuals, whatever their status, are subject to death with the same
natural death rate constant d. It is assumed that the disease does not
cause death, thus the total population N = S(t)+I(t)+V (t) is constant,
allowing for the simplification that the number of individuals in the S
state is given by S(t) = N − I(t) − V (t). Susceptible individuals are
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vaccinated with rate constant φ, and enter the V state. Note that the
model in [13] further assumes that a fraction of newborns are vaccinated.

γ

βSI/N

I

V

dN

VI/N

φ

dS dI

dV

P(t)

S

σβ

I
S

Figure 13.2. The transfer diagram for the SIV model.

As in Section 2.2, disease transmission is assumed to be of standard in-
cidence type, thus susceptibles enter the infective state at a rate βSI/N ,
where β > 0 is the transmission coefficient. In addition, it is assumed
that successfully vaccinated individuals may only be partially protected
from infection (i.e., the vaccine is leaky). Vaccinated individuals can
contract the disease, but vaccination reduces transmission by a factor
σ ∈ [0, 1). Thus the number of new infectives produced by random con-
tacts between I infectives and V vaccinated individuals per unit time
is σβSI/N , and vaccinated individuals enter the infective state at this
rate.

Many vaccines wane with time, and so vaccinated individuals return
to the susceptible state. In [130], this waning is assumed to be expo-
nential but here we assume a more general waning function P (t). We
suppose that, at a given time t, there is a fraction P (t) of the vaccinated
individuals who are still under protection of the vaccine t units after
being vaccinated. Since the waning function P (t) is a survival function
it is assumed to be nonnegative and nonincreasing with P (0) = 1, and
moreover

∫∞
0 P (u)du is positive and finite. Finally, it is assumed that

the infective individuals can be cured, so that members of the I state
return to the susceptible state, with rate constant γ ≥ 0 (the recovery
rate).

Since the total population remains constant, it is more convenient to
use proportions (rather than number of individuals) in each state. Here-
after, we use I(t) and V (t) to denote the proportion of infective and
vaccinated individuals, respectively, with S(t) = 1 − I(t) − V (t), the
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proportion of susceptibles. Let the initial susceptible and infective pro-
portions be S(0) > 0, I(0) > 0 and let V0(t) be the proportion of individ-
uals who are initially in the vaccinated state and for whom the vaccine
is still effective at time t. With the above assumptions, the following
integro-differential system describes the model depicted in Figure 13.2.

dI(t)
dt

= β(1 − I(t) − (1 − σ)V (t))I(t) − (d + γ)I(t) (3.1a)

V (t) = V0(t) +
∫ t

0
φS(u)P (t − u)e−d(t−u)e−σβ

∫ t
u I(x)dxdu(3.1b)

The integral in (3.1b) sums the proportion of those who were vaccinated
at time u and remain in the V state at time t. Specifically, φS(u) is
the proportion of vaccinated susceptibles, P (t− u) is the fraction of the
proportion vaccinated still protected by the vaccine t−u time units after
going in (i.e., not returned to S), e−d(t−u) is the fraction of the propor-
tion vaccinated not dead due to natural causes, and e−σβ

∫ t
u I(x)dx is the

fraction of the proportion vaccinated not infective (i.e., not progressed
to the I state). An expression for V0(t) can be obtained by formulating
the model with vaccination state-age (see, e.g., [13, 112]) as

V0(t) = e−
∫ t
0 (σβI(x)+d)dx

∫ ∞

0
v(0, u)

P (t + u)
P (u)

du (3.2)

where v(0, u) ≥ 0 is the density at t = 0 of the proportion of individu-
als in vaccination state-age u; thus V0(0) =

∫∞
0 v(0, u)du. The above

integral converges, and thus V0(t) is nonnegative, nonincreasing and
limt→∞ V0(t) = 0.

Define the subset D of the nonnegative orthant by

D = {(S, I, V );S ≥ 0, I ≥ 0, V ≥ 0, S + I + V = 1}

It is easy to show (see [13]) that the set D is positively invariant under
the flow of (3.1) with I(0) > 0, S(0) > 0.

Differentiating (3.1b) gives

d

dt
V (t) =

d

dt
V0(t) + φS(t) − (d + σβI(t))(V (t) − V0(t)) + Q(t) (3.3)

where

Q(t) =
∫ t

0
φS(u)dt(P (t − u))e−d(t−u)e−σβ

∫ t
u I(x)dxdu

With the assumed initial conditions in D, the system defined by (3.1a)
and (3.1b) is equivalent to the system defined by (3.1a) and (3.3). This
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latter system is of standard form, therefore results of Hale and Verd1uyn
Lunel [105, p. 43] ensure the local existence, uniqueness and continua-
tion of solutions of model (3.1).

Equation (3.1a) has I = 0 as an equilibrium and using I = 0 in
equation (3.1b) as t → ∞ gives the disease free equilibrium (DFE) as
IDFE = 0,

SDFE =
1

1 + φP̃
, VDFE =

φP̃

1 + φP̃

Here

P̃ = lim
t→∞

∫ t

0
P (v)e−dvdv

which is the average length of time that an individual remains vaccinated
(before losing vaccination protection or dying).

The basic reproduction number with vaccination is defined in terms
of P̃ as

Rvac = R0
σφP̃ + 1
φP̃ + 1

(3.4)

in which R0 = β
d+γ is the basic reproduction number with natural death

but no vaccination. The number Rvac is the important quantity in this
model that includes vaccination; Rvac is equal to the product of the mean
infective period 1/(d + γ) and the sum of the contact rate constant in
each of the susceptible and vaccinated states multiplied respectively by
the proportion in that state at the DFE, namely βSDFE + σβVDFE .
Note that Rvac ≤ R0, and in the case of no vaccination, that is φ = 0,
Rvac = R0.

If R0 < 1, then the only equilibrium of (3.1a) is IDFE = 0, thus the
DFE is the only equilibrium of system (3.1) when R0 < 1. In this case,
(3.1a) gives

dI

dt
< (d + γ) ((S + σV ) − 1) I

which implies that dI/dt < 0, and so I(t) → 0 = IDFE as t → ∞, for all
initial conditions I(0) > 0. Thus the disease dies out if R0 < 1.

The importance of Rvac can be seen from the following linear stability
result.

Theorem 1 For model ( 3.1) with a general waning function, if Rvac <
1, then the DFE is locally asymptotically stable (l.a.s.); if Rvac > 1, then
it is unstable.

Proof. Linearize (3.1a) and (3.1b) about the DFE, taking t → ∞.
Then the eigenvalues z of the linearized system at the DFE are given by

z = β(SDFE + σVDFE) − (d + γ) = (d + γ)(Rvac − 1) (3.5a)
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and the roots of

1 = −φ

∫ ∞

0
P (v)e−(d+z)vdv (3.5b)

Let z = x + iy be a root of equation (3.5b). Then by the proof of
Lemma 2 in [230], if x ≥ 0, then y = 0. But since φ ≥ 0, equation
(3.5b) has no nonnegative real root, thus all of its roots have negative
real parts. Hence, from (3.5a), the DFE is l.a.s if Rvac < 1, and unstable
if Rvac > 1.

4. Reduction of the system by using specific
P (t) functions

Here we show two examples of models resulting from the choice of
specific vaccine waning functions P (t) as the two extreme cases in Sec-
tion 2.2. The first example (Section 4.1) is obtained when the distri-
bution of waning times is exponential, and leads to the ODE system
studied in [130]. As discussed in [130], for some parameter values, there
is a backward bifurcation, a rather uncommon phenomenon in epidemio-
logical models. This backward bifurcation is also present when the sys-
tem consists of delay integro-differential equations, such as is the case in
Section 4.2 when the waning function is assumed to be a step function
corresponding to a constant sojourn time in the vaccinated state.

4.1 Case reducing to an ODE system
Assuming that the vaccine waning rate is a constant θ > 0, i.e., P (t) =

e−θt, then V0(t) = V0(0)e−(d+θ)te−
∫ t
0 σβI(x)dx from (3.2), equations (3.1a)

and (3.3) give the ODE system

dI

dt
= β(1 − I − (1 − σ)V )I − (d + γ)I (4.1a)

dV

dt
= φ(1 − I − V ) − σβIV − (d + θ)V (4.1b)

which is the model studied in [130]. The DFE with IDFE = 0,

SDFE =
θ + d

d + θ + φ
, VDFE =

φ

d + θ + φ

always exists, and from (3.4) the basic reproduction number is

Rvac = R0
d + θ + σφ

d + θ + φ
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Assume that R0 > 1, then endemic equilibria (I > 0) can be obtained
analytically from a quadratic equation, and for σ > 0 (i.e., a leaky
vaccine) it is possible to have a backward bifurcation leading to two
endemic equilibria for some parameter values. This occurs for a range
of Rvac, namely Rc < Rvac < 1 where Rc is the value of Rvac at the
saddle node bifurcation point where the two endemic equilibria coincide;
see [130] for details.

4.2 Case reducing to a delay integro-differential
system

Assume that the vaccine waning period is constant and equal to ω > 0,
that is the function P (t) takes the form of a step function on a finite
interval:

P (t) =
{

1 if t ∈ [0, ω]
0 otherwise

Since S = 1 − I − V , and V0(t) = 0 for t > ω, the integral equation
(3.1b) becomes, for t > ω

V (t) =
∫ t

t−ω
φ(1 − I(u) − V (u))e−d(t−u)e−σβ

∫ t
u I(x)dxdu (4.2)

Differentiating this last expression (see equation (3.3)), the model can
be written as the two dimensional integro-differential equation system
for t > ω

dI(t)
dt

= β(1 − I(t)−(1−σ)V (t))I(t)−(d + γ)I(t) (4.3a)

dV (t)
dt

= φ(1−I(t)−V (t))−φ(1−I(t−ω)−V (t−ω))e−dωe−σβ
∫ t

t−ω I(x)dx

−σβIV − dV (4.3b)

Hereafter, we shift time by ω so that these equations hold for t > 0. By
introducing a third state variable

X(t) =
∫ t

t−ω
I(x)dx (4.4)

which gives dX(t)
dt = I(t) − I(t − ω), the system can be regarded as a

three dimensional DDE system.
For a constant waning period, the basic reproduction number from

(3.4) is

Rvac = R0
d + σφ(1 − e−dω)
d + φ(1 − e−dω)

(4.5)
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The DFE is IDFE = 0,

SDFE =
d

d + φ(1 − e−dω)
, VDFE =

φ(1 − e−dω)
d + φ(1 − e−dω)

(4.6)

Note that the delay ω enters into these equilibrium values. If R0 < 1,
then the system tends to the DFE and the disease dies out (see Sec-
tion 3). For R0 > 1, from nullclines, there exists one (or more) (EEP)
iff there exists I∗ ∈ (0, 1] such that

1 − 1/R0 − I∗

1 − σ
=

φ(1 − I∗)(1 − e−dω−σβωI∗)
φ(1 − e−dω−σβωI∗) + d + σβI∗

(4.7)

5. Numerical considerations
We give some insights into numerical aspects by considering the de-

lay integro-differential model (4.3). First, in Section 5.1 we set up the
algorithm that is used to study the occurence of forward and backward
bifurcations at Rvac = 1. We use this algorithm in Section 5.2, and in-
vestigate the dynamical behavior of system (4.3) by running numerical
integrations.

5.1 Visualising and locating the bifurcation
An EEP exists iff there exists an I∗ ∈ (0, 1] such that (4.7) holds. So

we study the zeros of

H(I) =
1 − 1/R0 − I

1 − σ
− φ(1 − I)(1 − e−dω−σβωI)

φ(1 − e−dω−σβωI) + d + σβI

Note that H(0) = Rvac−1
(1−σ)R0

and H(1) < 0.
Let A = {β, d, γ, φ, ω, σ} be the set of parameters of the model. When

needed, we denote H(I, a) and Rvac(a), with a ∈ A a parameter, to
indicate that the bifurcation is considered as a function of this parameter
a; e.g., Rvac(β) indicates that β is the bifurcation parameter that varies.

For a totally effective vaccine (σ = 0), a unique I∗ ∈ (0, 1] such that
H(I∗) = 0 can be found explicitly for Rvac > 1, and the bifurcation
is forward with Rvac behaving as a (local) threshold [13]. For a leaky
vaccine, σ ∈ (0, 1), the zeros of H(I) for I ∈ (0, 1] cannot be found
analytically. We proceed to obtain numerical estimates by using the
following algorithm.

Choose a parameter a ∈ A.
Fix the value of all other elements of A.
Choose amin, amax and ∆a for a.
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for ak = amin to amax do
Compute I∗ such that H(I∗, ak) = 0, using MatLab’s fzero func-
tion.
Compute Rvac(a) for this value ak.
ak = ak + ∆a.

end for
Results of the use of this procedure give zero, one or two values of
I∗. Thus two bifurcation scenarios are possible, as summarized in Fig-
ure 13.3. Example bifurcation diagrams are plotted in Figures 13.4(a)
and 13.5.

In order to be able to characterize the nature of the bifurcation, we
then need to define Rc as in Section 4.1. To obtain a numerical estimate
of Rc, we use the same procedure as for the visualization of the bifurca-
tion: we find the value I∗ such that H(I∗, a) = 0 and dH(I∗, a)/dI = 0,
for a given parameter a ∈ A with all other elements of A fixed.

Forward bifurcation

Rvac

1 EEP

Rvac

1 EEP

R

Rc

c

1

=1

0 EEP

Backward bifurcation
2 EEP0 EEP

Figure 13.3. Possible bifurcation scenarios.

Suppose that R0 > 1 (otherwise there is no EEP, as was remarked
in Section 3). When Rvac < Rc, there is no EEP as H(0) < 0 and
numerical simulations indicate that H < 0 on (0, 1); when Rvac > 1,
H(0) > 0 so there is an odd number of EEP (numerical simulations
indicate this number is 1). When Rc = 1, we are then in the case of a
forward bifurcation, as illustrated in the first part of Figure 13.3 and in
Figure 13.4(c). The backward bifurcation arises when Rc < 1. In this
case, when Rc < Rvac < 1, H(0) < 0 so there is an even number of zeros
of H in (0, 1]. Numerical simulations indicate that the number of EEP
is 2. The system then undergoes the transitions shown in the second
part of Figure 13.3.

5.2 Numerical bifurcation analysis and
integration

We use the following parameter values. We suppose a 3 weeks disease
duration (γ = 1/21), taking the time unit as one day. The average
lifetime is assumed to be 75 years (d = 1/(75 × 365)), and the average
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number of adequate contacts per day is estimated as β = 0.4. The
vaccine is assumed to be 10% leaky (σ = 0.1), and susceptibles are
vaccinated at the rate φ = 0.1. Finally, we assume that the vaccine
stops being effective after 5 years, i.e., ω = 1825.

These parameters give R0 = 8.3936 and Rvac(β) = 0.8819 from (4.5),
which is in the range of the backward bifurcation since (using the above
method) Rc(β) is estimated as 0.78. The bifurcation diagram is depicted
in Figure 13.4(a). Note that in the vicinity of Rc, it is very difficult for
MatLab’s fzero function to find solutions (since it detects sign changes
and Rvac = Rc corresponds to tangency); hence the non-closed curve.
Numerical simulations of the DDE model indicate that there are no
additional bifurcations; solutions either go to the DFE or to the (larger)
EEP, as depicted in Figure 13.4(b), which shows some solutions for I(t)
with the above parameter values. These same parameter values, except
that σ = 0.3, give Rvac(β) = 2.55, and there is a forward bifurcation
(see Figure 13.4(c)) with solutions going to the endemic equilibrium as
depicted in Figure 13.4(d).

To obtain Figures 13.4(b), 13.4(d), system (4.3) is integrated numeri-
cally. These numerical simulations are run using dde23 [205], an example
code (as well as an example code with XPPAUT) being given in Appen-
dix 1. Initial data is I(t) = c, for t ∈ [−ω, 0], with c varying from 0 to 1
by steps of 0.02.

Figure 13.5 shows the bifurcation for these parameter values as a func-
tion of ω. The situation is clearly different from that of Figure 13.4(a),
since in Figure 13.5 every value of ω gives at least one endemic equi-
librium. Let ωm be the value of ω determined by solving Rvac(ω) = 1
with Rvac given by (4.5). If all other parameters are fixed as given
at the beginning of this section, and for small waning time, 0 < ω <
ωm = 457.032, giving Rvac(ω) > 1, the only stable equilibrium is a large
endemic one. This is of course a highly undesirable state in terms of
epidemic control. Then increasing ω (i.e., increasing the waning time)
past ωm allows the DFE to become locally stable, and it is found nu-
merically that solutions starting with I(0) below the unstable endemic
equilibrium tend to the DFE. Increasing ω beyond 1000 days seems inef-
fective in terms of disease control, since there is no increase in the initial
value of infectives that tend to the DFE (see Figure 13.5).

6. A few words of warning
Even more so than with ordinary differential equations, great care

has to be taken when running numerical integrations of delay differential
equations. In [47], Cooke, van den Driessche and Zou study the dynamics
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Figure 13.4. Bifurcation diagram and some solutions of (4.3). (a) and (b): Backward
bifurcation case, parameters as in the text. (c) and (d): Forward bifurcation case,
parameters as in the text except that σ = 0.3.

of the following equation for an adult population N(t) with maturation
delay:

N ′(t) = be−aN(t−T )N(t − T )e−d1T − dN(t) (6.1)

Here d > 0 is the death rate constant, b > d and a > 0 are parameters
in the birth function, T is a developmental or maturation time and d1

is the death rate constant for each life stage prior to the adult stage.
In particular, they prove [47, Corollary 3.4] that Hopf bifurcation may
occur for (6.1) even for d1 = 0. For fixed values of the parameters, as
T increases the equilibrium may switch from being stable to unstable,
giving rise to periodic solutions. For d1 > 0, it is possible for stability
of the equilibrium to be regained as T increases further. They then
proceed to illustrate the stability switches by numerical simulations of
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Figure 13.5. Value of I∗ as a function of ω by solving H(I, ω) = 0, parameters as in
text.

(6.1) using XPPAUT. For d1 > 0, equation (6.1) has a delay dependent
parameter. The introduction of delay dependent parameters can lead to
dramatic differences in dynamics, see [27].

Using the demography of (6.1), the authors of [47] formulate the fol-
lowing SIS model with maturation delay [47, (4.2)]

I ′(t) = β(N(t) − I(t)) I(t)
N(t) − (d + ε + γ)I(t)

N ′(t) = be−a(t−T )N(t − T )e−d1T − dN(t) − εI(t)
(6.2)

where S(t) = N(t) − I(t), ε ≥ 0 is the disease induced death rate con-
stant, γ ≥ 0 is the recovery rate constant, and standard incidence βSI/N
is assumed. They perform numerical simulations of (6.2), and, in par-
ticular, obtain periodic solutions for parameter values a = d = d1 = 1,
b = 80, γ = 0.5, T = 0.2, ε = 10 and β = 20.
But... When documenting their delay differential equation numerical
integrator dde23 [205], Shampine and Thompson tested their algorithm
on a large number of delay systems, among which were equation (6.1)
and system (6.2). With parameters as in the paragraph above, they
obtain a figure similar to Figure 13.6, which shows damped oscillations
to an endemic steady state.
So, what is wrong? For delay differential equations, XPP (the nu-
merical integrator part of XPPAUT) uses a fixed step-size numerical
integrator, whereas dde23 uses a variable step-size. With the particular
values of the parameters chosen for β = 20, the fixed step-size is too
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Figure 13.6. Plot of the solution of (6.2), with parameters as in the text, using dde23.

large (its default value is 0.05). In a case in which variables I and N
undergo a very quick initial drop, this is overlooked by the first integra-
tion step of XPP, and the solver ends caught in the solution curve of a
nearby periodic solution. Setting the step size in XPP to 0.005, as in
the Erratum of [47], is sufficient to obtain a correct solution as shown in
Figure 13.6.
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Appendix

1. Program listings
The following gives examples of code used with MatLab and XPPAUT to run

numerical integrations of system (4.3). In both cases, constant initial data has been
used, though both do allow for initial data of functional or of numerical type. In the
case of constant initial data, both programs have the same behavior: they extend the
given initial point to the interval [−ω, 0]. Note that we make use of the third “fake”
state variable X(t) introduced in (4.4), and of its time derivative, in order to take
care of the integral term in (4.3b).
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1.1 MatLab code
The following is called vaccddeRHS.m. It defines the vector field of (4.3). This is

done in a very similar manner to the definition of the vector field that would be used
in a MatLab program with an ordinary differential equation solver. The one important
difference is in the variable Z. dde23 can handle many discrete delays. The variable
Z, which is passed as an argument to the function, contains the state of the system
at the different delays. Here, we have only one delay. But suppose we had two delays
ω1 and ω2. Then each column of Z would contain the state variables corresponding
to one of the delays:

Z =

[
Iω1 Iω2

Vω1 Vω2

]

function v = vaccddeRHS( t , y , Z , params )
beta=params ( 1 ) ;
d=params ( 2 ) ;
g=params ( 3 ) ; %MatLab hates gamma’ s o ther than gamma func t i ons .
phi=params ( 4 ) ;
omega=params ( 5 ) ;
sigma=params ( 6 ) ;
y lag = Z ( : , 1 ) ;
v = zeros ( 3 , 1 ) ;
v (1 ) = beta∗(1−y(1)−(1− sigma )∗y (2 ) )∗ y(1)−(d+g )∗y ( 1 ) ;
v (2 ) = phi∗(1−y(1)−y ( 2 ) ) . . .

−phi∗(1−ylag (1)− ylag (2 ) )∗exp(−d∗omega )∗exp(−sigma∗beta ∗y ( 3 ) ) . . .
−sigma∗beta ∗y (1)∗ y(2)−d∗y ( 2 ) ;

v (3 ) = y (1) − ylag ( 1 ) ;

This function is then used by the main calling routine, which follows. This partic-
ular procedure will run a certain number of integrations of system (4.3). The initial
condition for V (0) (lines 16 and 17) is obtained from (4.2) by setting t = 0, that of
X(0) follows from (4.4).

path (path , ’ /home/ j a r i n o /programs/matlab/dde23/ ddea l l ’ )
beta =0.4;
d=3.65297E−05;
g=0.047619048;
phi =0.1 ;
omega=1825;
sigma =0.1;

yl im ( [ 0 , 1 ] ) ;
hold on ;
for I0 =0 :0 . 02 : 1 , %Loop on i n i t i a l cond i t i ons

% The de lay must be added to the parameter vec tor s ince i t
% i s used in the vec to r f i e l d .
params=[beta , d , g , phi , omega , sigma ] ;
% I n i t i a l cond i t i ons : I0 i s given , V0 and X0 are computed .
V0=(phi∗(1− I0 )∗(1−exp(−omega∗(d+beta ∗ sigma∗ I0 ) ) ) ) . . .

/(d+beta ∗ sigma∗ I0+phi∗(1−exp(−omega∗(d+beta ∗ sigma∗ I0 ) ) ) ) ;
X0=I0 ∗omega ; % I n i t i a l cond i t i on on X i s easy to compute .
IC=[ I0 ,V0 ,X0 ] ; % Extended to [−omega , 0 ] i f only g iven at 0 .
tspan =[0 , 800 ] ; % Set i n t e g r a t i on time range .
% Ca l l the numerical rou t ine .
s o l = dde23 ( ’ vaccddeRHS ’ , omega , IC , tspan , [ ] , params ) ;
plot ( s o l . t , s o l . y ( 1 , : ) ) ; %Plot I ( t ) versus t
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end ;
xlabel ( ’ t ’ ) ; ylabel ( ’ I ’ , ’ Rotation ’ , 0 ) ;

1.2 XPPAUT code
The following code allows the integration of system (4.3) with XPPAUT. Note that

the initial conditions for V and X have to be computed explicitly from equations (4.2)
and (4.4), since XPP does not allow inclusion of unevaluated formula in the code.

# Constants
p beta =0.4 , d=3.65E−05, g=0.04762 , phi =0.1 , omega=1825 , sigma =0.1;
# The system
dI/dt = beta∗(1− I−V+sigma∗V)∗ I − (d+g )∗ I
dV/dt = phi∗(1− I−V)−phi∗(1−delay ( I , omega)−delay (V, omega ) )\

∗exp(−d∗omega )∗ exp(−sigma∗beta ∗X)−( sigma∗beta ∗ I ∗V)−d∗V
dX/dt = I−delay ( I , omega )
# I n i t i a l c ond i t i on s
I (0)=0.1
V(0)=0.8650595334
X(0)=182.5
# s e t maxdelay
@ delay=2000
@ ylow=0
@ b e l l=0
@ bound=500
@ XP=I ,YP=V
@ XHI=1,YHI=1
# done
d

2. Delay differential equations packages
Several packages and even software are available for the numerical integration

and/or the study of bifurcations in delay differential equations. Here is a short list,
elaborated from the list given by Koen Engelborghs1.

2.1 Numerical integration
The following are numerical solvers for DDE’s.

Archi (C.A.H. Paul) (Fortran 77) simulates a large class of functional differential
equations. In particular, Archi can be used to estimate unknown scalar parameters
in delay and neutral differential equations.

dde23 (L. Shampine, S. Thompson) (MatLab) is a MatLab package that integrates
delay differential equations. It is integrated in the latest versions of MatLab (starting
with Release 13).

DDVERK (H. Hiroshi, W. Enright) (Fortran 77) simulates retarded and neutral
differential equations with several fixed discrete delays.

DifEqu (G. Makay) (DOS, Windows) simulates differential equations with discrete
possibly varying delays.

∗http://www.cs.kuleuven.ac.be/ koen/delay
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DKLAG6 (S. Thompson) (Fortran 77, Fortran 90, C) simulates retarded differential
equations with several fixed discrete delays.

Dynamics Solver (J. M. Aguirregabiria) simulates differential equations with dis-
crete possibly varying delays.

RETARD (E. Hairer, G. Wanner) simulates retarded differential equations with
several fixed discrete delays.

RADAR5 (N. Guglielmi, E. Hairer) (Fortran 90) simulates retarded differential-
algebraic equations, including neutral problems with vanishing or small delays.

XPPAUT (G.B. Ermentrout) (Unix, Windows) simulates differential equations with
several fixed discrete delays. XPPAUT is a standalone software.

2.2 Bifurcation analysis
The following software packages provide some means to carry out numerical bifur-

cation analysis of delay differential equations.

BIFDD (B.D. Hassard) (Fortran 77) normal form analysis of Hopf bifurcations of
differential equations with several fixed discrete delays.

DDE-BIFTOOL (K. Engelborghs) (MatLab) allows computation and stability
analysis of steady state solutions, their fold and Hopf bifurcations and periodic solu-
tions of differential equations with several fixed discrete delays.

XPPAUT (G.B. Ermentrout) (Unix, Windows) allows limited stability analysis of
steady state solutions of differential equations with several fixed discrete delays.
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[64] K. Ezzinbi, Contribution à l’étude des équations différentielles à
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