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A model is introduced for the transmission dynamics of a vector-borne disease with two vector strains,
one wild and one pathogen-resistant; resistance comes at the cost of reduced reproductive fitness.
The model, which assumes that vector reproduction can lead to the transmission or loss of resistance
(reversion), is analyzed in a particular case with specified forms for the birth and force of infection
functions. The vector component can have, in the absence of disease, a coexistence equilibrium where
both strains survive. In the case where reversion is possible, this coexistence equilibrium is globally
asymptotically stable when it exists. This equilibrium is still present in the full vector–host system,
leading to a reduction of the associated reproduction number, thereby making elimination of the
disease more feasible. When reversion is not possible, there can exist an additional equilibrium with
only resistant vectors.
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1. Introduction

Since the pioneering work of Ross in the late 19th and early 20th centuries [1, 2], the classical
approach for controlling vector-borne diseases involves the eradication or strict population
control of the vectors. In the case of malaria, for instance, sanitization, drainage of mosquito
breeding grounds and the use of insecticides have long proved effective in reducing the number
of human cases. However, the total eradication of the vector population is not always feasible,
nor is it always desirable to put it in effect in practice. There is increasing resistance to
insecticides in vectors [3] and insecticides may be harmful to other species. Furthermore,
there are issues concerning the reduction of biodiversity (vectors are part of the food chain)
and uncertainties about alternatives (if a given type of vector disappears, pathogens might
evolve to utilize other species).

Because the elimination of vectors is difficult in practice (and may not be ecologically
desirable), other control methods must be used simultaneously to effectively control the spread
of the disease. For many vector-borne infections, no long-term immunization methods are
available for the hosts and other options, such as prophylactic measures preventing contacts
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between vectors and hosts, are often employed. If a vector has several host species that are
affected by the pathogen, then the efficacy of prophylactic measures is greatly diminished.
Also, prophylactic measures require permanent compliance from the hosts.

Another approach to the fight against vector-borne diseases is based on using the natural
resistance (or refractoriness) of the vectors to the pathogens. In the case of malaria, among
the about 430 known species in the genus Anopheles, the mosquito vector, only a limited
number (30–40) are vectors of Plasmodium, the parasite causing the disease. This parasite
has a complicated life cycle within the mosquito. The normal cycle of the parasite is as
follows (see, e.g. [4, figure 1]). During a blood meal on an infected host, the female mosquito
ingests gametocytes, which then become successively gametes and zygotes. After about 24 h,
ookinetes invade the gut, and differentiate into oocysts. The oocysts rupture after about 2
weeks, giving sporozoites, which then invade the salivary gland and can subsequently infect
another host. In resistant vectors, encapsulation is detected: Plasmodium ookinetes are coated
with a melanin-like substance, after traversing the gut wall [5]. This substance consists of
lamellocytes, which are large flat cells that are part of the primitive immune system of insects.
These cells form a capsule around the ookinetes, isolating, immobilizing and ultimately, killing
them [6]. Encapsulation thus inhibits transmission of Plasmodium to humans or other hosts.
Elucidating the origins of this resistance has long been an active research topic. A promising
avenue of research has been opened by progress in genetic engineering [7], as vectors can be
genetically altered to express resistance to Plasmodium (see, for instance, [4, 8, 9]). For this
purpose, mosquitoes are genetically transformed with transposable elements, resulting in a
reduced ability to transmit the disease, but with a fitness cost. The reduced fitness of transgenic
mosquitoes prevents the efficient spread of their genes in the wild vector population. Hence,
understanding the conditions required for the spread of pathogen-resistance in the vector
population is an important issue.

Mathematical models for vector-borne diseases have been studied for a long time; see,
e.g. [10–12] and the references therein. Models coupling genetic aspects to epidemiology are
considered, e.g. in [13]. Finally, pathogen-resistance, its transmission and impact on disease
prevalence has been studied in [14, 15]. In line with the latter works, the model presented here
has two main objectives:

(i) to study the propagation of resistance in a population of wild vectors that interbreed with
an introduced type that is resistant to a given pathogen; and

(ii) to study the epidemiological consequences of the presence of pathogen-resistant vectors
on the transmission dynamics of a vector-borne disease.

As resistance traits exhibit complex modes of inheritance, only a phenomenological description
of resistance transmission during reproduction is given. The present model is formulated using
ordinary differential equations, allowing a rigorous mathematical analysis to be conducted.

2. Modeling

2.1 Hypotheses

The population of vectors under consideration is divided into two types: a wild (natural)
type, denoted by W , and a type that is resistant to the pathogen, denoted by T . The working
hypotheses of the model are as follows.

H1 Resistant vectors are completely immune to the pathogen.
H2a A proportion p1 of the offspring resulting from the interbreeding of wild and resistant

vectors are resistant to the pathogen.
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H2b A proportion p2 of the offspring resulting from inbreeding within the resistant type are
resistant to the pathogen.

H3 In the absence of disease, wild vectors are better fitted for competition than resistant
vectors.

H4 Wild vectors are ill-fitted for competition when they carry the disease.

These hypotheses are now discussed in the context of malaria, where a significant amount
of work has been carried out; they are however general enough to be applicable to any vector-
borne diseases in which a mechanism of resistance of vectors can exist (for instance, dengue
and yellow fevers).

H1 is a simplifying hypothesis motivated by experimental observations. In [5], for example,
the resistance of various strains of Anopheles gambiae is quantified, by counting the number
of encapsulated ookinetes present in the guts of lines of resistant mosquitoes and mosquitoes
susceptible to the pathogen. It is observed that in the resistant strain, almost all ookinetes are
encapsulated, as opposed to none for the susceptible strain.

In the case of malaria, one mechanism used to induce and propagate resistance is through
transposable elements. The latter can be considered as mobile DNA sequences that are able to
colonize the genome of their host by inserting new copies of themselves in it (transposition).
Existence of non-Mendelian mechanisms such as the regulation of the rate of transposition,
deletion (loss of copies) and genetic recombinations allow to consider loss of resistance and
non-systematic resistance transmission [16], accounted for in the model by H2b and H2a,
respectively.

Note that H2 makes a phenomenological description of the propagation of resistance to
the offspring; the precise mechanisms that lead to inheritance of the resistant phenotype are
not explicitly modeled. Also, when considered in conjunction with H1, hypothesis H2 can be
interpreted as follows: a vector is resistant if its load in resistance-causing genetic material is
sufficient. A vector that does not have enough of this material is considered susceptible.

Hypothesis H3 also stems from biological observations. Insertions of new copies of trans-
posable elements can damage the genome if, for instance, insertion takes place into a coding
sequence. For example, in the case of Aedes aegypi (a mosquito transmitting yellow fever),
[17] finds a severe reduction in the net reproductive rate, with the control strain exhibiting a
net reproductive rate 42–72% higher than that of the three transgenic strains it studies. These
effects on fitness are confirmed by many other studies; see, e.g. [18–22].

Finally, H4 is a modeling hypothesis. Although there is still some debate about the precise
effect on vectors [23], and a great deal of variability depending on the parasite and vector
strains [24], some studies document reduced fertility of Plasmodium-infected mosquitoes
(fertility being one component of fitness). Plasmodium yoelii nigeriensis is shown in [25]
to reduce overall fertility of Anopheles stephensi by between approximately 40 and 50%.
In [26], the mean egg production is found to be significantly lower for Anopheles gambiae
infected with Plasmodium falciparum than for uninfected ones. In [27], it is shown that when
competing (without interbreeding), resistant mosquitoes win the competition in the presence of
Plasmodium, and wild mosquitoes win the competition in the absence of Plasmodium. Reduced
fitness of infected vectors is also observed for other pathogen–vector pairs; see, e.g. [28].

2.2 Vector demography

Wild vectors can have two epidemiological states, susceptible (denoted by S) or infected
(denoted by I ), whereas resistant vectors are denoted by T . By H1, resistant vectors are
totally immune to the pathogen. The simplifying assumption of a constant sex ratio is made.



Pathogen resistance in a vector–host model 323

In the following sections,

X, Y ∈ {S, I, T },
represent susceptible wild, infected wild and resistant vectors. From now on, depending on
the context, X and Y , and also S, I and T , will refer either to the state of a vector, or to the
abundance of vectors of that state.

2.2.1 Birth and transmission of resistance. Associated with the numbers of vectors of
each state, there are birth functions bi(X, Y ). These functions describe the formation pairs and
the resulting rate of birth.Assuming symmetry of the birth functions, i.e. bi(X, Y ) = bi(Y, X),
there are six different types of pairings, hence six birth functions bi , i = 1, . . . , 6; see table 1.

The progeny belong to the different states. Since it is assumed that there is no vertical
transmission, newborns can either be susceptible (wild) or resistant. Depending on the type
of parents, a certain fraction of the newborns are resistant, and the remaining fraction are
susceptible wild. For simplicity, transmission of resistance is assumed independent of disease
status, for the wild-type vectors. This gives the mating outcomes in table 1, which account for
H2a and H2b.

At this point, the functional forms of the bi’s are not specified. However, it is assumed
that they are of the same nature for all types of pairings, and that they satisfy the so-called
pair-formation properties [29–31], as detailed below.

The birth functions and type of offspring are put together in the type-specific birth functions
BW(S, I, T ) and BT (S, I, T ) for wild and resistant vectors, given, respectively, by

BW(S, I, T ) = b1(S) + b2(I ) + (1 − p2)b3(T ) + b4(S, I )

+ (1 − p1)
(
b5(S, T ) + b6(I, T )

)
, (1a)

BT (S, I, T ) = p2b3(T ) + p1
(
b5(S, T ) + b6(I, T )

)
. (1b)

Since the functions BW and BT are linear combinations of functions that satisfy the pair-
formation hypotheses, they also satisfy pair-formation hypotheses. From [29–31], for a given
vector type X ∈ {W, T },
PF1 BX(S, I, T ) ≥ 0,
PF2 BX(S + u, I + v, T + w) ≥ BX(S, I, T ) for all u, v, w ≥ 0,
PF3 BX(λS, λI, λT ) = λBX(S, I, T ) for all λ ≥ 0,
PF4 BW(0, 0, 0) = BT (S, I, 0) = 0.

Table 1. Reproduction hypotheses: types of pairings, birth
functions and mating outcomes.

Mating outcome

Pairing Birth function Proportion Class

S S b1(S) 1 S

I I b2(I ) 1 S

T T b3(T ) p2 T

1 − p2 S

S I b4(S, I ) 1 S

S T b5(S, T ) p1 T

1 − p1 S

I T b6(I, T ) p1 T

1 − p1 S
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Consequently, the total birth function B(S, I, T ) = BW(S, I, T ) + BT (S, I, T ) also sat-
isfies properties PF1–4. Additionally, it is assumed that B(S, I, T ) satisfies the following
hypothesis,

PF5 There exist b, b ∈ R+ such that for all V = S + I + T ,

bV ≤ B(S, I, T ) ≤ bV . (2)

2.2.2 Vector dynamics. Motivated by a logistic formulation where the population has a
linear net growth rate and is subject to a quadratic competition term, the vector dynamics in
the absence of new infections is governed by the following system:

S ′ = BW(S, I, T ) − (dW + κSV )S, (3a)

I ′ = −(dW + δW + κIV )I, (3b)

T ′ = BT (S, I, T ) − (dT + κT V )T , (3c)

where V = S + I + T is the total vector population.
For a given vector type X ∈ {W, T }, the net growth represents the difference between the net

birth rate BX and the net natural per-capita death rate dX. Since there is no vertical transmission
of the disease, all the birth into the wild type occurs in S with type-specific rate BW .

The parameters κS, κI and κT represent the rates of competition-induced mortality for
susceptible wild, infective wild and resistant vectors, respectively. Note that the κX’s should
in fact be κXY ’s, rates of mortality of state X when competing with state Y . However, for
simplicity, it is assumed that competition affects a given state at the same rate, regardless of
the state of its competitor. Evidence of the effect of crowding is given, for example, by [32]
and references therein.

Finally, infected vectors suffer additional disease-induced death at a per-capita rate δW (see,
e.g. [22, 33] in the case of malaria).

This system is not logistic in a strict sense, but in the proof of Theorem 2.1, it is shown that
the total vector population is almost logistic.

2.2.3 Considerations on fitness. To account for hypothesis H3, it is assumed that resis-
tance comes at the cost of reduced fitness. Furthermore, infection reduces fitness (H4). The
precise definition of fitness in assumptions H3 and H4 is difficult to give. It is supposed, as
in [9, 14, 22], that being fit describes a set of attributes that makes the vector better suited for
survival.

Reproductive fitness is taken into account by ranking the associated fecundities, with the
most fecund vectors being the susceptible wild, followed by the resistant, and the least fecund
being the infected wild vectors. For each mating pair, it is assumed that fecundity is always
determined by the less fit of the pair. As a consequence, for given appropriate (X, Y ), the
functions bi(X, Y )’s can be ordered as follows for positive population values

b1 > {b3, b4, b5} > b6 > b2,

where {b3, b4, b5} indicates that it is not possible a priori to order b3, b4 and b5, and that this
will come as a modeling hypothesis or an experimental observation. For example, b1 ≥ b4

means that b1(S) ≥ b4(S, I ) for all S and I .
Similar to the birth functions, the rates of competition-induced mortality are partially ordered

to account for vector fitness. Susceptible wild vectors are better fitted than both infectious wild
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and resistant, but the latter two cannot be ordered a priori, so

{κI , κT } > κS.

Finally, the natural death rate, dT , for resistant vectors includes the cost of resistance
(dT ≥ dW ).

2.3 Host demography

The demography for hosts is supposed to follow a simple SIRS model. The hosts are susceptible
(SH ), infective (IH ) or recovered (RH ). Birth occurs into the state SH at the constant rate �,
and death at the per-capita rate dH in all states. Upon infection, susceptible individuals proceed
to the infective state, where they are subject to disease-induced death with per-capita rate δH .
The sojourn time in the infective state is exponentially distributed with mean 1/γ , giving the
per-capita rate γ of moving from the IH to the RH state. In the RH state, individuals are immune
to infection. The duration of the immune period is exponentially distributed with mean 1/ν.

Note that this is a crude simplification of the dynamics of most vector-borne diseases. In
the case of malaria, for example, a realistic model [11] categorizes humans into eight different
epidemiological states. However, SIRS models capture some of the essential mechanisms in
the transmission of a disease without the burden of additional parameters and nonlinearities.
Furthermore, the analysis here can be extended in a straightforward way to models with a
latent state (such as those in [11]).

2.4 Force of infection

Assume that the rate of infection of a susceptible host by an infected vector is fH , and the
rate of infection of a susceptible vector by an infected host is fV . These functions aggregate
two different processes: vector bites, which represent the contacts, and transmission of the
disease. The force of infection fH depends directly on SH and I , while fV depends directly
on S and IH . In accordance with H1, there is no direct dependence on T . Both fV and fH

can, however, depend indirectly on T , through dependence on the total vector population V .
They might also depend on the total host population H .

In its most general formulation, the model uses generic forms for fH and fV , assuming that
the following hypotheses are satisfied:

(i) fV and fH are C1;
(ii) fV ≥ 0 and fH ≥ 0;

(iii) (a) fV = 0 if either S = 0 or IH = 0;
(b) fH = 0 if either SH = 0 or I = 0.

2.5 The model

The model, taking into account the above hypotheses, is given below (see figure 1 for a
schematic diagram and table 2 for a description of parameters and variables).

S ′ = BW(S, I, T ) − (dW + κSV )S − fV (4a)

I ′ = fV − (dW + δW + κIV )I (4b)

T ′ = BT (S, I, T ) − (dT + κT V )T (4c)

S ′
H = � + νRH − fH − dHSH (4d)
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Figure 1. Flow diagram of the model. The upper box describes flows within the vector states, the lower box
represents flows within the host states. The flows between boxes are the cross infection effects. The logistic-type
dynamics of the vectors is not represented.

Table 2. Model variables and parameters, and assumptions on parameter
values. Note that all parameters are assumed positive unless otherwise

stated in the text.

Variables
S susceptible wild vectors
I infected wild vectors
T resistant vectors
SH susceptible hosts
IH infected hosts
RH recovered hosts

Composite variables
W = S + I total population of wild vectors
V = S + I + T total vector population
H = SH + IH + RH total host population

Parameters
p1 proportion of T in offspring of W–T matings
p2 proportion of T in offspring of T –T matings
bi birth functions (i = 1, . . . , 6)
αi birth rates (i = 1, . . . , 6) — special case
κX competition rates (X ∈ {S, I, T })
dW natural death rate of wild vector
dT natural death rate of resistant vector
δW disease-specific mortality rate of infected vectors
fV force of infection of vectors by hosts
fH force of infection of hosts by vectors
ν rate of loss of infection-acquired immunity in hosts
δH disease-specific mortality rate of hosts
γ recovery rate of infected hosts

Composite parameters
b and b defined by (2)
d = max(dW + δW , dT )

r = b − d r = b − dW

κ = κS κ = maxX∈{I,T }{κX : κX > 0}
K = r/κ K = r/κ

α = mini=1,2,3{αi : αi > 0} α = maxi=1,...,6 αi

Fitness-related assumptions on parameters
b1 > {b3, b4, b5} > b6 > b2
{κT , κI } > κS

dT ≥ dW
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I ′
H = fH − (dH + δH + γ )IH (4e)

R′
H = γ IH − (dH + ν)RH , (4f)

where V = S + I + T . This model is considered with nonnegative initial conditions such that
V (0) > 0 and the initial total host population H(0) = SH (0) + IH (0) + RH(0) > 0.

3. Some general properties of the system

Define composite parameters b, b, d , r , r , κ , κ , K and K as in table 2.

THEOREM 3.1 The total vector population V (t) is such that, for all t ≥ 0,

max

(
0,

V (0)K

V (0) + e−rt (K − V (0))

)
≤ V (t) ≤ V (0)K

V (0) + e−rt (K − V (0))
. (5)

The total host population H(t) converges, and H ∗ = limt→∞ H(t) is such that

�

dH + δH

≤ H ∗ ≤ �

dH

. (6)

Finally, solutions of (4) are nonnegative and bounded.

Proof First, it is clear that the positive orthant R
6+ is invariant under the flow of (4). As a

consequence, V (t) > 0 and H(t) > 0, for all t ≥ 0, for positive V (0) and H(0).
The total vector population V in system (4) satisfies

V ′ = B(S, I, T ) − (κSS + κI I + κT T )V − dWS − (dW + δW )I − dT T . (7)

Since dW ≤ dT by hypothesis, there holds that

B(S, I, T ) − dV − κV 2 ≤ V ′ ≤ B(S, I, T ) − dWV − κV 2,

and from PF5, it follows that

bV − dV − κV 2 ≤ V ′ ≤ bV − dWV − κV 2.

Our assumptions imply that b, b, d > 0. Then, the inequalities above are equivalent to

rV

(
1 − V

K

)
≤ V ′ ≤ rV

(
1 − V

K

)
. (8)

Integrating this equation gives (5).
Now summing the equations for hosts gives

H ′ = � − dHH − δH IH . (9)

Integrating (9),

H(t) = H(0)e−dH t + e−dH t

∫ t

0
(� − δH IH (s))edH sds

= �

dH

+
(

H(0) − �

dH

)
e−dH t − δH e−dH t

∫ t

0
IH (s)edH sds

= 	(t) − 
(t),

where limt→∞ 	(t) = �/dH and 
(t) = δH

∫ t

0 IH (s)e−dH (t−s)ds. Since H(t) is nonnegative,
there holds that
(t) = 	(t) − H(t) ≤ 	(t).The integrand in
 is nonnegative, and thus
(t)
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is a nondecreasing function of t . As 
 is bounded above by 	, which has a finite limit, 
 must
therefore converge. It follows that limt→∞ 
(t) ≤ �/dH . As a consequence, the total host
population H(t) converges. From (9), it follows that � − (dH + δH )H ≤ H ′ ≤ � − dHH ,
and integrating,

�

dH + δH

+ e−(dH +δH )t

(
H(0) − �

dH + δH

)
≤ H(t) ≤ �

dH

+ e−dH t

(
H(0) − �

dH

)
.

Taking the limits in the above inequality gives (6). Finally, the boundedness of (4) is established
by combining the results obtained for V and H . �

Thus the vector component of system (4) is almost logistic, in the sense that, from (8), the
evolution of the total vector population is bounded by two logistic equations. From now on, it is
assumed that the maximal intrinsic growth rate r = b − dW > 0. This is a natural assumption,
since it implies that wild vectors are present in the absence of disease or competition.

The next result about reproduction numbers for system (4) is obtained using the method of
[34]. The present model is one case where this method must be applied carefully.

THEOREM 3.2 Consider a disease-free equilibrium of (4) taking the form

Ē := (S, I, T , SH , IH , RH ) =
(

S̄, 0, T̄ ,
�

dH

, 0, 0

)
, (10)

where S̄ and T̄ satisfy the relations

b1(S̄) + (1 − p2)b3(T̄ ) + (1 − p1)b5(S̄, T̄ ) = (dW + κS(S̄ + T̄ ))S̄ (11a)

p2b3(T̄ ) + p1b5(S̄, T̄ ) = (dT + κT (S̄ + T̄ ))T̄ . (11b)

Define the reproduction number at Ē as

R =
√

(∂fV )/(∂IH )|Ē
dW + δW + κI (S̄ + T̄ )

√
(∂fH )/(∂I )|Ē
dH + δH + γ

. (12)

Assume that conditions (A1)–(A5) in Appendix A are satisfied. If R ∈ (0, 1), then the disease-
free equilibrium (10) is a locally asymptotically stable equilibrium; if R > 1, then Ē is
unstable.

Proof In the absence of disease, the vector population is V = S + T and

BW(S, 0, T ) = b1(S) + (1 − p2)b3(T ) + (1 − p1)b5(S, T )

BT (S, 0, T ) = p2b3(T ) + p1b5(S, T ).

Further, at the disease-free equilibrium, the following relations must hold

BW(S, 0, T ) = (dW + κS(S + T ))S

BT (S, 0, T ) = (dT + κT (S + T ))T ,

giving the condition in equation (11) when (1) is used. Also, if there is no disease, then
the equations for the host population and the vector population decouple. The disease-free
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equilibrium for the host is given by

(SH , IH , RH ) =
(

�

dH

, 0, 0

)
,

and thus a disease-free equilibrium of (4) takes the form (10). Using the next generation matrix
method of [34], noting that the infective states are I and IH , write

F =
(

fV

fH

)
W =

(
(dW + δW + κIV )I

(dH + δH + γ )IH

)
.

From this, it follows that

F =
⎛
⎜⎝ 0

∂fV

∂IH
∂fH

∂I
0

⎞
⎟⎠ W =

(
dW + δW + κI (V̄ + Ī ) 0

0 dH + δH + γ

)
,

and the reproduction number with resistant vectors R is given by the spectral radius of the
matrix

FW−1 =
⎛
⎜⎝ 0

∂fV /∂IH

dH + δH + γ
∂fH/∂I

dW + δW + κI (V̄ + Ī )
0

⎞
⎟⎠

evaluated at a disease-free equilibrium. The result follows from Theorem 2 in [34], provided
that conditions (A1)–(A5) of that theorem hold. �

Note that Theorem 3.2 does not address uniqueness of the disease-free equilibrium. In
fact, the disease-free equilibrium is not in general, unique, as exemplified in the special case
of sections 4 and 5. In the case of multiple disease-free equilibria, R should be defined for
each equilibrium at which Theorem 2.2 can be applied. Further analysis is then required to
determine parameter regions where the disease might go extinct or persist in the population.

Also note that caution should be used when applying Theorem 3.2. Condition (A5) states that
the system without disease must have its spectrum to the left of the imaginary axis. In section 5,
it is shown that this is not always true; refer to the discussions following Theorems 5.1, 5.2
and 5.3 for details.

4. Special case—vectors only and no disease

In order to investigate the first objective of the paper (potential coexistence of the two vector
types, wild and resistant), system (3) is considered using a specific functional form for the
birth functions.

In this special case, it is assumed that birth obeys the following law. First, for vectors of the
same state X ∈ {S, I, T },

bi(X) = αi

2
X, (13)

where αi is the birth rate associated to each type of pair (corresponding to bi , i = 1, 2, 3,
in table 1). To describe the birth of offspring of vectors of different states X, Y ∈ {S, I, T },
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define for small η > 0, a ball Nη of radius η about the origin. Then,

bi(X, Y ) =

⎧⎪⎨
⎪⎩

αi

XY

X + Y
if (X, Y ) 	∈ Nη

αi

XY

X + Y + ε(X, Y )
if (X, Y ) ∈ Nη,

(14)

where αi is the birth rate associated to each type of pair (corresponding to bi , i = 4, 5, 6 in
table 1). The function ε is only used to resolve the problem of bi not being defined at the origin
in the case of breeding between different states. It is assumed to satisfy

(i) ε ∈ C1.
(ii) ε(0, 0) = ε0 > 0,

(iii) ε(X, Y ) ≥ 0,
(iv) ε(X, Y ) is nonincreasing in X and Y for positive X and Y ,
(v) ε(X, Y ) and its partial derivatives are zero on the boundary ∂Nη of Nη.

Note that (14) only satisfies PF3 outside Nη, so in practice, it is assumed that (X, Y ) 	∈ Nη

whenever (X, Y ) 	= (0, 0). Outside of Nη, the pair-formation function (14) satisfies the pair-
formation hypotheses PF1–4, while (13) satisfies them everywhere. Using (13) and (14),

B(S, I, T ) = α1

2
S + α2

2
I + α3

2
T + α4

SI

S + I
+ α5

ST

S + T
+ α6

IT

I + T
,

for variables outside of Nη, which we assume from now on unless otherwise specified. Let
α = mini=1,...,3{αi : αi > 0} and α = maxi=1,...,6 αi . From the ordering of birth functions (see
section 2.2.3), α = α2 and α = α1. Then, noting that

α
XY

X + Y
≤ α

XY

X
= αY,

it follows that

B(S, I, T ) ≤ α

2
V + α

(
SI

S + I
+ ST

S + T
+ IT

I + T

)
≤ 3

2
αV.

On the other hand,

B(S, I, T ) ≥ αV + α4
SI

S + I
+ α5

ST

S + T
+ α6

IT

I + T
≥ αV,

and thus PF5 is also satisfied.

4.1 Coexistence of vectors

The first question concerns the possibility for both vector types (wild and resistant) to coexist,
in the absence of disease. System (4) with only noninfectious vectors reduces to

S ′ = α1

2
S + (1 − p2)

α3

2
T + (1 − p1)α5

ST

S + T
− (dW + κS(S + T ))S (15a)

T ′ = p2
α3

2
T + p1α5

ST

S + T
− (dT + κT (S + T ))T (15b)
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Two boundary equilibria are readily found,

Ē0 := (S, T ) = (0, 0) ĒW := (S, T ) =
(

α1 − 2dW

2κS

, 0

)
,

with Ē0 obtained by using the function (14) with ε(S, T ) > 0. It is worth recalling that it is
assumed that r > 0, which translates here to (α1/2) − dW > 0, so that the S component of ĒW

is always positive. This value of S represents the equilibrium in the absence of other factors.
It is chosen as a measure of the fitness of the wild population in the absence of disease, and
is denoted FS . A similar quantity FT can be defined for the resistant population, taking into
account the proportion of (T , T ) pairings with T offspring. Thus, the fitness for the susceptible
wild and resistant populations, in the absence of disease and interbreeding, are

FS = α1 − 2dW

2κS

and FT = p2α3 − 2dT

2κT

, (16)

respectively. Because of the assumptions made in section 2.2.3, there always holds that

FS ≥ FT .

Note, also, that while FS > 0, FT can be negative. The definition of fitness given by (16) is
not exactly the one that would be given by using, for example, the methods in [35, 36], since
(16) has a unit of vector population size. Proceeding this way, however, allows for a compact
formulation of most results while retaining closeness to the classic notion of reproductive
fitness.

The existence of an additional equilibrium point and the stability of the various equilibria
are determined by the following theorem.

THEOREM 4.1 The extinction equilibrium Ē0 is always unstable. Additionally, suppose that
p2 < 1. Then:

(a) If FS − FT < (p1α5/κT ), then system (15) has a coexistence equilibrium point ĒC , which
is globally asymptotically stable; the equilibrium with only wild vectors, ĒW , is unstable.

(b) If FS − FT ≥ (p1α5/κT ), then system (15) has no coexistence equilibrium point, and
the equilibrium with only wild vectors, ĒW , is globally asymptotically stable.

Interpretation. FS is a characteristic of the wild species in the absence of disease. FS − FT

measures the relative fitnesses of wild and resistant vectors in the absence of disease and
interbreeding. If the fitness advantage of wild vectors relative to resistant vectors decreases
past a threshold, then the resistant vectors become established in the population. This threshold,
p1α5/κT , is the contribution to resistance from interbreeding.

Proof Conditions for the existence of the coexistence equilibrium ĒC are established in
Appendix B.

At Ē0 = (0, 0), i.e. in Nη, the Jacobian matrix Df takes the form

DfĒ0
=

⎛
⎝κSFS

(1 − p2)α3

2
0 κT FT

⎞
⎠ ,

and has eigenvalues λ1 = κSFS > 0 and λ2 = κT FT . It follows that Ē0 is always unstable.



332 J. Arino et al.

At an arbitrary point (S, T ) 	∈ Nη, the Jacobian matrix is given by Df = [jik], where

j11 = κSFS + (1 − p1)α5
T 2

(S + T )2
− κS(2S + T ),

j12 = (1 − p2)α3

2
+ (1 − p1)α5

S2

(S + T )2
− κSS,

j21 = p1α5
T 2

(S + T )2
− κT T ,

j22 = κT FT + p1α5
S2

(S + T )2
− κT (S + 2T ).

At ĒW , the eigenvalues

λ1 = −κSFS and λ2 = −κT

(
FS − FT − α1p5

κT

)

are found. Thus, denoting LAS a locally asymptotically stable equilibrium,

Sign λ1 Sign λ2 ĒW

FT + p1α5
κT

< 0 < FS − − LAS

0 < FT + p1α5
κT

< FS − − LAS

FS < FT + p1α5
κT

− + Unstable

Case (b) in the Theorem corresponds to the first and second lines in this table.
When ĒC exists, that is, if FS − FT < (p1α5/κT ), ĒW is unstable. Using the Dulac function

ω = 1/(ST ) on the vector field f , the divergence of the Jacobian takes the form

div(Dωf ) = − (1 − p2)α3

2S2
− κT

S
− κS

T
− α5

(S + T )2

which is always negative in the positive quadrant, and thus there are no periodic orbits,
homoclinic orbits or heteroclinic cycles for system (15). Since solutions of (15) are bounded
(Theorem 3.1), it follows that ĒC , when it exists, is globally asymptotically stable in the
interior of R

2+.
When ĒC does not exist, then ĒW is locally asymptotically stable and using the same

argument, is globally asymptotically stable. �

Figure 2 shows nullclines of (15). Using notations as in Appendix B, the nullcline of (15a)
is the curve �S = 0, represented by a dashed line. The nullcline of (15b) consists of the curve
�T = 0 (the parabolic arc joining both axes, shown as a continuous line), together with the
S-axis. The coexistence equilibrium ĒC , when it exists, lies at the intersection of the curves
�S = 0 and �T = 0 (top left figure). In the case of the figure on the bottom, a transcritical
bifurcation has taken place at the point where �S = 0 and �T = 0 coincide on the S-axis. As
the curve �S = 0 moves to the right (this is achieved here by increasing α1), the equilibrium
ĒC at the intersection of �S = 0 and �T = 0 exchanges stability with ĒW (and becomes
irrelevant biologically).
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Figure 2. Left column: nullclines of (15a) (�S = 0, dashed lines) and (15b) (�T = 0, continuous line), in the case
p2 < 1, as in section 4.1. Right column: a few corresponding sample solutions. First row: case 1 in Theorem 4.1, where
FS − FT < (p1α5/κT ) (both ĒW and the coexistence equilibrium ĒC exist, ĒC is globally asymptotically stable).
Second row: case 2 in Theorem 4.1, where FS − FT ≥ (p1α5/κT ) (only ĒW exists, and is globally asymptotically
stable).

Note that Theorem 4.1 implies that at ĒC , when it exists, both eigenvalues of DfĒC
have

negative real parts, which is used in Theorem 4.2.

4.2 Another equilibrium can exist when there is no loss of resistance

Suppose now that p2 = 1, i.e. there is no loss of resistance in the offspring of two resistant
parents. Additionally to Ē0, ĒW and, when it exists, ĒC , the additional equilibrium is found

ĒT := (S, T ) = (0, FT ) ,

which is biologically meaningful when FT ≥ 0. Note that here, FT = (α3 − 2dT )/(2κT ), since
p2 = 1. The situation that prevails in this case is summarized in the following theorem.

THEOREM 4.2 Ē0 is unstable. Suppose that p2 = 1. Then the existence and stability of the
equilibria ĒW , ĒC and ĒT are summarized in the following table.
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ĒW ĒC ĒT

FT ≤ 0 FS − FT >
p1α5

κT

GAS DNE DNE

FS − FT <
p1α5

κT

Unstable GAS DNE

FT > 0 FS − FT >
p1α5

κT

GAS DNE Unstable

− (1 − p1)α5

κS

< FS − FT <
p1α5

κT

Unstable GAS Unstable

FS − FT < − (1 − p1)α5

κS

Unstable DNE GAS

(DNE: Does Not Exist, GAS: Globally Asymptotically Stable).

Interpretation. Here, the mating of T vectors always leads to T offspring. This hypothesis
can be interpreted as an absence of reversion, i.e. resistance cannot be lost. In this case, if the
fitness of resistant vectors is positive, another situation with only resistant vectors becomes
possible. When the fitness of resistant vectors relative to the fitness of wild-type vectors is
very large, then the outcome of competition is the presence of only resistant vectors. For lower
values of the fitness of resistant vectors, the situation is very similar to that of the case with
reversion (Theorem 4.1). See figure 3.

Proof The instability of Ē0 is proved as before. It is possible here to compute explicitly the
value of the coexistence equilibrium. Using Maple, and after some manipulations, it is found
that at ĒC ,

S = ((1 − p1)α5κT + κSκT (FS − FT )) ((1 − p1)(p1α5 + κT FT ) + p1κSFS)

(p1(κT − κS) − κT )2α5

and

T = (p1α5κS − κSκT (FS − FT )) ((1 − p1)(p1α5 + FT ) + κSFS)

(p1(κT − κS) − κT )2α5
.

Figure 3. Regions of existence and stability of the various equilibria, in the absence of disease, in the wild and
resistant fitness plane, as given by Theorem 4.2 (p2 = 1).
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In the proof of the existence part of Theorem 4.1 (Appendix B), the following modifications
must be made to take into account that p2 = 1. The vertical asymptote of �S = 0 now becomes
the T -axis, and the cubic �S = 0 becomes reducible, the union of a simple conic section and
the T -axis. Thus the T -axis is a nullcline for (15b), and there can exist another equilibrium, ĒT ,
if �T = 0 intersects the T -axis for T > 0. This gives the conditions for the existence of ĒT .

At ĒT , the jacobian matrix takes the form

DfĒT
=

(
κS(FS − FT ) + (1 − p1)α5 0

p1α5 − κT FT −κT FT

)
,

and so the stability of ĒT is determined by the sign of κS(FS − FT ) + (1 − p1)α5. The global
stability of the equilibria then follows by using the same Dulac function as in the proof of
Theorem 4.1, the boundedness of solutions given by Theorem 3.1, and the existence, in each
of these cases, of a unique locally stable equilibrium point. �

The regions in the (FT , FS)-plane that are deduced from Theorem 4.2 are illustrated in
figure 3.

4.3 The competitive exclusion principle holds in the absence of interbreeding

From Theorem 4.1, both wild and resistant vector strains can coexist in the absence of disease.
This is quite different from the standard context of competition models, where the competitive
exclusion principle usually holds. This principle states that the species that is most adapted
to survival when resources are low, survives the competition, and all others become extinct.
Intuitively, the coexistence must stem here from interbreeding.

To ascertain this, consider now system (15) without interbreeding of vectors (α5 = 0) or
reversion (p2 = 1),

S ′ = α1

2
S − (dW + κS(S + T ))S (17a)

T ′ = α3

2
T − (dT + κT (S + T ))T . (17b)

The following result holds, which shows that in this case, the competitive exclusion principle
holds, with wild vectors always winning the competition.

THEOREM 4.3 System (15) with α5 = 0 and p2 = 1, i.e. system (17), has three equilibria, Ē0,
ĒW and ĒT , with Ē0 and ĒT unstable, and ĒW globally asymptotically stable.

Proof The same three equilibria Ē0 and ĒW (section 4.1), and ĒT (section 4.2), are found.
At the origin, eigenvalues are

λ1 = κSFS > 0 and λ2 = κT FT ,

and thus the origin is always unstable. At ĒW , eigenvalues are

λ1 = −κSFS and λ2 = −κT (FS − FT ),

whereas at ĒT , they are

λ1 = −κT FT and λ2 = κS(FS − FT )

It follows that, depending on the sign of FS − FT , one of the equilibria ĒW or ĒT is locally
asymptotically stable, and the other is unstable. If FS > FT , then wild vectors are better
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fitted for competition and they dominate resistant vectors. If FS < FT , then the situation is
reversed. Because of the assumptions on fitness (see section 4.1), it holds that FS > FT ; so
ĒW is locally asymptotically stable and ĒT is unstable. Here, the Dulac function ω = 1/(ST )

gives the divergence div(Dωf ) = −κT /S − κS/T < 0 for all (S, T ) ∈ R
2+\{(0, 0)}, and since

solutions are bounded by Theorem 3.1, ĒW is globally asymptotically stable. �

Note that this conclusion is very similar to that drawn in [27]. Indeed, suppose a reversed
fitness situation, as would be the case in the presence of disease. Then the resistant vectors
become established, driving the wild ones extinct.

5. Special case—disease dynamics in the full system

To address the second objective of the paper, namely, to assess the effect of resistance on the
transmission dynamics, the full six-dimensional system (4) is now considered.

5.1 Force of infection

Let c1 = c1(V , H) be the rate at which bites are received by a single host per unit time. Let
c2 be the per-capita biting rate of vectors (on a host); for simplicity, assume that, within the
population of interest, c2 is a constant. This is a justified assumption; for mosquitoes, for
example, the female has a certain number of blood meals over its lifetime.

For the number of bites to be conserved (that is, the total number of vector bites all hosts
get equals the total number of bites made by all vectors), the following relation must hold:

c1(V , H)H = c2V. (18)

The force of infection in vectors is given by

fV = c2β
IH

H
S,

where β is the probability of transmission of the pathogen. Similarly, the force of infection in
hosts is given by

fH = c1(V , H)β
I

V
SH = c2β

SH

H
I,

since c1(V , H) = c2V/H from (18). This formulation is consistent with that in [37].

5.2 The model

With the assumptions on the birth and force of infection functions, system (4) takes the form

S ′ = BW(S, I, T ) − (dW + κSV )S − c2β
SIH

H
(19a)

I ′ = c2β
SIH

H
− (dW + δW + κIV )I (19b)

T ′ = BT (S, I, T ) − (dT + κT V )T (19c)

S ′
H = � + νRH − c2β

SHI

H
− dHSH (19d)
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I ′
H = c2β

SHI

H
− (dH + δH + γ )IH (19e)

R′
H = γ IH − (dH + ν)RH , (19f)

where BW and BT are given from (1) by

BW(S, IT , T ) = α1

2
S + α2

2
I + (1 − p2)

α3

2
T + α4

SI

S + I

+ (1 − p1)

(
α5

ST

S + T
+ α6

IT

I + T

)

and

BT (S, IT , T ) = p2
α3

2
T + p1

(
α5

ST

S + T
+ α6

IT

I + T

)
.

5.3 Analysis—case of no intervention

In order to assess the effect of resistant vectors, the behavior of the system in the absence of
resistant vectors, i.e. when T ≡ 0, is first studied. This describes the disease dynamics in its
natural setting, without any outside intervention. From PF4, setting T = 0 in (19c) implies
that T remains identically zero in (19). Recall that in the absence of disease, the vector and
host subsystems decouple. In this case, there are two equilibria for the vector component,
one with S = 0, Ē0, and another with S = FS , ĒW . To each of these two-vector equilibria
corresponds the unique disease-free equilibrium for the host component, SH = �/dH . As a
consequence, in the vector–host system, there are two equilibria Ẽ0 and ẼW without disease.
Proceeding as in the proof of Theorem 3.2, the following theorem can be established, which
gives the basic reproduction number RW in the absence of resistant vectors.

THEOREM 5.1 For system (19) without resistant vectors (T ≡ 0), there are two disease-free
equilibria. The equilibrium

Ẽ0 := (S, I, T , SH , IH , RH ) =
(

0, 0, 0,
�

dH

, 0, 0

)

is always unstable. Now, let

RW =
√

c2βFS

dW + δW + κI FS

√
c2β

dH + δH + γ

dH

�
. (20)

If RW < 1, then the equilibrium

ẼW := (S, I, T , SH , IH , RH ) =
(

FS, 0, 0,
�

dH

, 0, 0

)

is locally asymptotically stable, whereas it is unstable if RW > 1.

Proof At the equilibrium Ẽ0, the Jacobian matrix has the eigenvalues −(dW + δW ), κT FT ,
−dH , −(dH + δH + γ ), −(dH + ν) and κSFS > 0, giving the instability of Ẽ0. The expression
of (20) and the stability of ẼW is a direct application of Theorem 3.2 with T ≡ 0. �

Remark that it is not possible to use Theorem 3.2 at Ẽ0, since Ẽ0 is always unstable even
in the system without disease, implying that assumption (A5) in Theorem 3.2 does not hold.
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5.4 Analysis—full system

The disease-free equilibria of the full system (19) are the equilibria found for the simplified
system (15) with only vectors studied in section 4, together with the equilibrium without
disease for the hosts component.

Thus, the equilibria Ẽ0 and ẼW (as given in Theorem 5.1) are the equilibria with no vectors
and only the wild vectors present, respectively. Also, when they exist,

ẼT :=
(

0, 0, FT ,
�

dH

, 0, 0

)

is the equilibrium where only the resistant vectors survive, and

ẼC :=
(

S̃, 0, T̃ ,
�

dH

, 0, 0

)

is the coexistence equilibrium, where both wild and resistant vectors are present, with the
vector components of S̃ and T̃ obtained as in Theorem 4.1. At the coexistence equilibrium
ẼC , when it exists, define the reproduction number with resistant vectors,

RC =
√

c2βS̃

dW + δW + κI (S̃ + T̃ )

√
c2β

dH + δH + γ

dH

�
, (21)

using Theorem 3.2.

THEOREM 5.2 Ẽ0 is always unstable. Additionally, if p2 < 1, then:

(a) If FS − FT < (p1α5/κT ), then both ẼW and ẼC exist, with ẼW always unstable. If
RC < 1, then ẼC is locally asymptotically stable; if RC > 1, then ẼC is unstable.

(b) If FS − FT > (p1α5/κT ), then ẼC does not exist. If RW < 1, ẼW is locally asymptotically
stable, whereas it is unstable if RW > 1.

Interpretation. This is similar to the situation with no disease and only vectors. The effect
of resistant vectors on the disease dynamics is shown in particular in Case (a), where there is
coexistence of both types. The disease cannot go extinct without intervention, since ẼW , the
equilibrium for the disease in its natural setting, is unstable, but could potentially be brought
to extinction if RC < 1. Note that the results obtained are only local, implying a possibility
of control of the disease, not a certain outcome.

Proof The instability of Ẽ0 is established in Theorem 4.1. The conditions for existence of
ẼW and ẼC are the same as in Theorem 4.1.

Case (a). The stability of ẼC follows from Theorem 3.2.At ẼW , there is an unstable manifold
of dimension at least equal to 1, corresponding to the unstable manifold of dimension 1 of ĒW

found in the case FS − FT > p1α5/κT in the proof of Theorem 4.1. This implies that ẼW is
unstable.

Case (b). The stability of ẼW is considered in Theorem 5.1. �

Note that in Case (a), the system without disease, which decouples into independent com-
ponents for vectors and hosts, has its vector component governed by Case (a) in Theorem 4.1:
when ĒC exists, ĒW is unstable. This implies that in this case, in the absence of disease ẼW is
always unstable, so condition (A5) of Theorem 3.2 is not fulfilled at ẼW , and RW as defined
by Theorem 3.2 plays no role in determining the stability of ẼW .
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THEOREM 5.3 Ẽ0 is unstable. Suppose that p2 = 1. Firstly, if FT ≤ 0, then the existence and
stability of the equilibria ẼW , ẼC and ẼT is summarized in the following table:

ẼW ẼC ẼT

FS − FT >
p1α5

κT

LAS if RW < 1 DNE DNE
Unst. if RW > 1

FS − FT <
p1α5

κT

Unst. LAS if RC < 1 DNE
Unst. if RC > 1

Secondly, if FT > 0, then the existence and stability of the equilibria ẼW , ẼC and ẼT is
summarized in the following table:

ẼW ẼC ẼT

FS − FT >
p1α5

κT

LAS if RW < 1 DNE Unst.
Unst. if RW > 1

− (1 − p1)α5

κS

< FS − FT <
p1α5

κT

Unst. LAS if RC < 1 Unst.

Unst. if RC > 1

FS − FT < − (1 − p1)α5

κS

Unst. DNE LAS

(DNE: Does Not Exist, LAS: Locally Asymptotically Stable, Unst.: Unstable).

Interpretation. In the case where there is no reversion, resistant vectors can only invade the
population if their fitness advantage over the wild vectors is sufficiently large. Note that the
fitness advantage required for resistant vectors to have the possibility of invading the vector
population in this case, is the same as the one required in the absence of disease (as given by
Theorem 4.2).

Proof Remark that FT > 0 is the condition for existence of ĒT in Theorem 4.2, and as a
consequence, of ẼT . Suppose now that ẼT exists. At ẼT , the Jacobian matrix takes the form

JẼT
=

(
J11 0
∗ J22

)
,

with J11 given by⎛
⎜⎝κS(FS − FT ) + (1 − p1)α5

α2

2
+ (1 − p1)α6 0

0 −(dw + δW ) − κI FT 0
p1α5 − κT FT p1α6 − κT FT −κT FT

⎞
⎟⎠

and

J22 =
⎛
⎝−dH 0 ν

0 −(dH + δH + γ ) 0
0 γ −(dH + ν)

⎞
⎠.

Clearly, J22 has all its eigenvalues negative, and it follows that the stability of ẼT depends
solely on J11. Then |J11 − λI | can be computed by developing along the third column, giving
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eigenvalues

κS(FS − FT ) + (1 − p1)α5,

−(dw + δW ) − κI FT and −κT FT . The latter two are negative if ẼT exists, and the local
asymptotic stability of ẼT is thus determined by the sign of the first one. �

It is interesting to note that Theorem 3.2 cannot be applied to ẼT . Indeed, ordering the
variables as I, IH , S, T , SH , RH , it follows that when evaluated at ẼT , the block in the jacobian
matrix corresponding to the variables S, T is([J11]11 [J11]13

[J11]31 [J11]33

)

with J11 as in the proof above. It follows that condition (A5) of Theorem 3.2 is not satisfied
when ẼT is unstable. Note also that the same remark holds for RW at ẼW and RC at ẼC when
their corresponding vector components are unstable in Theorem 4.2.

The last result concerns the relationship between the basic reproduction numbers RW in the
natural setting and RC with resistant vectors. As remarked earlier, these two numbers cannot
be defined simultaneously in the context of Theorem 3.2. It is, however, possible to compare
the expressions obtained when both equilibria exist simultaneously, without considerations
on stability.

THEOREM 5.4 At the coexistence equilibrium ẼC , when it exists, there holds that

RC < RW,

where RW is defined in the absence of resistant vectors (T = 0) by (20), and RC is defined
with resistant vectors by (21).

Interpretation. If conditions are such that the resistant vectors can coexist with the wild
vectors, then the potential for effective control of the disease is better than in the natural case.

Proof Suppose that ẼC exists. The expression for RC is then obtained using Theorem 3.2.
Also, there holds that S̃ + T̃ ≥ FS . Indeed, using the notations of Appendix B, (S̃, T̃ ) ∈
{�S = 0}. This implies that, using the expression for �S = 0,

S̃(S̃ + T̃ )2 = FSS̃
2 + α3(1 − p2)

2κS

T̃ 2 +
(

FS + α3(1 − p2) + 2α5(1 − p1)

2κS

)
S̃T̃

≥ FS(S̃
2 + S̃T̃ ),

and so

(S̃ + T̃ )2 ≥ FS(S̃ + T̃ ).

Now, comparing RW and RC , there holds that

RC < RW ⇐⇒ S̃

dW + δW + κI (S̃ + T̃ )
<

FS

dW + δW + κI FS

⇐⇒ κI T̃ > (dW + δW )

(
S̃

FS

− 1

)
.
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Using S̃ + T̃ ≥ FS , it follows that

RC < RW ⇐⇒ κI T̃ > (dW + δW )

(
S̃

S̃ + T̃
− 1

)

⇐⇒ κI > −dW + δW

S̃ + T̃
,

which is always satisfied. �

6. Discussion

In this paper, an ordinary differential equations model for the spread of pathogen resistance in
the vectors of a vector-borne disease is formulated. Two vector types are considered: wild and
resistant. A phenomenological description of pathogen-resistance inheritance is incorporated:
the two types interbreed, and a given proportion of the offspring of resistant vectors are
resistant. It is also assumed that resistance comes at the cost of a reduced fitness, which is
modeled by supposing that resistant vectors have lower reproduction rates and higher rates of
natural and competition-induced mortalities. It is proved that:

(i) The spread of pathogen resistance in the vector population is possible in the absence of
disease. This is established by analyzing the vector only system in the absence of disease
(Theorems 4.1 and 4.2).

(ii) Pathogen resistence of the vectors leads to a reduction of the reproduction number, thereby
making control of the disease potentially more feasible (Theorem 5.4).

These conclusions are not altogether unexpected, and are in line with the numerical results of
[14], which are obtained using a discrete generation genetic model. By using a continuous time
description rather than a discrete time one, the model avoids some of the complicated behavior
that is inherent to discrete time models (for example, two models in [38] are shown to exhibit
chaotic behavior). Also, an interesting conclusion of the model is that resistance can become
established in the vector population, even when there is the possibility of reversion, if the
fitness disadvantage of resistance is balanced by the ability of resistance to be propagated by
interbreeding. The measures of fitness of vectors used are easy to parametrize, as they involve
the birth and death rates, as well as the competition coefficients, which can be deduced from
the equilibrium values of wild and resistant vectors in the absence of disease.

Mathematically, the model also has interesting features. The existence of up to four disease-
free equilibria is quite unusual. This is due to the multiple nonlinearities that are present even
in the absence of disease. To circumvent the difficulties inherent to these nonlinearities, it was
necessary to use ideas from projective geometry to show the existence and uniqueness of the co-
existence equilibrium.Another interesting characteristic is the fact that, contrary to many mod-
els, it is here not always possible to use the result of [34] to estimate the basic reproduction
number and its influence on the local asymptotic stability of disease-free equilibria. It appears
that, at a given point in parameter space, Theorem 3.2 can only be used at one of the disease-
free equilibria, namely, the one that is globally stable. Whether this is a feature of the present
model, or a more general characteristic of the method of [34], raises interesting mathematical
questions.

This paper is a preliminary work. The modeling of resistance and its inheritance should
be made more realistic. Also, the model is complicated and some of the more challenging
mathematical aspects have not been tackled. The existence of endemic equilibria in the full,
six-dimensional case, is a hard problem, and is left untouched here.Also, it is not certain that in
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the cases RW < 1 and RC < 1, the disease indeed goes extinct (Theorem 5.2 is a local result).
Numerical simulations seem to indicate that such is the case, but so far this fact is not proved.
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Appendix A: Hypotheses for the van den Driessche and Watmough method

To compute reproduction numbers for a general epidemic model x ′ = f (x), with x ∈ R
n, [34]

suppose that it is written in the form

x ′
i = fi(x) = Fi (x) − Wi (x), i = 1, . . . , n,

with Wi = W−
i − W+

i , and where the m ≤ n variables considered are those corresponding
to infective states; for example, I and IH in system (4). Let

Xs = {x ≥ 0 : xi = 0, i = 1, . . . , m}
be the set of all disease-free states. States xi for i > m are the uninfected compartments; for
example, S, T , SH , RH in system (4). The following assumptions are made:

(A1) If x ≥ 0 then Fi , W−
i , W+

i ≥ 0 for i = 1, . . . , n.
(A2) If xi = 0, then W−

i = 0. In particular, if x ∈ Xs , then W−
i = 0 for i = 1, . . . , m.

(A3) Fi = 0 for i > m.
(A4) At a disease-free equilibrium, Fi = W+

i = 0 for i = 1, . . . , m.
(A5) If F(x) is set to zero, then all eigenvalues of the Jacobian matrix Df (x0) have negative

real parts at a DFE x0 ∈ Xs .
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Appendix B: Proof of the existence part of Theorem 4.1

Proof To find nontrivial equilibria, suppose that (15) is at equilibrium and multiply both
equations by S + T . This gives equations for the nullclines for (15a),

�S(S, T ) = 0, (B1)

and for (15b), the union of the plane curves T = 0 and

�T (S, T ) = 0, (B2)

where

�S(S, T ) = κSS(S + T )2 − κSFSS
2 − α3(1 − p2)

2
T 2

−
(

κSFS + α3(1 − p2)

2
+ α5(1 − p1)

)
ST

and

�T (S, T ) = κT (S + T )2 − (κT FT + p1α5) S − κT FT T .

The nontrivial equilibria of (15) are found at the intersections of the plane curves defined by
(B1) and (B2), and at the intersections of (B1) and T = 0. Since the curve defined by (B1) is
a cubic and that the curve defined by (B2) is a conic section, it follows from Bézout’s theorem
that there are six points of intersection (real or complex, and including multiplicities) [39].
Since �T (S, T ) = κT (S + T )2 + R1(S, T ) and �S(S, T ) = κSS(S + T )2 + R2(S, T ), where
R1 and R2 are first-, and second-degree polynomials, respectively, �T = 0 and �S = 0 have
a common double point at infinity (on the second bisectrix), and the origin is also a common
double point. So there remain two intersection points, real or complex, to account for.

These two points cannot lie on the T -axis, and therefore they also belong to the conic section
�(S, T ) = 0, where

�(S, T ) = κSS�T (S, T ) − κT �S(S, T ).

To find the two remaining points of intersection of �T = 0 and �S = 0, � = 0 can be used.
The remainder of the proof is as follows:

• first, show that � = 0 consists of two lines,
• if FS − FT > (p1α5/κT ), they have no intersection with the positive quadrant (no

coexistence equilibrium -no CEP-),
• if FS − FT < (p1α5/κT ), one of them intersects the positive quadrant (undetermined),

• to lift this indetermination, turn to �T = 0 and show that
• either �T = 0 does not intersect the first quadrant (no CEP),
• or �T = 0 intersects the first quadrant with two positive intercepts (CEP),
• or �T = 0 is a parabolic arc containing the origin (undetermined),

• in the latter case, the line of � = 0 through the first quadrant is shown to intersect �S = 0
(CEP).

Define, using (16), FS the S-intercept of �S = 0, FT + (p1α5/κT ) the S-intercept of �T = 0,
and FT , the T -intercept of �T = 0.
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Study of � Dividing � by κSκT gives

�(S, T ) =
(

FS − FT − p1α5

κT

)
S2 + (1 − p2)α3

2κS

T 2

+
(

FS − FT + (1 − p2)α3 + 2(1 − p1)α5

2κSκT

)
ST .

This conic section degenerates into two lines. The following cases are theoretically possible
[40, pp. 205–206]: a pair of imaginary lines with a common real point, a pair of intersecting
lines, or a double line. But here, only the real cases occur. Indeed, suppose that the conic
section consists of two lines L1 and L2 intersecting at the origin and taking the form

(a1S − T )(a2S − T ) = 0.

Identifying with the terms in �(S, T ) = 0, it follows that

a1a2 = 2κS (FS − FT − p1α5/κT )

(1 − p2)α3

and

a1 + a2 = −2κS (FS − FT )

(1 − p2)α3
− (1 − p2)α3 + 2(1 − p1)α5

(1 − p2)α3κT

.

Writing this as a1 + a2 = A and a1a2 = B, a1 and a2 are found as roots of the polynomial
X2 − AX + B. The discriminant of this polynomial is A2 − 4B = (a1 − a2)

2 > 0, and there-
fore a1 and a2 are real valued. The exact values of a1 and a2 are not needed to study � = 0,
just their signs. There are two cases.

If FS > FT + (p1α5/κT ), then a1a2 > 0, implying that the lines L1 and L2 have slopes with
the same sign, which is the same as the sign of a1 + a2. Rewriting the terms in a1 + a2 gives

a1 + a2 > 0 ⇐⇒ FS − FT < − (1 − p2)α3 + 2(1 − p1)α5

2κSκI

⇐⇒ FS − FT < 0.

It was seen earlier that FT + (p1α5/κT ) > FT , and so FS > FT . It follows that a1 + a2 <

0 when FS > FT + (p1α5/κT ); so both L1 and L2 have negative slopes, and � = 0 has
no intersection with �T = 0 in the positive quadrant. This gives the condition 0 < FT +
(p1α5/κT ) ≤ FS in part 2 of the theorem.

If FS < FT + (p1α5/κT ), it follows that a1a2 < 0, implying that L1 and L2 have slopes
with opposite signs. In the rest of the proof, assume, without loss of generality, that L1 is the
line that intersects the first quadrant.

Study of �T The origin belongs to the curve �T = 0. An algebraic calculation shows that,
provided κT , p1, α5 	= 0, (B2) is a parabola in the coordinate system rotated of an angle 3π/4.
Also, there always holds that FT + (p1α5/κT ) > FT , so that the parabola always opens towards
the fourth quadrant of the (S, T )-plane. There are three cases.

If both intercepts are negative, there is no intersection of the conic section with the positive
quadrant and thus there are no positive equilibria (and the boundary equilibrium ĒT is not
feasible). This gives the condition FT + (p1α5/κT ) < 0 (< FS) in the part 2 of the theorem.

If both intercepts are positive, the intersection of the conic section defined by �T = 0 with
the positive quadrant of the (S, T )-plane consists in a concave down parabolic arc between
both intercepts. There is one point of intersection between �T = 0 and L1 in the positive
quadrant.
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If only FT + (p1α5/κT ) is positive, then the intersection of �T = 0 with the positive quad-
rant consists in the concave down parabolic arc joining FT + (p1α5/κT ) to the origin, and so
the intersection with L1 is undetermined (there might not be an intersection, if the slope of
�T = 0 at the origin were less than the slope of L1).

Study of �S Use the cubic �S = 0; letting T → ∞ in �S = 0 gives that S = (1 − p2)α3/

(2κS) is a vertical asymptote of �S , and it follows that � = 0 intersects �S = 0 in the positive
quadrant. The first assertion in the theorem is proved, completing the proof of the existence
part of Theorem 4.1. �




