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Abstract

Motivation is provided for the development of infectious disease models that incorporate the movement
of individuals over a range of spatial scales. A general model is formulated for a disease that can be trans-
mitted between different species and multiple patches, and the behavior of the system is investigated in the
case in which the spatial component consists of a ring of patches. The influence of various parameters on
the spatial and temporal spread of the disease is studied numerically, with particular focus on the role of
quarantine in the form of travel restriction.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Epidemics have been observed and documented for millennia. While, traditionally, mathematical
models of disease spread have tended to ignore or downplay spatial dynamics, the spatio-temporal
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spread of epidemic diseases was noticed early on. Thucydides, himself a victim of the plague of Ath-
ens in 430 B.C. (and one of the few to later recover), reports [37] that
It first began, it is said, in the parts of Ethiopia above Egypt, and thence descended into
Egypt and Libya and into most of the King�s country. Suddenly falling upon Athens, it first
attacked the population in Piraeus . . . and afterwards appeared in the upper city, when the
deaths became much more frequent.
Since then, the spatial spread of infection has been observed many times. Notable examples in-
clude the Black Death (plague) in Europe in the 1300s, smallpox in the New World in the 1500s
[26,47], followed by measles and diptheria. More recently, HIV/AIDS which emerged in 1981,
West Nile virus in North America in the late 1990s [31], and SARS in Asia in 2003 [45] have
clearly exhibited spatial spread over vast regions, often jumping continents.

Some determining factors for spatial spread are well-understood, see, e.g. [3]. On a local scale,
contacts between infective and susceptible individuals lead to the buildup of the epidemic. Then,
on a somewhat larger scale, it is through contacts between individuals living in distinct, yet rela-
tively close, regions that a disease becomes spatially mobile. However, with rapid, long distance
travel of individuals (via airplane, for example), the situation is far more complicated.

Traditionally, models for the spatial spread of diseases employ partial differential equations.
Typical assumptions are of two types; see [30] and the references therein. Either there is diffusion
of infection-bearing individuals in a susceptible population, or the receptors of the disease are
fixed and the infectious agent diffuses among them.

There are, however, important situations in which these approaches are not appropriate. One
such situation concerns the spread of disease through sparsely populated regions. As an illustra-
tion, consider the Canadian province of British Columbia (BC), which has a surface area of
950000 km2, roughly the same as the combined surface area of France, Germany and the Neth-
erlands (FGN). The population of BC is estimated, as of July 2004, at 4.2 million, whereas the
combined population of FGN is 160 million. Moreover, there are 134 municipalities in BC versus
53000 for FGN, and in BC more than 75% of the population lives in the areas of Greater Van-
couver and Greater Victoria and in 9 other towns, each having more than 50000 inhabitants.
Compared to FGN, therefore, BC is a sparsely populated expanse of land with pockets of densely
populated cities. While the diffusion approximation for spatial spread may be appropriate in indi-
vidual, heavily populated cities in BC, it is clear that the rate of spread through less populated
regions is quite different. At the very least, density-dependent (and either explicitly or implicitly
spatially-dependent) diffusion coefficients are required to model the spread throughout the prov-
ince. But even then, the model would not capture a situation where the disease jumps from one
city to another before it spreads to regions in between.

Rapid transportation and, in particular, air travel, has changed the way epidemics spread.
Whereas the well known case of the spread of rabies [30] is a perfect illustration of diffusion of
infectious agents, the SARS epidemic in the spring of 2003 has made it clear that human diseases
spread in a distinctly non-diffusive manner.

For diseases that involve several species that move at different rates and/or follow different
migration patterns, it is all the more important to accurately model the spatial dynamics. Bubonic
plague involving fleas, rodents and humans; and avian influenza involving poultry and humans
are such examples. West Nile virus, the cycle of which involves birds and mosquitoes, is another
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important example. The crucial role of species-dependent mobility rates and migration patterns
can be highlighted by considering the foot-and-mouth disease outbreak in the UK in 2001 [14].
Cattle (and sheep) are very mobile, as they are frequently bought and sold. In the initial phase
of the epidemic, before the disease was spotted, infected cattle were transported from farm to
farm. After some infected cattle were diagnosed and the problem was recognized, it took some
time until the political decision was made to ban all cattle movement in the UK. By that time,
infected cattle had already been distributed between a large number of farms. The problem was
exacerbated by the fact that humans, though not affected by the disease, could, and did, carry
the virus from infected to uninfected herds. We can see, therefore, that in order to capture the
spatial spread of foot-and-mouth disease, it is necessary to model the transportation networks
along which cattle are transported between farms, and in addition, the model should include
the unintentional spread of the disease by humans. The situation is similar for avian influenza.
Infection can occur through contact of a bird with an infected bird, but also with infected manure;
the latter can stay infected for months, and can be carried by wild birds or even humans [2]. For
diseases that affect animals and insects (vectors) and can also be passed on to humans [44], it is
important to accurately model not only the contact/mixing between humans and the various spe-
cies, but also the movement patterns of each of the species involved, including that of humans.

Another source of heterogeneity in epidemics has its origin in social grouping. Mixing patterns
can vary according to social groups, where this factor of aggregation should be considered in a
very wide sense. Social patterns may differ from country to country or from region to region with-
in a given country, leading to regional heterogeneities in contact or mixing structures (see, e.g. [36]
for estimations of the mixing of populations with regards to AIDS in Western Europe). But the
variations can occur on even finer scales; see, e.g. [41] for comparisons between five US cities, and
[25] for observations on socio-economical determinants of the persistence of plague in a district of
Tanzania. Other demographic and epidemiological parameters, such as lifespan, incubation and
infectious periods can also be expected to vary geographically, as can the availability and type
of intervention and control measures.

Geographic heterogeneities thus play a fundamental role in the spatial spread of infectious dis-
eases. Nevertheless, much of classical mathematical epidemiology has tended to minimize geo-
graphic heterogeneity and related spatial aspects of deterministic epidemic models. One of the
earliest exceptions is found in the work of Baroyan et al. [7,8] which considers the spatial spread
of influenza between cities in the Soviet Union. In their approach, a large geographic region
(country) is partitioned into smaller sub-regions (cities). Migration and transportation between
these cities are explicitly incorporated, and within a given city disease transmission is modeled
by a discrete deterministic compartmental SIR model. An SEIR (susceptible, exposed, infective
and removed) version of this model was used recently [20] to study the spread of influenza between
52 major world cities. A model for the spread of influenza, using airline data for the 33 largest US
cities for 1996–2001, has also been studied [24]. Grenfell et al. [21] used wavelet time series analysis
to show that (in the pre-vaccine era) waves of measles infection moved regionally from large cities
to smaller towns.

Recently, there has been increased interest in deterministic metapopulation disease models that
do not reduce to the familiar reaction–diffusion systems. On the one hand, numerical integra-
tion of large systems of ordinary differential equations has now become efficient, owing to
advances in computational power. This has led to a number of numerical investigations of spatial
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metapopulation models. For example, Sattenspiel and Dietz [32] introduced a single species, mul-
ti-city epidemic model that describes the travel of individuals and keeps track of where an indi-
vidual usually resides, as well as where an individual is at a given time. This model has
subsequently been studied in various contexts; the effect of quarantine [33] and the influence of
the mobility patterns [34] have been addressed. On the other hand, the introduction of the next
generation operator [15] and the elucidation of its application to systems of ordinary differential
equations [39], together with advances in the theory of persistence [46], have made it possible to
obtain analytic results on this sort of model [4–6,17,18,42,43].

These deterministic, spatial disease models have the advantage that they allow for the investi-
gation, either analytically or numerically, of various spatio-temporal control strategies. The oldest
control method for the spatial spread of infectious diseases is quarantine through travel restric-
tions. A study of the impact on disease dynamics of this type of quarantine was undertaken by
Sattenspiel and Herring [33], as applied to the model of [32]. Numerically this intervention method
was shown to have little impact on the ultimate course of the epidemic.

We study the behavior of and the effect of quarantine in an SEIRS compartmental model for a
multi-species disease with spatial dynamics; this is an extension of the SEIR model that we intro-
duced previously [4]. Analytical results concerning the basic reproduction number R0 were ob-
tained in [4], so we concentrate here on the transient behavior of the system with the spatial
component consisting of a ring of patches. In Section 2, the model is described, and we briefly
recall results from [4]. In Section 3, we study the numerical behavior of the system with the
patches distributed in a ring. In Section 4, we consider the effect of quarantine in the model. Fi-
nally, in Section 5, we briefly consider the model in the context of avian influenza.
2. The model

To formulate a model involving s species occupying n spatial patches, let Nip be the population
number of species i = 1,. . .,s in patch p = 1,. . .,n. For species i, the rate of travel or migration from
patch q to patch p is denoted by mipq P 0. These rates form a non-negative matrix bM i ¼ ½mipq�
with mipp = 0. Assuming no birth or death during travel, the rate of change of Nip, denoted by
N 0ip, due to travel is given by
N 0ip ¼
Xn

q¼1

mipqN iq � CipN ip ð2:1Þ
where Cip ¼
Pn

q¼1miqp. Setting Ni = [Ni1,. . .Nin]T, where superscript T denotes transpose, gives the
travel equation
N 0i ¼ MiNi ð2:2Þ
with the mobility matrix Mi ¼ bM i � Di, where Di is a diagonal matrix with Cip as the (p,p) entry.
From the sign pattern of Mi and the fact that each column sum is zero, it follows that (�Mi) is a
singular M-matrix; see, e.g. [16, Th. 5.11]. The non-zero entries of Mi specify the arcs of a directed
graph for travel connections between the patches (as vertices). We assume here that there exists
a path in the directed graph from patch p to patch q for all p, q, i.e., Mi is irreducible. More
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generally, the patches can be divided into irreducible components for species i. From [4], it follows
that the travel Eq. (2.2), with a non-negative initial condition and subject to the constraint of con-
stant total population for species i, namely

Pn
p¼1N ip ¼ N 0

i > 0, has a positive equilibrium
N �i ¼ ½N �i1; . . . ;N �in�

T that is asymptotically stable.
In each of the n patches, a general SEIRS compartmental epidemic model for a disease that

confers temporary immunity is formulated, with the numbers of susceptible, latent, infective
(infectious) and recovered individuals of species i in patch p at time t denoted by Sip, Eip, Iip

and Rip, respectively, thus Nip = Sip + Eip + Iip + Rip. Newborns from species i in patch p enter
the susceptible class with birth term dipNip, and the disease is transmitted horizontally within
and between species according to standard incidence (see, e.g. [22,29]) with bijpP0 the average
number of adequate (disease transmitting) contacts per unit time in patch p between susceptibles
of species i and infectives of species j. Rates of travel are assumed to be independent of disease
status, and disease related death is neglected. Assuming exponential distributions for the time
spent in each compartment, the average lifetime, latent period, infectious period and immune per-
iod for species i in patch p are denoted by 1/dip, 1/eip, 1/cip and 1/mip, respectively, with these
parameters positive. These assumptions lead to the following system of 4sn equations for species
i = 1,. . .,s in patch p = 1,. . .,n.
S 0ip ¼ dipðNip � SipÞ þ mipRip �
Xs

j¼1

bijpSip
I jp

N jp
þ
Xn

q¼1

mipqSiq � CipSip ð2:3aÞ

E0ip ¼
Xs

j¼1

bijpSip
Ijp

Njp
� ðdip þ eipÞEip þ

Xn

q¼1

mipqEiq � CipEip ð2:3bÞ

I 0ip ¼ eipEip � ðdip þ cipÞI ip þ
Xn

q¼1

mipqI iq � CipI ip ð2:3cÞ

R0ip ¼ cipI ip � ðdip þ mipÞRip þ
Xn

q¼1

mipqRiq � CipRip ð2:3dÞ
The initial value problem given by (2.3) and initial conditions Sip,Eip, Iip,Rip P 0 (with at least
one of the Eip or Iip positive) and N 0

i > 0 at time t = 0 is well posed, with all variables non-negative
for t P 0.

A similar model, but for a disease with no recovery (mip = 0) was formulated in [4], and we
briefly recall some results from [4] for Mi irreducible, that also apply to the model formulated
above. If the system is at an equilibrium (i.e., all time derivatives are zero), and there is no disease
in patch p, then there is no disease in any patch, that is the system is at the disease-free equilibrium
(DFE). If the system is at an equilibrium and the disease is endemic in patch p (i.e., Eip + Iip > 0
for some i), then the disease is at an endemic equilibrium in all patches.

For system (2.3), the DFE always exists with Sip ¼ N �ip, Eip = Iip = Rip = 0. To study its stability
and hence determine whether the disease can invade the population, we proceed as follows.
Let
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with G ¼ �n
k¼1Gk, where � denotes direct sum,
with
Here Gk, Ajk, Bjk, Ck are s · s matrices, with Ajk, Bjk, Ck diagonal. Matrix Gk has (i, j) entry equal
to bijkN �ik=N �jk, the (i, i) entry of Akk is equal to dik þ eik þ

Pn
l¼1milk, whereas for j 5 k the (i, i) entry

of Ajk is �mijk. Matrix B is the same as A but with eik replaced by cik. Finally, Ck has (i, i) entry
equal to eik. From their sign pattern, and the fact that they are diagonally dominant by columns,
A and B are non-singular M-matrices [9, Ch. 6], thus A�1 and B�1 are non-negative. Using the
results in [39], we obtain a formula for the basic reproduction number R0, and the following sta-
bility result [4].

Theorem 2.1. For model (2.3) with s species and n patches,
R0 ¼ qðGB�1CA�1Þ

where q denotes the spectral radius. If R0 < 1, then the DFE is globally asymptotically stable, if
R0 > 1 then the DFE is unstable.

Note that GB�1CA�1 is a non-negative matrix, which implies that its spectral radius is attained
at the largest real eigenvalue. Here, the matrix G represents the disease transmitting contacts per
unit time, B�1 gives the average sojourn time in the infective compartment, A�1 gives the average
time of sojourn in the exposed compartment, whereas C represents the rate at which exposed indi-
viduals become infectives, thus CA�1 is a measure of the proportion surviving the exposed com-
partment. In general, R0 depends on the demographic, disease and mobility parameters. This
dependence is quite complex, and is difficult to study analytically even in the case of one species
on two patches; see [4] for some results in this direction.
3. Behavior of the epidemic in a ring of patches

We consider a restricted case of system (2.3) by supposing that the patches are arranged in a ring,
and that migration can only take place between neighboring patches. We call one-way migration
the case in which individuals in a given patch p can only migrate to patch p + 1, and from patch
n to patch 1. In this case, for a given species i, miqp > 0 only if p + 1 = qmodn, so that the matrixbM i only has the first subdiagonal and the (1,n) entry non-zero. In the two-way migration case, indi-
viduals can also migrate from a given patch p to patch p � 1, and from patch 1 to patch n, giving a
matrix bM i with first subdiagonal, first superdiagonal, (1,n) and (n, 1) entries non-zero.
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The equilibrium value N �i of the population can be deduced explicitly, albeit messily, for this
structure. Also, our model with this ring structure (with one- or two-way migration) closely
mimics a one-dimensional partial differential equation (PDE) model with periodic boundary con-
ditions. This allows us to compare the obtained behavior with that of a more classical reaction–
diffusion PDE model.

We begin with the one species case (so drop the subscript i, and take bijp = bp), and defer con-
siderations on more than one species to Section 5, where an avian influenza-like situation is
considered.

We choose a number n of patches sufficiently large so that the wave can fully develop before it
reaches the last patch, but small enough so that simulations can be run very rapidly. In the sim-
ulations we use 15 patches (n = 15, hence 60 ODEs), but even on a personal computer, this num-
ber can easily be taken to be larger (integration for 500 days with n = 500 takes but a few minutes,
for example). Initial populations are taken as 1000 individuals per patch and we assume that the
infection starts in patch 1 with 100 infectives, i.e., I1(0) = 100, Ip(0) = 0 for patches p 5 1, and
Sp(0) = 1000 � Ip(0), Ep(0) = Rp(0) = 0 for all p = 1,. . .,n.

We choose the time unit to be a day, and except if otherwise noted, rate constants are expressed
per day. In this section and the next, we take parameters compatible with influenza with bp = b for
all p 5 1, b1 > b, and all other parameters equal in each patch, i.e., dp = d, mp = m, ep = e, cp = c.
The average life expectancy 1/d is taken to be 75 years. The average incubation time 1/e is 2 days,
and the average infectious period 1/c is 4 days. The immunity associated with influenza is a com-
plex matter. It involves partial immunity to other influenza strains, and other mechanisms that are
not well-understood. As we are considering the population regardless of which strain infects each
individual, we make the simplifying assumption that the average immune period 1/m is one year,
which is compatible with the observation that most individuals contract influenza at most once a
year. Finally, we take b = 0.5 and b1 = 0.75.

Fig. 1(a) and (b) are simulations of the model with the above parameters and one-way and
two-way migration, respectively, with m = mp+1, p = 0.03 and m = mp, p + 1 = mp+1, p = 0.03,
respectively. In each case, there are several epidemic outbreaks (of diminishing intensity). For
one-way migration (Fig. 1(a)), there is a second peak of infection that occurs after the first wave.
This peak, which only takes place in patch 1 and several of its immediate successors, is a conse-
quence of the ring structure chosen for these simulations. When the simulation starts, only patch 1
contains infectives. There is an initial steep drop in the number I1 of infectives in this patch, as the
susceptible population S1 is not sufficient to sustain the epidemic. However, migration is simulta-
neously taking place, and individuals from every patch move to the next patch in the ring. Obser-
vation of patch 15 (the last patch) shows that the infective population is very low in this patch
until about t = 80 days, when the epidemic wave finally reaches it. So until t = 80 days, most
of the individuals migrating out of patch 15 are susceptibles. This inflow of susceptibles greatly
slows down the decay of the epidemic in patch 1, and also replenishes S1 enough that, when
the epidemic wave completes its loop around the ring, there is a second major epidemic in patch
1. If the migration rate is large enough, then in some sense, patch 1 is overflowing with suscepti-
bles, and some of them migrate into patch 2, etc. This leads to the second wave that can be ob-
served in patches 2–4 in Fig. 1(a) around t = 150 days. On the other hand, if the migration rate is
small (m = 0.003), then we observe less or even no propagation of this second major epidemic into
the following patches, as can be seen after t = 250 in patch 1 in Fig. 2, but the first epidemic (the



Fig. 2. Detail of the first epidemic wave for one-way migration. Small migration m = 0.003. Other parameters are as for
Fig. 1.

Fig. 1. Comparison of the behavior over three years of the epidemic on a ring of patches: (a) one-way migration; (b)
two-way migration. Parameters are n = 15, migration m = 0.03, b = 0.5 (except b1 = 0.75), e = 1/2, c = 1/4, 1/m = 1
year and 1/d = 75 years.
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one occuring in patch 1 at t = 20 days in Fig. 2) is more intense. For even smaller migration rates,
e.g., m = 0.0003, the second major epidemic is barely noticeable or even absent.

Following this second epidemic wave, the numbers of individuals in the various epidemic states
in the different patches have homogenized through diffusion (see Fig. 3(a)), and subsequent
damped epidemic waves have a period about one year (i.e., comparable to 1/m). The transient
behavior we observe is compatible with results of PDE models (see, e.g. [1,23]).

In the case of two-way migration, as in Figs. 1(b) and 3(b), the diffusion of individuals through
migration is faster. Fig. 3 shows details of the number of infectives per patch against time, for
Fig. 1(a) and (b), when t varies between 200 and 1500 days. It is clear from these two figures that
synchronization (through diffusion) is much faster in the two-way migration case.

Note that by choosing b1 different from the other b, we avoid the situation described in [6, Cor-
ollary 7], where migration, be it one- or two-way, does not play a role in the value of R0. Here, for
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Fig. 3. Number of infectives per patch versus time for Fig. 1(a) and (b), showing synchronization between the patches,
for t between 200 and 1500 days: (a) one-way migration; (b) two-way migration.
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example, in the case of one-way migration, Fig. 1(a) has R0 ’ 2:53, while Fig. 2 with its smaller
migration rate has R0 ’ 2:95.

Numerical results for an SEIR model (i.e., m = 0, corresponding to permanent immunity, which
is appropriate for childhood diseases) are similar, except that there are no damped oscillations.
The epidemic rises to a first peak and then goes monotonically to an equilibrium, which is either
endemic or disease-free depending on the value of R0.
4. Effect of quarantine

Quarantine can be of several types. We are solely concerned with travel or migration restric-
tions, which consist, as was the case during the SARS epidemic, in either advising or imposing
a restriction of travel to certain destinations. In terms of cattle diseases, these correspond to
movement restrictions, not to any culling that may take place simultaneously with movement
restrictions. We are not concerned here with isolation, which consists in taking infectious or poten-
tially infectious individuals out of the population to avoid further contaminations (see, e.g. [13]
for SARS, [19] for HIV).

Quarantine is introduced in the model as follows. We assume that quarantining affects patches a
to b, with a 6 b. For simplicity, we suppose that 1 < a 6 b < n. We call patches 1 to a � 1 and b + 1
to n the non-quarantined section of the ring, and patches a to b the quarantined section of the ring.
Migration from the non-quarantined section into the quarantined section, and from the quaran-
tined section into the non-quarantined section, is reduced for species i by a factor �ri 2 ½0; 1�. For
a < b, within the quarantined section, migration is reduced by a factor r�i 2 ½0; 1� for species i. Thus,
1� �ri and 1� r�i are the external and internal quarantine efficacies, respectively. A quarantine effi-
cacy of 0 has no effect on the migration, whereas a quarantine efficacy of 1 (perfect quarantine)
results in the quarantined patches becoming geographically isolated from their neighbors.

Note that quarantine affects the value of N �i , but that the reasoning that led us to conclude the
existence of a positive equilibrium for the travel equation in the general case is still valid here, so
that the positive equilibrium N �i exists and is asymptotically stable. The quarantine reproduction
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number Rq can be calculated in the same way as R0 (Section 2, Theorem 2.1) by including the
factors �r and r�.

We start by studying the effect of quarantine on a single patch, i.e., a = b, in a ring with one-
way migration, and for a single species. The following table shows the effect of preventive
quarantine on a system of 15 patches. This type of quarantine could be termed internally imposed
quarantine, and corresponds to a patch taking measures to protect itself from an incoming epi-
demic. In the simulations, we choose this patch to be a = b = 7. We use the following parameters.
The migration rate between unquarantined patches is m = 0.03. The efficacy of the quarantine is
indicated as the factor of this normal migration rate. The disease parameters are compatible with
influenza data as given in Section 3. The simulation is run in all cases for tmax = 1000 days. Let
IðtÞ ¼

P15
i¼1I iðtÞ. The average number of infectives is given by the total number of cases divided

by the time period, i.e., �I ¼ 1=tmax

R tmax

0
IðtÞ dt. A numerical estimate of this value is obtained by

computing the trapezoidal numerical integral of I(t) over the interval of integration, using Mat-
Lab�s trapz function. The mini;t

�I iðtÞ and maxi;t
�I iðtÞ average numbers of infectives on any one

patch are also given, where �I i is the average number of infectives in patch i. The maximal instan-
taneous number of cases (infectives) is maxt2 [0, 1000] I(t).
Quarantine efficacy 1� �r
 Average # inf. (min/max)
 Max # of cases
0
 112.8 (4/25)
 193

0.5
 112 (3.9/23.3)
 193

0.9
 108.9 (2.3/25.6)
 221

0.999
 106.2 (0.06/58.2)
 250

1
 98 (0/58.9)
 251
We now proceed to the same kind of analysis, but with externally imposed quarantine. We use
exactly the same parameters as in the previous type, but we suppose that the quarantine is applied
instantaneously to the patch where the epidemic is initiated (patch 1). Since the contact parameter
b1 is different in patch 1, quarantining this patch results in variations of Rq, which we show in the
following table.
Quarantine efficacy 1� �r
 Average # inf. (min/max)
 Max # of cases
 Rq
0
 112.8 (4.1/25)
 193
 2.53

0.5
 113.9 (3.6/31.7)
 207
 2.75

0.9
 116.8 (2.6/39.7)
 363
 2.95

0.999
 106.7 (0.4/64.5)
 515
 3

1
 9.9 (0/9.9)
 220
 N/A
When 1� �r ¼ 1, then M is no longer irreducible, in the case of one-way migration. Thus, in the
case of internally imposed quarantine, patch 7 is cut off from the patches that come before it, and
so patches 7�15 have no infectives, while for externally imposed quarantine, patch 1 is cut off
from the other patches, which do not have any infectives. Note also that in the case where the
matrix is no longer irreducible, Rq is only defined over the irreducible components, and thus there
is no global value of Rq.
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In the case of imperfect quarantine, the main difference that is observed between the two types
of quarantines is in the initial transients. If the system is run for a long time, then the average
number of infectives obtained over the course of the simulation tends to the same value. The fol-
lowing table, where a quarantine efficacy of 0.999 is used, and all parameters are as previously
stated, shows the average number of infectives in both types.
Final time (years)
 Type of quarantine
 Difference (%)
Internally imposed
 Externally imposed
3
 104.5846
 100.3411
 4.23

5
 95.3228
 94.0291
 1.37

10
 88.6263
 87.893
 0.83
For even larger (but unrealistic) final times, the difference between the two types of quarantines
eventually goes to zero.

We now consider quarantine in a ring with two-way migration. In the following, a = b = 7, and
the initial condition is taken in patch 1. The migration rates m = mp, p + 1 = mp + 1, p = 0.03. All
other parameters are taken exactly as in the one-way migration case. In the case of internally
imposed quarantine, we have the following results.
Quarantine efficacy 1� �r
 Average # inf. (Min/Max)
 Max # of cases
0
 114.4 (6.5/15.7)
 180.5

0.5
 114.3 (6.5/15.7)
 180.5

0.9
 114.3 (6.5/15.7)
 180.5

0.999
 114.1 (6.5/15.7)
 180.5

1
 107 (0/15.7)
 180.5
Thus, in the case of two-way migration, imperfect travel restriction has virtually no effect. When
travel restriction is perfect, the quarantined patch(es) have no disease. The situation is similar to
one-way migration when 1� �r ¼ 1, except that in the case of two-way migration, only patch 7 is
cut off from the others and has zero infectives. Results for externally imposed quarantine for two-
way migration are similar, and so are not reported here.
5. Avian influenza in a ring of patches

Avian influenza, also called fowl plague, is a disease of birds (see, e.g. [2,12]). It has two major
forms. The first form, low pathogenicity avian influenza (LPAI), causes only a mild illness. The
highly pathogenic avian influenza form is extremely contagious. It has a high mortality rate in
many of the bird species it contaminates (although it seems to be more severe in the domestic pop-
ulations than in the wild populations), with mortality rates reaching 100% in some cases [2].
Transmission of both forms to the human population has been observed [11,27,35,38].

We consider here a very simplified setting of LPAI in a ring of patches with one-way migration,
with the system (2.3) taken in the case s = 2. For simplicity, we denote the species index as 1 = B
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for birds and 2 = H for humans. The mean duration of life is taken to be 75 years for humans, 2
years for a bird (which is compatible with most fowl species, for example). As with many diseases
of livestock, the animal component of the disease has been the object of a lot of attention. The
transmission from bird to bird has been estimated; in [40] the transmission coefficient was deter-
mined by experiments on chicken. A typical value of b was found to be 0.24 for LPAI; we use this
value for bBBp. This estimated value of 0.24 corresponds to a latent period of between one and two
days. Therefore, we use the value 1/eB = 1.5 days. From [40], the chicken that were infected by
contact with inoculated chicken tested positive for LPAI during an average of 4.3 days (compared
to 4.8 days for inoculated animals), so we use this value for 1/cB. Parameters for humans are taken
as in Sections 3, with mH = 0.03. For birds, we take a migration rate mB = 0.1. Note that in the
case of birds, this is meant to account, for example, for movements due to sales.

The transmission probability from bird to human is less known. It has been hypothesized for
example that in some cases, pigs can be intermediates between birds and humans [10]. On the
other hand, in the case of infections in 1999 in Hong Kong, it was shown that transmission
had been direct between birds and humans [28]. Since there are very few documented cases of
transmission to humans, we suppose that bHBp = bBBp/20. Also, there are no documented cases
of human to human transmission of LPAI, so bHHp = 0. As mentioned in the Introduction, there
are known cases where a human involuntary carried infected manure from one farm to another,
spreading the infection. However, we do not model this possibility, and thus consider that humans
cannot infect birds, bBHp = 0.

Initial bird and human populations are taken as, respectively, 50000 and 5000 per patch. Quar-
antine is applied to patch a = b = 7 with an efficacy of 1� �rB ¼ 0:9 for birds and 1� �rH ¼ 0:5 for
humans. All other parameters are as previously used; we have a system of 120 ordinary differential
equations. An example of the evolution of the number of infective individuals in the two species is
shown in Fig. 4. In the case of the bird population of Fig. 4(a), the effect of the quarantine is invis-
ible, as the two curves overlap. For the human population, the effect of the quarantine is to slow
the epidemic, leading to lower infectious levels than in the case of no quarantine. However, the
effect is reversed after a while, and for larger time, the two curves are indistinguishable.
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Fig. 4. Numbers of infective individuals in the two populations, with and without quarantine; one-way migration (a)
bird population (b) human population. Quarantine of �rB ¼ 0:1 and �rH ¼ 0:5 in patch a = b = 7. All other parameters
are as in the text. Note that the effect of quarantine on the bird population is not visible.
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Clearly, even though there is no human to human transmission and the transmission probabil-
ity from birds to humans is low, the disease is able to spread to all patches despite the restriction
of travel. In the case of the parameters used here, we find R0 ¼ 1:024, well in accordance with the
values suggested in [40].
6. Discussion

We have investigated the impact of quarantine via travel restrictions in a multi-species, meta-
population model of infectious disease spread. The aim has been to emphasize the importance of
including geography in disease models and to illustrate one of many ways in which a model, such
as the one developed in [4], may be used to probe the effectiveness of intervention and spatio-tem-
poral control measures. As discussed in the Introduction, the development and analysis of such
spatial models are still in their infancy stages. There are many possibilities for extending the model
of Section 2 to increase realism. It is clear that for many human diseases of interest, the mobility/
migration rates should be dependent upon whether an individual is infected (and symptomatic) or
not. Someone who is in the infectious stage of SARS or influenza, for example, will typically be
less mobile than an individual in the susceptible or latent stage of the diseases. From a modeling
and simulation standpoint, it is easy to include these effects by allowing the migration rates to
depend upon disease state, as in [42]. However, some methods and results presented in [4] and
outlined here are not directly applicable.

It is worth noting, however, that for many animal diseases, such as bubonic plague and lyme
disease, the mobility of the species involved is not expected to vary much according to disease
state. Likewise, there are human-to-human transmitted diseases (such as the common cold) in
which the symptoms exhibited by infectious individuals are sufficiently mild so as not to greatly
impact their typical (meaning when they are healthy) mobility patterns (travel, commuting, etc).
In such cases the rigorous theoretical results given here in Section 2 are applicable.

It is also important to investigate the impact of other intervention measures in the model, such
as vaccination of susceptibles, rodent and/or vector control via culling (in the case of plague, for
example), and alternate means of quarantine, such as isolation of infectious individuals and/or
those who are known to have come in contact with an infectious individual. Because of the spatial
component of our model, it is possible to explore the effects of applying control measures in re-
stricted geographic regions or globally.

Spatial metapopulation models, such as the one we have presented here and those cited in the
Introduction are ripe for extension and open up exciting new theoretical and numerical chal-
lenges. They allow the possibility of addressing a wide range of important and practical problems,
only a few of which are described above.
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