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Abstract

Metapopulation models consist of graphs, with systems of dif-

ferential equations at each vertex. This modeling paradigm is

appropriate for the description of the spatio-temporal spread of

infectious diseases. In this document, I present the setting of

these models, and some of the mathematical techniques that can

be used to study them. I conclude with a brief review of some

models using this approach.

1 Foreword – Notation

These lecture notes attempt to give a relatively exhaustive overview of
methodological aspects of ordinary differential equations metapopulation
models in the context of the spatial spread of diseases. They are based on
work carried out with Pauline van den Driessche (in particular [5, 6, 7, 8])
and extensions of this work, and the work of all the authors cited.

It is assumed that basic mathematical epidemiology is known. A
certain number of reference works can be consulted, if such is not the
case. Some of the most significative are the books of Anderson and
May [3], Diekmann and Heesterbeek [21], Brauer and Castillo-Chavez
[14] and Thieme [59]. Hethcote also gave a good review that focuses
on vaccination aspects [30]. There are also reference works concerning
specific diseases. The book of Hethcote and Yorke on gonorrhea [32] or
the one of Busenberg and Cooke on vertically transmitted diseases [15]
are but two examples. See also the papers in [17, 18, 27, 35, 43].

We adopt the convention that roman letters represent demographic
parameters, whereas greek letters denote disease related parameters. No-
tation has been adjusted, where possible, to abide to this rule. The
SEIRS model, and its subcases (SI, SIS, SEI, SEIS, SIR and SIRS, to
cite the most commonly used), will appear throughout this document,
it is therefore detailed here with the parameters used in the manuscript.
The flow diagram of the model is as follows:
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The SEIRS system then takes the form

S′ = B(N) + νR− Φ− dS (1.1a)

E′ = Φ− (ε + d)E (1.1b)

I ′ = εE − (γ + d + δ)I (1.1c)

R′ = γI − (ν + d)R, (1.1d)

It is assumed that there is no vertical transmission of the disease, so that
all birth occurs into the susceptible class, at the rate B(N) > 0, where
N = S +E + I +R. Individuals in all epidemiological classes are subject
to natural death, at the per capita rate d. If the birth rate is supposed
equal to the death rate, as is done frequently, then the letter d is used
for both. The force of infection is denoted Φ. It describes the rate of
apparition of new infections. The most commonly used forms are mass
action incidence

Φ = βSI,

and proportional (or standard) incidence,

Φ = β
SI

N
,

where β is the transmission parameter. When a generic form is needed,
it will be assumed that the force of infection can be written as

Φ = β(N)SI

where the function β operates a scaling of the contacts by the population
size. It is assumed throughout that β is a nonnegative nonincreasing
function of N . Note that β might depend additionally on individual
components of N , such as S and I, although this is not indicated for
clarity of notations.

Upon infection, individuals move to the exposed (or latent) phase,
where they are not yet infectious. The time of sojourn in the E class is
exponentially distributed with mean 1/ε, giving the rate of movement
out of the E class ε. From the E class, individuals move to the infective
(I) class, where they can infect susceptible individuals. When infective,
individuals are subject to additional death due to infection, at the rate
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δ. The average duration of infection is 1/γ, after which time individuals
move to the recovered (R) class. In the recovered class, individuals are
immune to the disease. They lose immunity after a mean time period of
1/ν.

The epidemic parameters are assumed to be nonnegative, with limit-
ing cases giving simpler models. For example, if a disease confers perma-
nent immunity, then ν = 0 and an SEIR model results. If a disease has
a very short latent period that can be ignored, then ε → ∞ (an SIRS
model); and if in addition the period of immunity is so short that it can
be ignored, then ν →∞ and an SIS model results.

Because of space limitations, and of the focus that is put here on
mathematical aspects, I will assume that the reader knows the reasons
that lead to the use of a metapopulation-type framework in models of
the spread of an infectious disease. If this is not the case, I recommend
reading the lengthy introduction in [5], which provides some explanations
as well as references.

This document is organized as follows. Section 2 details the gen-
eral framework of metapopulations, and in particular, graph theoretic
aspects. Disease models set in the context of metapopulations are pre-
sented in Section 3. Specific questions are addressed, and steps of a
general method to study these problems are outlined using three specific
models. Equiped with this knowledge, the reader should then refer to
Section 4 to see what the current state of the art is on the topic.

2 Metapopulations

This section deals with metapopulation dynamics in the most general
setting, i.e., when seen as large systems of differential equations coupled
together within a graph. We give here the graph theoretic and dynamical
systems context in which metapopulation models are formulated.

2.1 Introduction

The subject of metapopulations dynamics is relatively recent in the
mathematical biology field, although it has been used in ecology for
a longer time. A reference work on mathematical models is the book
of Levin, Powell and Steele [39], whereas Hanski and Gilpin [28] give a
more ecological account of the subject.

The simplest type of metapopulation models derive from the same
type of models that led to discrete cellular automatons. In this setting,
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often referred to as patch occupancy models, a patch (generally, a domain
in space) is occupied or unoccupied by individuals of a given species.
Typically, one considers the evolution of the number of occupied patches
in a network, where the occupancy of a given patch depends on the
occupancy of neighboring or connected patches. This type of system
will not be discussed here. The type of systems that will be discussed
here can be defined, loosely, as follows.

Practical definition: A metapopulation model involves ex-
plicit movements of the individuals between distinct loca-
tions.

Movement can correspond to an actual physical movement of individuals,
but can also represent the evolution of a trait.

To summarize, in the context of this document, a metapopulation is a
graph with vertices (in metapopulation terminology, patches) containing
a certain number of subpopulations, linked by migration as arcs, with
explicit, non trivial dynamics for the subpopulations in each patch. To
construct such models, several components must be defined, that are
detailed in the remainder of this section.

2.2 The connection graph

Suppose that there are p̄ patches. The set of patches is denoted P,
with p̄ = |P|. Each patch p ∈ P contains a certain number of species
belonging to a common set S of species. We denote s̄ = |S| the total
number of species in the system. Note that at this point in our exposi-
tion, “species” is employed in a loose sense: two different epidemiological
states represent two species. Each patch is a vertex in a graph G. The
edges of G represent the possibility for a given species to move between
two patches; as a consequence, any two patches are connected by a max-
imum of s̄ edges. The edges are then given an orientation (they are arcs,
in graph terminology), to take into account that movement is not always
symmetric.

Thus, the graph is a multi-digraph G = (P,A), where A is the set of
arcs, i.e., an ordered multiset of pairs of elements of P. Any two vertices
X,Y ∈ P are connected by at most s̄ arcs from X to Y and at most s̄
arcs from Y to X.

The formalism of graphs is helpful to characterize some of the prop-
erties of metapopulation models, and so a few further definitions are
given, in which X,Y ∈ P are patches.

Direct access. Define the binary relation Rs by
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Rs(X,Y ) if, for species s ∈ S, there exists an arc A ∈ A from
X to Y .

In this case, we say that species s has direct access to patch Y from patch
X. We write R(X,Y ), and say that patch X has direct access to patch
Y or that patch Y can be accessed directly from patch X, if there exists
s ∈ S such that Rs(X,Y ). We write R(X,Y ) and say that patch X has
full direct access to patch Y if Rs(X,Y ) for all s ∈ S.

The converse properties are also defined: species s ∈ S has no direct
access to patch Y from patch X if Rs(X,Y ) does not hold, which we
write not Rs(X,Y ); patch X has no direct access to patch Y if there is
no s ∈ S such that Rs(X,Y ), i.e., ∀s ∈ S,not Rs(X,Y ).

For a given patch X, define

Ps
X→ = {Y ∈ P : Rs(X,Y )}

and
PX→ = {Y ∈ P : ∃s ∈ S such that Rs(X,Y )},

the sets of patches that can be directly accessed from patch X, and

Ps
→X = {Y ∈ P : Rs(Y,X)}

and
P→X = {Y ∈ P : ∃s ∈ S such that Rs(Y,X)},

sets of patches that have direct access to patch X.

Connection matrix For a given species s ∈ S, a connection ma-
trix can be associated to the multi-digraph G. Choosing an ordering
P1, . . . , Pp̄ for the elements of P, the (j, i) entry of the p̄× p̄-matrix Cs is
one if Rs(Pi, Pj) and zero otherwise, that is, if Pi has no direct access to
Pj . Note that this gives the transpose matrix of the adjacency matrix
obtained with the usual convention in graph theory that entry (i, j) be 1
if Pi has direct access to Pj . For convenience, the ordering of the patches
is generally assumed the same for all species.

Indirect access. A given species s ∈ S has indirect access to patch Y
from patch X if, for species s ∈ S, there exists a path from X to Y in G
but species s does not have direct access from X to Y . In other words,
there exists X1 ∈ P such that

Rs(X,X1)R
s(X1, Y ),

but
not Rs(X,Y ).
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Indirect access can be defined on longer chains, by assuming that there
exists X1, . . . ,Xn ∈ P, with n ≤ p̄, such that

Rs(X,X1)R
s(X1,X2) . . . Rs(Xn, Y ),

but

not Rs(X,Y ),not Rs(X1, Y ), . . . ,not Rs(Xn−1, Y ).

For problems involving disease propagation, the notion of species-
independent indirect access from one patch to another is also very im-
portant. Patch X has species-independent indirect access to patch Y if
there exists two species s1 and s2 in S and a patch X1 ∈ P such that

Rs1(X,X1)R
s2(X2, Y ),

with not R̄(X,Y ). As for indirect access, species-independent indirect
access can also be defined on longer chains.

For disease models, indirect access (in all forms) is particularly rel-
evant for animals. If space is discretized in patches, humans typically
have direct access from one patch to another, although some exceptions
do occur if, for example, patches cover a very small surface area or in the
case of some political restrictions of travel. Migrating animals, on the
other hand, will typically follow a route involving sequences of patches
that are connected two-by-two. The following graph illustrates the im-
portance of species-independent indirect access. Suppose the top graph
shows the connections for species A, while the bottom graph represents
connections for species B.

1 2 3 Species A

1 2 3 Species B

Then, despite the absence of species-specific connection between patches
1 and 3, there exists a link between patches 1 and 3. If a disease is
transmitted between species A and B, this means that the disease can
move to patch 3 from patch 1.

For a given species, indirect access can be read in the connection
matrix Cs. Indeed, entries of C2s give the paths of length exactly 2 in
G for species s, and by induction, entries of Ck

s give the paths of length
exactly k in G.
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Access is the combination of direct and indirect access. Species s ∈ S
in patch X has access to patch Y if species s has direct or indirect access
to patch Y from patch X, and patch X has access to patch Y if it has
direct or indirect access to patch Y from patch X. Two patches X and
Y are connected if X can be accessed from Y and/or Y can be accessed
from X.

For a given patch X, the sets P
s

X→, PX→, P
s

→X and P→X of patches
that species s in X has access to, X has access to, for which species s has
access to X and that have access to patch X, respectively, are defined as
were the related sets for direct access, but considering the more general
notion of access.

1 2 3

4

5 6
1 2 3

4

5 6

Figure 2.1: The sets P3→ (left) and P→3 (right) for an example con-
nection graph. Patches directly connected to 3 appear in darker gray,
indirectly connected patches appear in lighter gray. Patches with no
access to 3 or that cannot be accessed from 3 are white.

Symmetric multi-digraph. The multi-digraph G is symmetric for
species s if for all X,Y ∈ P, Rs(X,Y ) implies Rs(Y,X), that is, if
the binary relation Rs is symmetric. It is fully symmetric if, for all
X,Y ∈ P, R(X,Y ) implies R(Y,X). Note that this implies that the
associated connection matrices are symmetric.

Movement is similar for all species if, in the multi-digraph G, the
existence of an s ∈ S such that Rs(X,Y ) implies that Rs(X,Y ) for all
s ∈ S.

Strongly connected multi-digraph. The last property we consider
is strong connectedness. For a given species s, the strongly connected
components (or strong components, for short) are such that, for all
patches X,Y in a strong component, species s in X has access to Y . The
multi-digraph is strongly connected for species s if all patches belong to
the same connected component. Strong connectedness is equivalent to
irreducibility of the connection matrix Cs, which is defined as follows.
The matrix A is irreducible if for all i, j = 1, . . . , p̄, there exists k such
that ak

ij > 0, where ak
ij is the (i, j)-entry in Ak. A matrix that is not

irreducible is reducible.
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A characterization of reducible matrices that is useful is the following.
A matrix A is reducible if there exists a permutation matrix P such that
PT AP is block triangular,

PT AP =











A11 0 0
A21 A22 0

. . . 0
An1 An2 Ann











,

with every block Aii square and either irreducible or a 1× 1 null matrix
(an irreducible matrix A has block (1, 1) equal to A).

2.3 Dynamics between the patches

The dynamics of the system combines the dynamics in each patch result-
ing from the interactions of the various species that are present, with an
operator describing the movements of individuals between the patches.
The models that are considered in the rest of this document are time
autonomous with linear movement operators, so the exposition is now
specialized to this case.

Let Np
s be the number of individuals of species s ∈ S in patch

p ∈ P at time t, Ns = (N1
s , . . . , N p̄

s )T be the vector of distribution
of the individuals of a given species s among the different patches and
Np = (Np

1 , . . . , Np
s̄ )T be the vector of composition of the population

of a given patch p. There are several ways of describing the evolution
of the populations. The most obvious is to write the evolution of each
individual component of the system; for all s = 1, . . . , s̄ and p = 1, . . . , p̄,

d

dt
Np

s = fp
s (Np) +

p̄
∑

i=1

ms
piN

i
s −

p̄
∑

i=1

ms
ipN

p
s , (2.1)

with fp
s : R

s̄ → R a function describing the dynamics within patch p of
individuals of species s. This function might involve all individuals that
are present in the patch, regardless of their species, hence its dependence
on Np; we suppose that there are no between-patch interactions, though,
so that fp

s only involves individuals from patch p. The term
∑p̄

i=1 ms
piN

i
s

describes the inflow of individuals of species s into patch p, from all
patches in P→p. The term −

∑p̄

i=1 ms
ipN

p
s is the outflow of individuals

of species s towards all patches in Pp→.
Note that it is assumed here that ms

ii = 0 for all s. Another way to
deal with linear movement operators is to suppose that

ms
ii = −

p̄
∑

j=1
j 6=i

ms
ji,
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which allows us to write (2.1) in the form d
dt

Np
s = fp

s (Np)+
∑p̄

i=1 ms
piN

i
s.

For the clarity of the exposition, we use here the convention ms
ii = 0.

Although a painstaking approach, the use of the form (2.1) is some-
times required to establish properties such as the positive invariance of
the positive orthant under the flow of the system. It is also the most
straightforward way to formulate models.

However, because of the notational burden, vector notations are often
used. The most common of these vector notations (and the only one we
detail here) proceeds species by species, using a vector equation for each
successive species. For all s = 1, . . . , s̄,

d

dt
Ns = fp(Np) +MsNs, (2.2)

with fp : R
s̄ → R

p̄ and Ms a p̄ × p̄ matrix representing the movement
terms. For a given species s, it takes the form,

Ms =











−
∑p̄

k=1 ms
k1 ms

12 · · · ms
1p̄

ms
21 −

∑p̄

k=1 ms
k2 · · · ms

2p̄

...
. . .

...

ms
p̄1 ms

p̄2 · · · −
∑p̄

k=1 ms
kp̄











. (2.3)

Note that the matrixMs combines the connection matrix deduced from
the graph of patches, and a description of the intensity of the connec-
tions. The connection matrix of the graph is thus easily reconstructed
from Ms by setting diagonal entries in Ms to zero, and nonzero offdi-
agonal entries to 1.

Throughout this text, the following notations and names are used for
matrices. Let A,B be two n× n-matrices, with A = [aij ] and B = [bij ].
Then

• A ≥ 0 is a nonnegative matrix if aij ≥ 0 for all i, j, and A ≥ B if
A−B ≥ 0.

• A > 0 is a positive matrix if additionally, there exists i, j such that
aij > 0, and A > B if A−B > 0.

• A ≫ 0 is strongly positive if aij > 0 for all i, j, and A ≫ B if
A−B ≫ 0.

The same notation and names are used for vectors. Note that this termi-
nology is not standard. Many authors in linear algebra say that a matrix
A≫ 0 is positive, and use no specific name for a matrix A > 0. Here, it
is however important to distinguish between, for example, a vector that
is positive and one that is strongly positive.
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2.3.1 Properties of the movement matrix

Matrix Ms is used extensively in the remainder of this document. Its
main properties are summarized in the following result.

Theorem 2.1. Consider a species s ∈ S. Then (−Ms) is a singular
M-matrix. All eigenvalues of Ms have nonpositive real parts. 0 is an
eigenvalue of Ms, and one of the eigenvectors associated to the eigen-
value 0 is the vector 1lTp̄ = (1, . . . , 1). In the case that Ms is irreducible,

then 0 is an eigenvalue with multiplicity 1, 1lTp̄ is (to a multiple) the
only strongly positive left eigenvector associated with Ms, and all other
eigenvalues have negative real parts.

Proof. Matrix (−Ms) has the Z-sign pattern, that is, has nonnegative
diagonal and nonpositive offdiagonal entries. Each column sum of Ms

is zero, i.e., 1lTp̄ (−Ms) = 0 for all s ∈ S, where the 1 × p̄ vector 1lTp̄ =

(1, . . . , 1). (The index on 1lT is dropped in the sequel if unambiguous).
It follows that (−Ms) is a singular M-matrix; see, e.g., [12] or [23, Th.
5.11].

Because the column sums of Ms are all zero with nonpositive diag-
onal entries, Gershgorin’s circle theorem [41, 61] implies that all eigen-
values λ of Ms have nonpositive real parts. Indeed, defining

d̄ = max
i=1,...,p̄

p̄
∑

k=1

ms
ki,

all Gershgorin disks are contained in the disk centered at −d̄ and with
radius d̄. Also, from the singularity of Ms, 0 is an eigenvalue. Since
1lTMs = 0, it also follows that 1lT is a (left) eigenvector ofMs associated
to the eigenvalue 0.

To show that the eigenvector 1lT is, to a multiple, the only strongly
positive (left) eigenvector ofMs, we proceed as follows. The matrix

Ms + dI

is nonnegative, with I the identity matrix, and therefore, the Perron-
Frobenius theorem for nonnegative matrices ([12, Theorem 2.1.4], [61,
Theorem C.2]) implies that the spectral radius

ρ(Ms + dI) = max{|λ| : λ ∈ Sp(Ms + dI)},

where Sp(A) is the spectrum of the matrix A, is an eigenvalue associated
to a strongly positive eigenvector v. Another conclusion of [12, Theorem
2.1.4] is that any other eigenvalue λ ∈ Sp(Ms + dI) such that |λ| =
ρ(Ms + dI) is also simple, and that any other nonnegative eigenvector
of Ms + dI is a multiple of v.
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Using a left eigenvector, we have

vT (Ms + dI) = ρ(Ms + dI)vT

for vT ≫ 0 unique to a multiple. Since 1lT (Ms + d̄I) = 1lTMs + d̄1lT =
d̄1lT , it follows that ρ(Ms + dI) = d and vT = 1lT is the eigenvector
associated to the spectral radius d of Ms + dI.

Now note that the spectra of Ms and Ms + dI are translated of d̄,
which implies that 1lT is the only strongly positive (left) eigenvector of
Ms, and is associated to the eigenvalue 0.

In the case that Ms is irreducible, Ms + dI is also irreducible (the
irreducibility of Ms is not affected by modifying its diagonal entries;
think of the associated connection graph). The Perron-Frobenius theo-
rem in the irreducible case can be used (see, e.g., [61, Theorem C.1] or
[56, Theorem I]), implying that, additionally to the formerly given prop-
erties, the spectral radius ρ(Ms +dI) ofMs +dI is positive, is an eigen-
value of multiplicity one, and is such that for all other λ ∈ Sp(Ms +dI),
|λ| < ρ(Ms + dI).

As a consequence, since the spectra ofMs andMs+d̄I are translated
of d̄, 0 is the dominant eigenvalue ofMs and is of multiplicity one, and
all other eigenvalues ofMs have negative real parts.

Note that for matrix Ms, the difference between the reducible and
the irreducible case is not as important as it is in general, because the
nature ofMs implies that the conclusions we can draw in the reducible
case are stronger than they typically are.

Also, in the irreducible case, a shorter proof that 0 is the spectral
radius is given by using [12, Theorem 2.2.35] with the zero column sum
property. Similarly, the Perron-Frobenius theorem has been formulated
directly for matrices such asMs, which are called essentially nonnegative
(or essentially positive in the irreducible case). However, it seemed of
interest to show how to obtain these results here.

Lastly, all diagonal entries ofMs +dI are positive, except the entries
corresponding to d̄ in Ms which is zero, the matrix Ms is primitive,
from [12, Corollary 2.4.8]. (In the case that Ms has only d on the
diagonal, then it suffices to consider Ms + (d + e)I, for e > 0, instead
of Ms + dI to obtain positive terms on the main diagonal). Therefore,
the strongest version of the Perron-Frobenius theorem could also have
been used, which applies to primitive matrices. But, again, because of
the nature of Ms, the conclusions drawn are not stronger than those
obtained in the irreducible case.
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2.3.2 Case of an irreducible movement matrix

The following theorem describes the dynamics for one species, in the case
where there is no internal patch dynamics or that this dynamics simpli-
fies, and that the movement matrix is irreducible. It is used frequently
in Section 4.

Theorem 2.2. For a given species s ∈ S, suppose that the movement
matrixMs is irreducible, and that the within-patch dynamics simplifies,
that is, limt→∞ fp(Np(t)) = 0. Then the migration component of (2.2)
satisfies

lim
t→∞

Ns(t) = N∗
s ≫ 0.

Proof. Since limt→∞ fp(Np(t)) = 0, we can suppose that fp(Np) = 0.
The existence part is adapted from [4]. Remark that system (2.2)

with fp(Np) = 0 is overdetermined, in the sense that the total popula-
tion 1lT Ns =

∑

p∈P Np
s is constant. To find the equilibrium value N∗

s ,
the system

MsNs = 0

must be solved, withMs a singular matrix. This is achieved by consid-
ering the augmented system of p̄ + 1 equations in p̄ unknowns,

(

1lT

Ms

)

Ns =











N0

0
...
0











, (2.4)

where N0 =
∑p̄

p=1 Np
s (0). All column sums of the last p̄ rows are zero,

thus the second equation (for example) can be eliminated. Now perform
column operations cr ← cr − c1 for r = 2, . . . , p̄ on the determinant
of the resulting coefficient matrix, reducing it to the p̄ − 1 determinant
det(M(1) + T1), where M(1) denotes matrix Ms with its first row and
column deleted, thus

M(1) =







−
∑p̄

q=1 mq2 m23 · · · m2p̄

...
. . .

mp̄2 mp̄3 · · · −
∑p̄

q=1 mqp̄







and T1 = m11l
T
p̄−1 = [−m21, . . . ,−mp̄1]

T [1, . . . , 1], where m1 is the vector
formed from the first column ofMs by omitting the first entry.

By [12, M35, p. 137] since mpq ≥ 0, −M(1) is a nonsingular M-matrix

(it has the Z-sign pattern and 1lTp̄−1(−M(1)) ≥ 0 and is not the zero
vector by the assumption thatMs is irreducible). Thus det(−M(1)) > 0
and so detM(1) has sign (−1)p̄+1. Since T1 has rank 1, it follows from
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the linearity of the determinant subject to rank 1 perturbations, see, e.g.,
[46, Corollary 4.2], that det(M(1)+T1) = detM(1)(1+1lTp̄−1M(1)−1m1).
As −M(1) is an M-matrix, (−M(1)−1) ≥ 0, thus M(1)−1 ≤ 0. But
m1 ≤ 0, thus 1 + 1lTp̄−1M(1)−1m1 is positive and so det(M(1) + T1) has
the sign of detM(1), namely (−1)p̄+1.

By Cramer’s Rule,

N1 =
det M(1)N0

det(M(1) + T1)
=

N0

1 + 1lTp̄−1(M(1))−1m1

> 0

Similarly by deleting the (p + 1)st equation in (2.4),

Np =
det M(p)N0

det(M(p) + Tp)
=

N0

1 + 1lTp̄−1(M(p))−1mp

> 0

where Tp = mp1l
T
p̄−1 = [−m1p, . . . ,−mp−1,p,−mp+1,p, . . . ,−mp̄p]

T 1lTp̄−1

for p = 1, . . . , p̄. Here mp is the vector formed from the pth column of M
by omitting the pth entry. Thus given a value of N0, there is a unique
positive solution Np = N∗

p for p = 1, . . . , p̄.

We now consider the stability of N∗.

2.3.3 Case of a reducible movement matrix

In most of Section 3, it is assumed that the movement matrices are ir-
reducible, for each species. It is however possible to assume that the
movement matrices are reducible, but this changes the approach: re-
sults such as Theorem 2.2, which could be obtained in full generality in
the irreducible situation, have to be treated on a case by case basis, de-
pending on the precise nature of the movement matrices. Although the
results of this section are not used elsewhere in the text, it seemed worth
including them here, in order to show the additional problems arising in
the reducible case.

Rather than attempt a systematic treatment of the reducible case,
which would require a rather lengthy development, I discuss here the
main differences with the irreducible situation, by presenting the possible
cases for 3 patches, which can easily be extended to cover the general
case.

Generically, with 3 patches, the reducible situation corresponds to
one of the following graphs (operating a relabelling of patches if need
be). There can be no graph with only one strong connected component,
as it corresponds to the irreducible case. There are two graphs with only
isolated strong components: graphs G1 and G2:
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1 2

3

G1

1 2

3

G2

Theorem 2.2 can be applied to the study of each of the isolated strong
components in G1 and G2. So, in practice, this is an irreducible con-
figuration, which corresponds to the reduced form of Ms being block
diagonal, that is, direct sum of irreducible blocks.

In the case where the system does not separate, there can be two or
three strong components. First, in the case of 2 strong components, we
have the following two graphs, G3 and G4:

1 2

3

G3

1 2

3

G4

with associated movement matrices

M3 =





−m21 m12 0
m21 −m12 m23

0 0 −m23



 and M4 =





−m21 m12 0
m21 −(m12 + m32) 0
0 m32 0



 .

The remaining cases, graphs G5, G6, G7, G8 and G9, have 3 strong com-
ponents:

1 2

3

G5

1 2

3

G6

1 2

3

G7

1 2

3

G8

1 2

3

G9

Associated to these graphs are the movement matrices

M5 =





−(m21 + m31) 0 0
m21 −m32 0
m31 m32 0



 , M6 =





−m21 0 0
m21 −m32 0
0 m32 0



 ,
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M7 =





−m31 0 0
0 −m32 0

m31 m32 0



 , M8 =





−(m21 + m31) 0 0
m21 0 0
m31 0 0





and

M9 =





−m21 0 0
m21 0 0
0 0 0



 .

The main distinction between the cases is not the number of strong
components, but rather the number of sinks and/or isolated strong com-
ponents in the decomposition into strongly connected components. If,
by abuse of language, we call sink a patch that is a sink, or a strong
component that is a sink in the condensed graph, or an isolated strong
component, then we observe that the multiplicity of the dominant eigen-
value 0 is equal to the number of sinks in the graph.This is summarized
in the following table

Case # Sinks Eigenvalues
G1 3 0, 0, 0
G2 2 0, 0,−(m12 + m21)
G3 1 0,−m23,−(m12 + m21)
G4 1 0, λ2, λ3

G5 1 0,−m32,−(m21 + m31)
G6 1 0,−m21,−m32

G7 1 0,−m31,−m32

G8 2 0, 0,−(m21 + m31)
G9 2 0, 0,−m21

where λ2 and λ3 are two negative eigenvalues with slightly more compli-
cated expressions than those presented in the table.

Studying (2.1), it is clear that the population vanishes in a source
that is reduced to one patch. Intuition indicates that this is also the case
for sources not reduced to a single patch. Solving, as in the irreducible
case, the augmented system

(

1lT

Mi

)





N1

N2

N3



 =











N(0)

0
0
0











,

with N(0) = N1(0) + N2(0) + N3(0), confirms this intuition. Cases G1

and G2 have equilibria given by the following table.

Case N∗
1 N∗

2 N∗
3

G1 N1(0) N2(0) N3(0)

G2
m12(N1(0) + N2(0))

m12 + m21

m21(N1(0) + N2(0))

m12 + m21
N3(0)
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In the case of G3, patch 3 is a source and the strong component {1, 2} is
a sink, and the equilibrium is given by

Case N∗
1 N∗

2 N∗
3

G3 N1(0) +
m21N3(0)

m21 + m31
N2(0) +

m31N3(0)

m21 + m31
0

Cases G4 to G7, all the individuals migrate to patch 3, which is the only
sink in the graphs, and equilibria take the form

Case N∗
1 N∗

2 N∗
3

G4 0 0 N1(0) + N2(0) + N3(0)
G5 0 0 N1(0) + N2(0) + N3(0)
G6 0 0 N1(0) + N2(0) + N3(0)
G7 0 0 N1(0) + N2(0) + N3(0)

Finally, G8 and G9 have two sinks, and equilibria given by

Case N∗
1 N∗

2 N∗
3

G8 0 N2(0) +
m21N1(0)

m21 + m31
N3(0) +

m31N1(0)

m21 + m31
G9 0 N1(0) + N2(0) N3(0)

Note that this gives a different interpretation of the discussion in [12,
pp 38-45], where a different vocabulary is used.

3 Methodological aspects

A certain number of objectives or steps can be isolated, when study-
ing a metapopulation disease model. They are not very different from
the steps that are carried out when lower dimensional systems are stud-
ied, but the high dimensionality of the systems makes them somewhat
specific. This programme typically should involve at least the following
steps, to take place once a satisfactory model is formulated.

1. Establish the well-posedness of the system.

2. Study the existence of disease free equilibria.

3. Compute a reproduction number for the system, and consider the
local asymptotic stability of the disease free equilibria.

The steps above provide a basic understanding of the behavior of meta-
population disease models. Additionally to these steps, other questions
worth addressing are the following.

4. If the disease free equilibrium is unique, prove that it is globally
asymptotically stable when R0 < 1.
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5. Step 2 above addresses the existence of an equilibrium without
disease for the whole system. Of importance in the context of
epidemic spread is also the possibility for the system to have mixed
equilibria, with some patches disease free and others with disease.

6. The expression obtained for R0 is typically very complicated, so
obtaining some bounds on the value of R0 can be helpful.

This programme is illustrated in the following sections, with examples
chosen from the author’s work.

3.1 The models under consideration

The models used here are formulated in a very general setting. Three
types of models are considered, that are SEIRS-type models of the form
of system (1.1), set in a patch setting. The population in each patch
is divided into compartments of susceptible, exposed (latent), infective
and recovered individuals with the number in each compartment denoted
by S•(t), E•(t), I•(t) and R•(t), respectively. The symbol • is used to
indicate that a variable or parameter might have one or several indices.
The following system summarizes their common aspects, and will be
used when genericity is needed.

d

dt
S• = B(N•)− Φ• − d•S• + ν•R• + ΩS(S•) (3.1a)

d

dt
E• = Φ• − (ε• + d•)E• + ΩE(E•) (3.1b)

d

dt
I• = ε•E• − (γ• + d• + δ•)I• + ΩI(I•) (3.1c)

d

dt
R• = γ•I• − (ν• + d•)R• + ΩR(R•). (3.1d)

The operators ΩX(X•), for X ∈ {S,E, I,R}, are the movement oper-
ators; they potentially involve all components of a given state X. As
discussed in Section 2.3, it is assumed that they are linear. Also, unless
otherwise stated, it is assumed throughout that for a given state/species
combination X ∈ {S,E, I,R}, ΩX induces a graph that is strongly con-
nected for that state/species combination. Finally, note that since travel
is instantaneous, there is no change of epidemiological status during
travel.

We consider three types of models. The first is a particular case of the
second, but it is useful for illustrating the type of computations needed
without overburdenning the reader with notations. The other two serve
the converse purpose of showing that even though they are complex, the
computations can be carried out.
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3.1.1 Simple SEIRS

The model here is for disease transmission in one species, but allows for
movement rates to depend on disease status.

Within each patch conditions are assumed to be homogeneous. The
total number of individuals in patch p = 1, . . . , p̄ is Np(t) = Sp(t) +
Ep(t) + Ip(t) + Rp(t). The rates of movement of individuals between
patches are assumed to depend on disease status, and individuals do not
change disease status during movement. Let mS

pq, mE
pq, mI

pq, mR
pq denote

the rate of movement from patch q to patch p of susceptible, exposed,
infective, recovered individuals, respectively, where mS

pp = mE
pp = mI

pp =

mR
pp = 0. This defines the nonnegative matrices MS =

[

mS
pq

]

, ME =
[

mE
pq

]

, M I =
[

mI
pq

]

and MR =
[

mR
pq

]

. The movement matrices are
deduced from these matrices by setting, for X ∈ {S,E, I,R},

MX = MX − diag
(

1lT MX
)

.

Unless otherwise indicated, it is assumed that these matrices are irre-
ducible.

The above assumptions lead to a system of 4p̄ ordinary differential
equations (ODEs) describing the disease dynamics. For p = 1, . . . , p̄
these equations are

d

dt
Sp = Bp (Np)− Φp − dpSp + νpRp +

p̄
∑

q=1

mS
pqSq −

p̄
∑

q=1

mS
qpSp (3.2a)

d

dt
Ep = Φp − (εp + dp) Ep +

p̄
∑

q=1

mE
pqEq −

p̄
∑

q=1

mE
qpEp (3.2b)

d

dt
Ip = εpEp − (γp + dp + δp)Ip +

p̄
∑

q=1

mI
pqIq −

p̄
∑

q=1

mI
qpIp (3.2c)

d

dt
Rp = γpIp − (νp + dp) Rp +

p̄
∑

q=1

mR
pqRq −

p̄
∑

q=1

mR
qpRp (3.2d)

with initial conditions Sp(0) > 0 and Ep(0), Ip(0), Rp(0) ≥ 0 such that
∑p̄

p=1
{Ep(0)+Ip(0)} > 0, so that there are initially infected individuals

in the system. The force of infection Φp takes into account contacts
between susceptibles and infectious in patch p. It takes the general form

Φp = βp(Np)SpIp, (3.3)

with assumptions on βp as in Section 1. In some specific cases, propor-
tional incidence will be considered, with

Φi = βiSi

Ii

Ni

. (3.4)
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3.1.2 SEIRS for multiple species

The model here is the generalization of system (3.2) to s̄ species (where
we use the term species stricto sensu, not for epidemiological states).
The dynamics for species s = 1, . . . , s̄ in patch p = 1, . . . , p̄ is given by
the following system of 4s̄p̄ equations,

d

dt
Ssp = Bsp(Nsp)− Φsp − dspSsp + νspRsp

+

p̄
∑

q=1

mS
spqSsq −

p̄
∑

q=1

mS
sqpSsp (3.5a)

d

dt
Esp = Φsp − (εsp + dsp)Esp +

p̄
∑

q=1

mE
spqEsq −

p̄
∑

q=1

mE
sqpEsp (3.5b)

d

dt
Isp = εspEsp − (γsp + dsp + δsp)Isp

+

p̄
∑

q=1

mI
spqIsq −

p̄
∑

q=1

mI
sqpIsp (3.5c)

d

dt
Rsp = γspIsp − (νsp + dsp)Rsp +

p̄
∑

q=1

mR
spqRsq −

p̄
∑

q=1

mR
sqpRsp. (3.5d)

The parameters are defined similarly to those of system (3.2), but now
the first subscript denotes the species; for example, 1/γsp is the average
period of infection for species s in patch p. Each species has its own
movement matrices, for exampleMI

s for infectious individuals of species
s, obtained from the nonnegative matrix M I

s = [mI
spq] where mI

spq de-
notes the rate of movement of an infective individual of species s from
patch q to patch p, by setting

MI
s = M I

s − diag
(

1lT M I
s

)

.

Denoting the total population of species s in patch p by Nsp = Ssp +
Esp + Isp + Rsp, the force of infection takes the form

Φsp =

s̄
∑

k=1

βskpSsp

Ikp

Nkp

, (3.6)

in [4], but more generally, it can be assumed to take the form

Φsp =
s̄
∑

k=1

βkp(Nkp)SspIkp, (3.7)
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with assumptions on βkp(Nkp) as in Section 1. Thus, infection in patch
p for susceptibles of species s involves contacts with infectives from all
species that are present in the patch.

This model is considered together with nonnegative initial condi-
tions having, for all s = 1, . . . , s̄ and all p = 1, . . . , p̄, Ssp(0) > 0 and
Esp(0), Isp(0), Rsp(0) ≥ 0 such that

s̄
∑

s=1

p̄
∑

p=1

{Esp(0) + Isp(0)} > 0.

3.1.3 SEIRS model with residency patch

The main difference in the following model compared to (3.2) and (3.5)
is that it tracks the place of residence of individuals: they can move
between patches, but are always identified by the patch in which they
were born. In this sense, this model is more adequate to describe the
short term travels of humans, rather than migrations.

Let Npq(t) be the number of residents of patch p who are present in
patch q at time t, with Spq(t), Epq, Ipq(t) and Rpq(t) being the number
that are susceptible, exposed, infective and recovered, respectively. The
nonnegative matrix MS

p = [mS
pqr] gives the movement rates of susceptible

individuals resident in patch p from patch r to patch q. Similarly ME
p =

[mE
pqr], M I

p = [mI
pqr] and MR

p = [mR
pqr] give these rates for exposed,

infective and recovered individuals. From these matrices, the movement
matrices MX

p for residents of patch p in epidemiological state X are
constructed, using

MX
p = MX

p − diag
(

1lT MX
p

)

.

For simplicity, denote

Nr
p =

p̄
∑

q=1

Npq, (3.8)

the population of individuals born in patch p ∈ P (called the residents
of patch p), and

N c
p =

p̄
∑

q=1

Nqp, (3.9)

the number of individuals currently in patch p. Birth is assumed to occur
in the residency patch at rate Bpp(N

r
p ) and natural death occurs (in all

disease states) in all patches at the rate dpq. For p̄ patches, the model
takes the following form for p, q = 1, . . . , p̄.



Diseases in metapopulations 21

d

dt
Spq =Bpq

(

Nr
p

)

+ νpqRpq − dpqSpq − Φpq

+

p̄
∑

r=1

mS
pqrSpr −

p̄
∑

r=1

mS
prqSpq (3.10a)

d

dt
Epq =Φpq − (εpq + dpq)Epq +

p̄
∑

r=1

mE
pqrEpr −

p̄
∑

r=1

mE
prqEpq (3.10b)

d

dt
Ipq =εpqEpq − (γpq + dpq + δpq)Ipq

+

p̄
∑

r=1

mI
pqrIpr −

p̄
∑

r=1

mI
prqIpq (3.10c)

d

dt
Rpq =γpqIpq − (νpq + dpq)Rpq +

p̄
∑

r=1

mR
pqrRpr −

p̄
∑

r=1

mR
prqRpq.

(3.10d)

The force of infection for residents of patch p that are susceptible and
currently in patch q, Φpq, takes the form

Φpq =

p̄
∑

r=1

βrq(N
c
q )SpqIrq, (3.11)

that is, it describes the contacts, in patch q, between susceptibles resi-
dents of patch p who are currently in patch q, and infectives residents
of all patches who are currently in patch q, related to the total current
population in the patch. Assumptions on βrq are as in Section 1.

If standard incidence is used as in the previous models, giving

Φpq =

p̄
∑

r=1

βprqSpq

Irq

N c
q

, (3.12)

then βprq denotes the rate of transmission of the disease for a contact in
patch q between a susceptible from patch p and an infective from patch
r that results in disease transmission (it is the product of the proportion
of such adequate contacts and the average number of such contacts).
Here, the residents of each patch can be thought of as a species in the
sense of Section 2.

Note that models (3.5) and (3.10) are more complicated than (3.2).
System (3.5) has 4s̄p̄ equations, (3.10) has 4p̄2 equations, whereas (3.2)
“only” has 4p̄ equations. Also, where (3.2) has at most 4 arcs in each
direction between any two given patches, (3.5) and (3.10) have a max-
imum of 4s̄ and 4p̄ arcs between any two given patches, respectively.
(Typically, p̄ > s̄).
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3.1.4 Types of movement matrices

In the context of the models considered here, movement similar for all
states takes the following form.

Definition 3.1. Movement in system (3.2) is similar for all states if,
for all p, q = 1, . . . , p̄, there holds that either

mS
pqm

E
pqm

I
pqm

R
pq > 0

or
mS

pq = mE
pq = mI

pq = mR
pq = 0.

Movement in system (3.5) is similar for all states if, for all p, q = 1, . . . , p̄
and a given species s ∈ S, there holds that either

mS
spqm

E
spqm

I
spqm

R
spq > 0

or
mS

spq = mE
spq = mI

spq = mR
spq = 0.

If this is true for all states and all species, then movement in (3.5) is
similar for all states and all species. Movement in system (3.10) is
similar for all states if, for all p, q, r = 1, . . . , p̄, there holds that either

mS
pqrm

E
pqrm

I
pqrm

R
pqr > 0

or
mS

pqr = mE
pqr = mI

pqr = mR
pqr = 0.

Unless otherwise specified, it is assumed throughout that movement
is similar for all epidemiological states. Results shown for similar move-
ment rates are of course valid in the particular case of identical move-
ment, which here takes the form mX

• ≡ m• for all X = {S,E, I,R}.
When movement is similar for all states, we drop the superscript

indicating the disease state in

PX
p→,P

X

p→,PX
→p,P

X

→p,P
sX
p→,P

sX

p→,PsX
→p and P

sX

→p

and thus denote by

Pp→,Pp→,P→p,P→p,P
s
p→,P

s

p→,Ps
→p and P

s

→p

the sets of patches that can be accessed directly from p, can be accessed
from p, have access to p directly, have access to p, can be accessed
directly from p by species s, can be accessed from p by species s, to
which species s has direct access from p, and to which species s has
access from p, respectively.
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3.2 Well-posedness

A system is well-posed if its solutions exist for all positive times, are
unique, exhibit sensitive dependence on parameters and initial data. For
systems describing populations, reasonable additional conditions of well-
posedness are that solutions remain nonnegative for nonnegative initial
conditions, as negative population values have no interpretable meaning,
and that they remain bounded. To study the well-posedness and in
particular, the boundedness of solutions, it is convenient to consider the
demographic component, that is, the total population in each patch or
in the whole system.

3.2.1 Existence and uniqueness of solutions

With systems such as (3.1), the existence and uniqueness of solutions, as
well as continuous dependence on parameters and initial data, is assured
by a proper choice of birth and force of infection functions, since the
other processes are described by constant or linear terms. In the cases
treated later, the birth function is either constant or a linear combination
of state variables. There may exist problems at the origin, if the force
of infection is not defined there, but this problem is solved by mollifying
the functions if need be. Therefore, it is assumed from now on that
solutions exist and are unique, and depend continuously on initial data
and parameters.

3.2.2 Nonnegativity and/or positivity of solutions

Take for example (3.2). To show the positive invariance of the positive
orthant R

4p̄
+ under the flow of system (3.2), it suffices to show that each of

the faces of the positive orthant cannot be crossed, that is, that the vector
field points inward on these faces. Assume that initially, all variables are
nonnegative. Setting Sp = 0 in (3.2a) gives

d

dt
Sp = Bp(Np) + νpRp +

p̄
∑

q=1

mS
pqSq ≥ 0,

implying that Sp = 0 cannot be crossed from positive to negative Sp.
Similarly, setting Ep = 0 in (3.2b) gives

d

dt
Ep = Φp +

p̄
∑

q=1

mE
pqEq ≥ 0,

and Ep = 0 cannot be crossed. The same argument shows that nei-
ther Ip nor Rp can be crossed. Hence solutions remain nonnegative for
nonnegative initial conditions.
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The result can be in fact strengthened, by noting that for positive
Np, Bp(Np) > 0, and for q ∈ PS

→p, mS
pq > 0, implying that dSp/dt > 0,

in turn implying that for positive initial conditions, Sp remains positive.
The same type of reasoning can be applied to systems (3.5) and (3.10).

To summarize, in all cases above, it has been assumed that initial
conditions are such that S•(0) > 0 and E•(0), I•(0), R•(0) ≥ 0, with
∑

•{E•(0) + I•(0)} > 0 (so that there are exposed and/or infectives at
initial time). This implies that S• > 0 for all times. The following
generic result can be stated.

Theorem 3.2. If a given movement rate m• > 0, then the linked S• > 0
provided that S•(0) > 0.

3.2.3 Boundedness of solutions

Establishing that solutions are bounded can be more difficult, and re-
quires that the behavior of the total population in each patch or the
total population in the system be studied.

We make the following hypotheses on the birth functions. For system
(3.5), we assume that

Bsp(Nsp) = Asp + bspNsp, (3.13)

with the species index s dropped in the case of (3.2), while for system
(3.10), we suppose that

Bpq(N
r
p ) =

{

Ap + bpN
r
p if p = q

0 if p 6= q,
(3.14)

where for each p, one of the following two conditions holds:

H1 A• > 0, d• > b•.

H2 A• = 0, d• = b•.

Theorem 3.3. Provided that the birth functions satisfy H1 or H2, so-
lutions to system (3.2), (3.5) and (3.10) are bounded.

Proof. Consider system (3.5). When the behavior of the demographic
component is considered, the fact that movement depends on the state
implies that the dynamics of the total population Nsp in patch p for
species s takes the form

d

dt
Nsp = Bsp(Nsp)− dspNsp − δspIsp

+
∑

X∈{S,E,I,R}

(

p̄
∑

q=1

mX
spqXsq −

p̄
∑

q=1

mX
sqpXsp

)

, (3.15)
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which cannot be evaluated independently of the dynamics of (3.5). How-
ever, the total population in the system for species s, Ns, satisfies

d

dt
Ns =

p̄
∑

p=1

(Bsp(Nsp)− dspNsp − δspIsp)

+

p̄
∑

p=1





∑

X∈{S,E,I,R}

(

p̄
∑

q=1

mX
spqXsq −

p̄
∑

q=1

mX
sqpXsp

)





=

p̄
∑

p=1

(Bsp(Nsp)− dspNsp − δspIsp)

+
∑

X∈{S,E,I,R}

(

p̄
∑

p=1

(

p̄
∑

q=1

mX
spqXsq −

p̄
∑

q=1

mX
sqpXsp

))

=

p̄
∑

p=1

(Bsp(Nsp)− dspNsp − δspIsp) . (3.16)

The last equality results from the fact that for each state X ∈ {S,E, I,R},
the sums

p̄
∑

p=1

p̄
∑

q=1

mX
spqXsq −

p̄
∑

p=1

p̄
∑

q=1

mX
sqpXsp

cancel. This is readily established by noticing that in these sums, each
term appears exactly once with a positive sign and once with a negative
sign. That solutions to (3.2) are bounded is deduced directly from the
boundedness of solutions to (3.5) in the case s̄ = 1.

Similarly, in the case of system (3.10), the variation of the number
Nr

p of residents in patch p is given by

d

dt
Nr

p = Bpp(N
r
p )−

p̄
∑

q=1

(dpqNpq − δpqIpq)

+
∑

X∈{S,E,I,R}

(

p̄
∑

q=1

[

p̄
∑

r=1

mX
pqrXpr −

p̄
∑

r=1

mX
prqXpq

])

. (3.17)

As in the case of (3.16) for system (3.5), the movement terms cancel
when considering the total population for system (3.10), N =

∑p̄

p=1 Nr
p ,

which implies that N satisfies the equation

d

dt
N =

p̄
∑

p=1

(

Bpp(N
r
p )−

p̄
∑

q=1

(dpqNpq − δpqIpq)

)

. (3.18)
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Therefore the total population for system (3.5) is nonincreasing if

p̄
∑

p=1

Bsp(Nsp) ≤

p̄
∑

p=1

(dspNsp − δspIsp) ,

or increasing if

p̄
∑

p=1

Bsp(Nsp) >

p̄
∑

p=1

(dspNsp − δspIsp) ,

and that of system (3.10) depends on the sign of

p̄
∑

p=1



Bpp(N
r
p )−

p̄
∑

j=1

(dpqNpq − δpqIpq)



 .

If H1 holds, as was assumed in [50], then the population in patch p
is bounded above by max{Ap/(dp − bp), N

r
p (0)}. If H2 holds, as was

assumed in [6, 7] with dp = d, then the resident population of patch i is
constant with Nr

p = Nr
p (0), and if this is true for all patches, then the

total population in the system is constant.

3.3 Behavior of the demographic component

Consider system (3.2). In the case of mild diseases it may be reasonable
to assume that movement rates are independent of disease status, thus
MS = ME = MI = MR =: M. In this case, the behavior of the
demographic component can be linked to the behavior of the underly-
ing metapopulation model without disease. The total population Np in
patch p, evolves following the equation

d

dt
Np = Bp(Np)− dpNp − δpIp +

p̄
∑

q=1

mpqNq −

p̄
∑

q=1

mqpNp. (3.19)

First, consider a particular case, with assumptions made in the multi-
species model of [4].

Theorem 3.4. Suppose that in system (3.2), there is no disease in-
duced death (δp = 0 for all p), movement is identical for all epidemio-
logical states, that in each patch, birth compensates natural death, that
is, Bp(Np) = dpNp, and that the movement matrix is irreducible. Then
for every patch p = 1, . . . , p̄, there holds

lim
t→∞

Np(t) = N∗
p > 0.
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Proof. Under the assumptions of the theorem, the system is linear and
decouples from the epidemic variables, and takes the form, for p =
1, . . . , p̄,

d

dt
Np =

p̄
∑

q=1

mpqNq −

p̄
∑

q=1

mqpNp

The result follows from Theorem 2.2.

The same type of result holds for systems (3.5) and (3.10), that are
given here without proof.

Theorem 3.5. Suppose that, in system (3.5), there is no disease induced
death, movement is identical for all epidemiological states and that in
each patch, birth compensates natural death, that is, Bsp(Nsp) = dspNsp.
Then the movement model is given, for all s = 1, . . . , s̄ and all p =
1, . . . , p̄, by

d

dt
Nsp =

p̄
∑

q=1

mspqNsq −

p̄
∑

q=1

msqpNsp, (3.20)

and there holds
lim

t→∞
Nsp(t) = N∗

sp > 0.

Theorem 3.6. Suppose that, in system (3.10), there is no disease in-
duced death, movement is identical for all epidemiological states and
yields an irreducible movement matrix, and that in each patch, birth
compensates natural death, that is,

Bpq(N
r
p ) =







dpq

p̄
∑

r=1
Npr if p = q,

0 if p 6= q.

Then for every patch p = 1, . . . , p̄ and subpopulation q = 1, . . . , p̄, there
holds

lim
t→∞

Npq(t) = N∗
pq > 0.

Theorems 3.4, 3.5 and 3.6 establish that if movement is identical for
all classes and there is no disease induced mortality, then the behavior of
the total population is independent of the disease characteristics. In the
general case, the demography is not independent of the disease, and it
is not possible to characterize the behavior of the former independently
of the latter.

It is clear, however, that the convergence of N can still be estab-
lished, provided that I converges to some value I∗. For example, for
system (3.2), it is established in Section 3.6 that I → 0 when the ba-
sic reproduction number, R0, is less than 1, and this is done with no
assumption on N .
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3.4 Existence of a disease free equilibrium (DFE)

The metapopulation model is at equilibrium if the time derivatives are
zero. In the case of system (3.2), patch p is at a disease free equilibrium
(DFE) if Ep = Ip = 0, and the p̄-patch model is at a DFE if Ep = Ip = 0
for all p = 1, . . . , p̄. System (3.5) is at a DFE if Esp = Isp = 0 for
all s = 1, . . . , s̄ and all p = 1, . . . , p̄. System (3.10) is at a DFE if
Epq = Ipq = 0 for all p, q = 1, . . . , p̄.

At this point, the objective is to find the DFE for the p̄-patch model.
In Section 3.7, the existence of mixed equilibria, with some patches at
the DFE and others at an endemic equilibrium, is considered.

First, it must be shown that at a DFE, R• = 0. We have the following
result.

Theorem 3.7. Suppose that, in system (3.2), Ep = Ip = 0 for all
p = 1, . . . , p̄. Then for all p = 1, . . . , p̄,

lim
t→∞

Rp(t) = 0.

Suppose that, in system (3.5), Esp = Isp = 0 for all p = 1, . . . , p̄ and all
species s = 1, . . . , s̄. Then, for all p = 1, . . . , p̄ and all s = 1, . . . , s̄, there
holds,

lim
t→∞

Rsp(t) = 0.

Suppose that, in system (3.10), there holds that Epq = Ipq for all p, q =
1, . . . , p̄. Then, for all p, q = 1, . . . , p̄,

lim
t→∞

Rpq(t) = 0.

Proof. Substituting Ip = 0 in (3.2d), there holds that at the DFE, using
the vector form of the equation,

(

MR − diag (νp + dp)
)

R = 0.

From Theorem 2.1, the matrix (−MR) is a singular M-matrix. It follows
thatMR−diag (νp +dp) is nonsingular, and at a DFE, R = 0. To show
the result for (3.5), it suffices to proceed species by species, while for
(3.10), proceeding resident patch by resident patch leads to the same
result.

Thus at a DFE, system (3.2) is such that, for all p = 1, . . . , p̄, Sp = Np

and satisfies

Bp (Np)− dpNp +

p̄
∑

q=1

mS
pqNq −

p̄
∑

q=1

mS
qpNp = 0 (3.21)
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Assume that (3.21) has a solution that gives the DFE S∗
p = N∗

p , which
is unique. This is certainly true if Bp (Np) = dpNp (i.e., birth rate equal
to the death rate) and δp = 0 (i.e., no disease related death) giving a
constant total population as in [4]. It is also true if Bp (Np) = bp as
assumed in [49, 50].

At the DFE, system (3.5) takes the form

Bsp(Nsp)− dspSsp +

p̄
∑

q=1

mS
spqSsq −

p̄
∑

q=1

mS
sqpSsp = 0, (3.22)

while (3.10) takes the form

Bpq(N
r
p )− dpqSpq +

p̄
∑

r=1

mS
pqrSpr −

p̄
∑

r=1

mS
prqSpq = 0. (3.23)

Let us return to (3.2) and (3.21). Letting ~d = (d1, . . . , dp̄)
T , then if

B(S) 6= ~d I, the problem (3.21) can be written as a fixed point problem,

(

~d I −MS
)−1

B(S) = S.

Since −MS is a singular M-matrix, ~d I−MS is a nonsingular M-matrix.
As a consequence, (~d I−MS)−1 is a nonnegative matrix that leaves the
positive cone R

n
+ invariant. If B has the required property, then the

contraction mapping principle can be used and there is a unique solu-
tion to the fixed point problem. Otherwise, provided B is a continuous
mapping such that the total population is bounded, fixed point results
ensure that there exist solutions to the problem, although uniqueness is
not guaranteed.

3.5 Reproduction number and local stability of DFE

In this part, we assume that a DFE exists. Linear stability of the disease
free equilibrium can be investigated by using the next generation matrix
[21, 60]. Note that, in general, R0 depends on the demographic, disease
and mobility parameters.

3.5.1 Simple SEIRS

To derive the basic reproduction number in the most general context,
system (3.2) with a generic force of infection (3.3) is first considered. Us-
ing the notation of [60], and ordering the infected variables as E1, . . . , Ep̄,
I1, . . . , Ip̄, form the vectors

F = (Φ1, . . . ,Φp̄, 0, . . . , 0)
T

,
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representing new infections into the infected classes E1, . . . , Ep̄,I1, . . . , Ip̄,
and

V = −























−(ε1 + d1)E1 +
∑p̄

j=1 mE
1jEj −

∑p̄

j=1 mE
j1E1

...

−(εp̄ + dp̄)Ep̄ +
∑p̄

j=1 mE
p̄jEj −

∑p̄

j=1 mE
jp̄Ep̄

ε1E1 − (γ1 + d1 + δ1)I1 +
∑p̄

j=1 mI
1jIj −

∑p̄

j=1 mI
j1I1

...

εp̄Ep̄ − (γp̄ + dp̄ + δp̄)Ip̄ +
∑p̄

j=1 mI
p̄jIj −

∑p̄

j=1 mI
jp̄Ip̄























,

representing other flows within and out of the infected classes E1, . . . , Ep̄,
I1, . . . , Ip̄ (note that V has a minus sign). The matrix of new infections
F and the matrix of transfer between compartments V are then the
Jacobian matrices obtained by differentiating F and V with respect to
the infected variables, evaluated at the disease free equilibrium (DFE).
Note that

∂Φp

∂Ep

=
∂

∂Ep

βp(Np)SpIp,

and therefore it follows that ∂Φp/∂Ep = 0 at the DFE. Therefore, the
matrices F and V are given in partitioned form by

F =

[

0 F12

0 0

]

and V =

[

V11 0
−V21 V22

]

(3.24)

with

F12 = diag

(

∂Φp

∂Ip

∣

∣

∣

∣

DFE

)

,

and

V11 = −ME + diag (εi + di), V21 = diag (εi) ,

V22 = −MI + diag (γi + di + δi).

Matrices V11 and V22 are p̄× p̄ irreducible M-matrices [12] and thus
have positive inverses. The next generation matrix

FV −1 =

[

F12V
−1
22 V21V

−1
11 F12V

−1
22

0 0

]

has spectral radius, denoted by ρ, given by

ρ
(

FV −1
)

= ρ
(

F12V
−1
22 V21V

−1
11

)

As shown in [60], the Jacobian matrix of the infected compartments at
the DFE, which is given by F −V , has all eigenvalues with negative real
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parts if and only if ρ
(

FV −1
)

< 1. Note that the conditions of application
of Theorem 2 in [60] are satisfied, and in particular, condition (A5) holds
if B is such that the demographic component without disease converges.
This is summarized in the following theorem.

Theorem 3.8. Define the basic reproduction number R0 for system
(3.2) with force of infection (3.3) by

R0 = ρ
(

FV −1
)

= ρ
(

F12V
−1
22 V21V

−1
11

)

, (3.25)

with matrices F and V defined by (3.24). Then the DFE is locally asymp-
totically stable if R0 < 1, and unstable if R0 > 1.

With force of infection (3.4), i.e., using standard incidence, the matrix
V still takes the value computed above, as it does not involve incidence,
whereas

∂Φp

∂Ip

∣

∣

∣

∣

DFE

= βp

S∗
p

N∗
p

= βp,

so F12 = diag (β1, . . . , βp̄) provided that Bp(Np) is such that S∗
p = N∗

p

(as is the case for example if Bp(Np) = dpNp).

3.5.2 SEIRS with multiple species

We turn to the case of system (3.5). Suppose that the functions Bsp are
such that for all s = 1, . . . , s̄ and p = 1, . . . , p̄, limt→∞ Nsp(t) = N∗

sp > 0.
The method for multiple species is essentially the same as for a single
species. To determine the matrices F and V , order the state variables
by species, then by patch, i.e.,

E11, E21, . . . , Es̄1, E12, . . . , Es̄p̄, I11, I21, . . . , Is̄1, I12, . . . , Is̄p̄.

The vector F then takes the form

F = (Φ11,Φ21, . . . ,Φs̄1,Φ21, . . . ,Φs̄p̄, 0, . . . , 0) ,

with s̄p̄ zeros corresponding to the I variables. As for the single species
case, there holds that, at the DFE, ∂Φsp/∂Eij = 0, for all s, i = 1, . . . , s̄
and p, j = 1, . . . , p̄. Also, ∂Φsp/∂Iij = 0 for all s, i = 1, . . . , s̄ and
p, j = 1, . . . , p̄, whenever p 6= i, since there are no contacts outside of the
patch. Then the nonnegative matrix F takes the form

F =

[

0 G
0 0

]

=

















0
p̄
⊕

p=1

Gp

0 0

















,
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where ⊕Gp denotes the direct sum of the Gp’s, with Gp an s̄× s̄-matrix
with (r, s) entry equal to

[Gp]rs =
∂Φrp

∂Isp

∣

∣

∣

∣

DFE

,

and representing the contacts between species r and s in patch p. The
matrix V is the block matrix

V =

[

A 0
−C B

]

=



































A11 · · · A1p̄

...
. . .

...

Ap̄1 · · · Ap̄p̄

0

−

p̄
⊕

p=1

Cp

B11 · · · B1p̄

...
. . .

...

Bp̄1 · · · Bp̄p̄



































Matrix A is a block matrix, with each block Apq a s̄× s̄ diagonal matrix.
The (r, r) entry of App is equal to drp + εrp +

∑p̄

l=1 mE
rlp, whereas for

p 6= q the (r, r) entry of Apq is −mE
rpq. The (p, p) entry of Bpp is equal

to drp + γrp +
∑p̄

l=1 mI
rlp, whereas for p 6= q the (r, r) entry of Bpq is

−mI
rpq. Finally, Cp is an s̄× s̄ diagonal matrix with (r, r) entry equal to

εrp.
Matrices G, A, B and C are s̄p̄ × s̄p̄-matrices. Matrices A and B

are nonsingular M -matrices since they have the Z-sign pattern and are
diagonally dominant by columns [12, M35 p. 137]. Thus A−1 and B−1

are nonnegative.
Due to the particular structure of F and V , the computation of

ρ(FV −1) is greatly simplified. Indeed, the inverse V −1 of V keeps its
block triangular structure

V −1 =

[

A−1 0

B−1CA−1 B−1

]

,

and it follows that

FV −1 =

[

0 G
0 0

] [

A−1 0

B−1CA−1 B−1

]

=

[

GB−1CA−1 GB−1

0 0

]

.

Thus

R0 = ρ(GB−1CA−1)
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Since GB−1CA−1 is a nonnegative matrix, its spectral radius is attained
at the largest real eigenvalue. If R0 < 1, then the DFE is locally stable,
whereas if R0 > 1, then the DFE is unstable [60, Theorem 2]. The
following result has been proved.

Theorem 3.9. For system (3.5) with s̄ species and n̄ patches,

R0 = ρ(GB−1CA−1) (3.26)

If R0 < 1, then the DFE is locally asymptotically stable, if R0 > 1 then
the DFE is unstable.

In the case of a force of infection with proportional incidence such as
(3.6), the (r, s) entry of Gp takes the form βrspŜrp/N

∗
sp.

3.5.3 SEIRS with residency patch

In the case of system (3.10), we order the infected variables (exposed
and infectives) as

E11, . . . , E1p̄, E21, . . . E2p̄, . . . Ep̄p̄, I11, . . . , I1p̄, I21, . . . I2p̄, . . . , Ip̄p̄.

Since Φpq describes the infection of susceptible residents of patch p who
are currently in patch q, there holds that ∂Φpq/∂Iij = 0 if q 6= j, for all
i, j, p, q = 1, . . . , p̄, since contacts only involve individuals that are in the
same patch. This gives the block matrix F ,

F =

[

0 G
0 0

]

where G is an p̄2 × p̄2 matrix having p̄2 blocks, with each block Gpq a
p̄× p̄ diagonal matrix of the form

Gpq = diag

(

∂Φp1

∂Iq1

∣

∣

∣

∣

DFE

,
∂Φp2

∂Iq2

∣

∣

∣

∣

DFE

, . . . ,
∂Φpp̄

∂Iqp̄

∣

∣

∣

∣

DFE

)

.

Also, V is a lower triangular block matrix,

V =

[

A 0
C B

]

=

















p̄
⊕

p=1

Ap 0

−

p̄
⊕

p=1

Cp

p̄
⊕

p=1

Bp

















where each block A, B and C is p̄2 × p̄2. For p = 1, . . . p̄, Ap is an p̄× p̄
matrix with

Ap =









εp1 + dp1 +
∑p̄

k=1 mE
pk1 · · · −mE

p1p̄

−mE
p21 · · · −mE

p2p̄

−mE
pp̄1 · · · εpp̄ + dpp̄ +

∑p̄

k=1 mE
pkp̄









,
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Bp is an p̄× p̄-matrix with

Bp =









γp1 + dp1 +
∑p̄

k=1 mI
pk1 · · · −mI

p1p̄

−mI
p21 · · · −mI

p2p̄

−mI
pp̄1 · · · γpp̄ + dpp̄ +

∑p̄

k=1 mI
pkp̄









,

and Cp is a p̄× p̄ diagonal matrix with Cp = diag (εp1, . . . , εpp̄).
Since Ak and Bk have the Z-sign pattern and have all positive column

sums, Ak and Bk are nonsingular M-matrices [12]. Note that

(

p̄
⊕

p=1

B−1
p

)(

p̄
⊕

p=1

Cp

)(

p̄
⊕

p=1

A−1
p

)

=

p̄
⊕

p=1

(

ApC
−1
p Bp

)−1
.

Therefore, the inverse of V is the nonnegative matrix

V −1 =

















p̄
⊕

p=1

A−1
p 0

p̄
⊕

p=1

(

ApC
−1
p Bp

)−1
p̄
⊕

p=1

B−1
p

















. (3.27)

Since V −1 is lower triangular by blocks, FV −1 can be given by blocks.
By [60, Theorem 2], the basic reproduction number for system (3.10) is

R0 = ρ



G

(

p̄
⊕

p=1

ApC
−1
p Bp

)−1


 , (3.28)

and the following result holds.

Theorem 3.10. Let R0 be defined as in (3.28). If R0 < 1, then the
DFE of (3.10) is locally asymptotically stable. If R0 > 1, then the DFE
of (3.10) is unstable.

3.6 Global stability of the disease free equilibrium

In the case of proportional incidence, a comparison theorem argument
can be used to show that if R0 < 1, then the DFE is globally asymptot-
ically stable.

3.6.1 Simple SEIRS

In the case of system (3.2), the local asymptotic stability result for R0 <
1 is readily strengthened to a global result.
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Theorem 3.11. Consider system (3.2) with standard incidence (3.4),
and assume that the birth function Bp is such that (3.2) has a unique
DFE. Let R0 be defined by (3.25). If R0 < 1, then the DFE is globally
asymptotically stable.

Proof. Since Sp ≤ Np, it follows that Φp ≤ βpNpIp/Np = βpIp, and
equation (3.2b) gives the inequality

d

dt
Ep ≤ βpIp − (εp + dp)Ep +

p̄
∑

q=1

mE
pqEq −

p̄
∑

q=1

mE
qpEp. (3.29)

For comparison, define a linear system given by (3.29) with equality and
equation (3.2c), namely

d

dt
Ep = βpIp − (εp + dp)Ep +

p̄
∑

q=1

mE
pqEq −

p̄
∑

q=1

mE
qpEp

d

dt
Ip = εpEp − (γp + dp + δp)Ip +

p̄
∑

q=1

mI
pqIq −

p̄
∑

q=1

mI
qpIp.

This linear system has coefficient matrix F −V , and so by the argument
in the proof of Theorem 3.8, satisfies lim

t→∞
Ep = 0 and lim

t→∞
Ip = 0 for

R0 = ρ(FV −1) < 1. Using a comparison theorem (e.g, [38, Theorem
1.5.4] or [57, Theorem 13.1]) and noting (3.29), it follows that these limits
also hold for the nonlinear system (3.2b) and (3.2c). That lim

t→∞
Rp = 0

follows from Theorem 3.7, and lim
t→∞

Sp = S∗
p follows from (3.2a) and the

assumption that a unique DFE exists. Thus for R0 < 1, the disease
free equilibrium is globally asymptotically stable and the disease dies
out.

Note that it is clear from this proof that any incidence function Φp

such that

Φp ≤
∂Φp

∂Ip

∣

∣

∣

∣

DFE

Ip

would lead to the same conclusion.

3.6.2 SEIRS with multiple species

A comparison theorem argument can be used as in Theorem 3.11 to show
that if R0 < 1, then the DFE of the multiple species system (3.5) is glob-
ally asymptotically stable. Note, however, that the proof requires here
the use of the theory of asymptotically autonomous differential equa-
tions.
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Theorem 3.12. For system (3.5) with s̄ species and p̄ patches, birth
rate of the form (3.13), no disease induced mortality and proportional
incidence (3.6), define R0 as in (3.26). If R0 < 1, then the DFE is
globally asymptotically stable.

Proof. To establish the global stability of the DFE, consider the nonau-
tonomous system consisting of (3.5b)-(3.5d), with (3.5b) written in the
form

d

dt
Esp =

s̄
∑

j=1

βsjp(Nsp − Esp − Isp −Rsp)
Ijp

Njp

− (dsp + εsp)Esp +

p̄
∑

q=1

mE
spqEsq −

p̄
∑

q=1

mE
sqpEsp,

(3.30)

in which Ssp has been replaced by Nsp − Esp − Isp − Rsp, and Nsp is a
solution of (3.20). Write this system as

x′ = f(t, x), (3.31)

where x is the 3s̄p̄ dimensional vector consisting of the Esp, Isp and Rsp.
The DFE of (3.5) corresponds to the equilibrium x = 0 in (3.31). Since
δsp = 0, system (3.20) can be solved for Nsp(t) independently of the
epidemic variables, and Theorem 3.5 implies that the time dependent
functions Nsp(t) → N∗

sp as t → ∞. Substituting this large time limit
value N∗

sp for Nsp in (3.30) gives

d

dt
Esp =

s
∑

j=1

βsjp(N
∗
sp − Esp − Isp −Rsp)

Ijp

N∗
jp

− (dsp + εsp)Esp +

n
∑

q=1

mE
spqEsq −

n
∑

q=1

mE
sqpEsp.

(3.32)

Therefore, system (3.31) is asymptotically autonomous, with limit equa-
tion

x′ = g(x). (3.33)

To show that 0 is a globally asymptotically stable equilibrium for the
limit system (3.33), remark that the linear system

x′ = Lx, (3.34)

where x is the 3s̄p̄ dimensional vector consisting of the Esp, Isp and Rsp,
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but with the equation for Esp taking the form

d

dt
Esp =

s̄
∑

j=1

βsjp

N∗
sp

N∗
jp

Ijp − (dsp + εsp)Esp

+

p̄
∑

q=1

mE
spqEsq −

p̄
∑

q=1

mE
sqpEsp

(3.35)

is such that g(x) ≤ Lx for all x ∈ R
3s̄n̄
+ . In system (3.34), the equa-

tions for Esp and Isp do not involve Rsp, and can thus be considered
independently from the latter.

Let x̃ be the part of the vector x corresponding to the variables
Esp and Isp, and L̃ be the corresponding submatrix of L. The term
βsjpN

∗
sp/N

∗
jp corresponds to the (s, j) entry of the matrix Gp used in

Theorem 3.9, since Ssp → N∗
sp under the current assumptions. (See

the remark following Theorem 3.9.) Therefore, the method used in Sec-
tion 3.5 to prove local stability can also be applied to study the stability
of the x̃ = 0 equilibrium of the subsystem x̃′ = L̃x̃, with L̃ = F − V .
Therefore, if R0 < 1, then the equilibrium x̃ = 0 of the subsystem
x̃′ = L̃x̃ is stable. When x̃ = 0, the conclusion of Theorem 3.7 holds,
and limt→∞ Rs(t) = 0, with Rs = (Rs1, . . . , Rsp̄)

T . Thus the equilib-
rium Rs = 0 of this linear system in Rs is stable. As a consequence, the
equilibrium x = 0 of (3.34) is stable when R0 < 1. Using a standard
comparison theorem (see, e.g., [38, Theorem 1.5.4]), it follows that 0 is
a globally asymptotically stable equilibrium of (3.33).

For R0 < 1, the linear system (3.35) and (3.5c) has a unique equilib-
rium (the DFE) since its coefficient matrix F − V is nonsingular. The
proof of global stability is completed using results on asymptotically
autonomous equations; see, e.g., [58, Thm. 4.1] and [19].

As in the simple SEIRS case (Theorem 3.11), any incidence function
Φsp such that

Φsp ≤
∂Φsp

∂Isp

∣

∣

∣

∣

DFE

Isp

would lead to the same conclusion. Also, the assumption that there is no
disease induced mortality can be relaxed, provided that it can be shown
that Nsp converges for all s, p.

3.6.3 SEIRS with residence patch

Theorem 3.13. For system (3.10) with p̄ patches, birth rate Bpq such
that limt→∞ Spq = N∗

pq, and proportional incidence (3.12), define R0 as
in (3.28). If R0 < 1, then the DFE is globally asymptotically stable.
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The proof proceeds exactly as the proof of Theorem 3.12, except that
the incidence function takes the form

Φpq =

p̄
∑

r=1

βprqSpq

Irq
∑p̄

k=1 Nkq

,

and thus we obtain an upper bound by noting that

Φpq ≤

p̄
∑

r=1

βprqSpq

Irq

Nrq

.

As in the proof of Theorem 3.12, letting Spq → N∗
pq we obtain the terms

that appear in the matrix F used in Theorem 3.10 when considering
proportional incidence (3.12).

The same remark about incidence holds as in the simple and the
multiple species cases above. Note however that the formulation of The-
orem 3.13 assumes the convergence of S, which is obtained by assuming
no disease induced mortality, but also with properly chosen birth func-
tions.

3.7 Existence of mixed equilibria

A mixed equilibrium is an equilibrium for the whole system with some
patches at a disease free equilibrium and others at an endemic equilib-
rium. The assumption of strongly connected movement graphs is here
relaxed.

To summarize the results established in this section, if movement is
similar for all states, then the type of equilibria is fixed for each strongly
connected component in the movement graph G. If movement is dissim-
ilar, the situation is unresolved.

3.7.1 Model with classic movement

The situation is discussed in the case of the system with multiple species
(3.5). Specialization to the case of a single species is trivial.

Theorem 3.14. Suppose that (3.5) with movement similar for all states
is at an equilibrium. If a given patch p is at a DFE, then all patches that
have an access to patch p for a given species s, i.e., patches q ∈ P

s

→p,
are also at a DFE.

Proof. Fix the species index at s. For simplicity suppose that p = 1,
i.e., there is no disease in patch 1. Thus Es1 = Is1 = 0. Then for p = 1,
(3.5c) is

0 =
d

dt
Is1 =

p̄
∑

r=2

mI
s1rIsr.
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Since Isr ≥ 0 and

p̄
∑

r=2

mI
s1rIsr =

∑

r∈P→1

mI
s1rIsr +

∑

r 6∈P→1

ms1rIsr = 0,

it follows that Isr = 0 for r ∈ P→1. Similarly, setting p = 1 in (3.5b)
and using P→1, it follows that Esr = 0 for r ∈ P→1. Thus, all patches
r with a direct access to patch 1 have no disease, i.e., are such that
Esr = Isr = 0.

Now consider a patch r in P→1. Using the same argument as previ-
ously, it follows that Esw = Isw = 0 for all w ∈ P→r. Patches that are in
P→r \ P→1 have a length 2 access to patch 1. By induction, all patches
in P→1 are at the DFE if patch 1 is at the DFE.

Note that this result is independent of the nature of the birth function
Bsp. Also, conclusions have not been derived on the nature of Rp for
those patches that are at the DFE, nor has it been shown that Sp →
N∗

p . In fact, with a little additional work and using the same type of
argument used in Theorem 3.7, it can be shown that limt→∞ Rk(t) = 0
for k ∈ P→p. In this case, Sp → N∗

p , with the precise value of N∗
p

undetermined until a birth function has been chosen.

Theorem 3.15. Suppose that (3.5) with movement similar for all states
is at an equilibrium. If a given patch p is at an endemic equilibrium, then
all patches that can be accessed from patch p for a given species s, i.e.,
patches q ∈ P

s

p→, are also at an endemic equilibrium.

Proof. Fix the species index s. For simplicity suppose that p = 1, i.e.,
Es1 + Is1 > 0. From (3.5b) and (3.5c) with q 6= 1,

0 =
d

dt
(Esq + Isq) = Φsq − dsq(Esq + Isq)− γsqIsq

+

p̄
∑

r=1

msqr(Esr + Isr)−

p̄
∑

r=1

msrq(Esq + Isq).

Assume that Esq + Isq = 0 and msq1 > 0, i.e., patch 1 has access to
patch q. Then the above equation reduces to

0 =

p̄
∑

r=1

msqr(Esr + Isr),

and implies that Es1 + Is1 = 0, giving a contradiction. Thus the disease
in patch q is at an endemic equilibrium. The remainder of the proof
follows as in the proof of Theorem 3.14.
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3.7.2 Model with residency patch

Theorem 3.16. Suppose that system (3.10) with movement similar for
all states is at an equilibrium, and that a given patch p is at the DFE.
Then all patches that can be accessed from patch p, and all patches that
have an access to patch p, are at the DFE.

Proof. Suppose for simplicity and without loss of generality that patch
1 is at the DFE, i.e., Ik1 = Ek1 = 0 for all k = 1, . . . , p̄. Then consider
(3.10b) and (3.10c) with i = 1. Since I11 = 0, it follows that Φ11 = 0
and thus

d

dt
E11 =

p̄
∑

k=1

mE
11kE1k

d

dt
I11 =

p̄
∑

k=1

mI
11kI1k.

Recall that variables remain nonnegative. It follows that, since the sys-
tem is at equilibrium, E1k = 0 for all patches in PE

→1, and I1k = 0
for all patches k in PI

→1. Since movement is similar for all states,
PE
→1 = PI

→1 =: P→1.

In summary, if patch 1 is at the DFE, then there holds that for all
patches j in P→1, E1j = I1j = 0, i.e., there is no disease in visitors from
patch 1 visiting patches that have direct access to patch 1. Consider
now (3.10b) for one of these patches, i.e., for j ∈ P→1. There holds, for
visitors to j from patch 1,

d

dt
E1j = Φ1j .

Since the system is at an equilibrium, E1j = 0, that is

0 = Φ1j =

p̄
∑

r=1

βrj(N
c
j )S1jIrj .

It was shown (Theorem 3.2) that Spq > 0 for all positive times, provided
that mS

pqr > 0. Since the Spq are positive, there holds that for all j ∈ P→1

such that mS
1jk > 0, Ikj = 0. Using the same type of argument that was

used to show that R = 0 in the proof of Theorem 3.12, it follows that
for these patches, there also holds that Ekj = 0.

To summarize, if patch 1 is at the DFE, then patches j ∈ P→1 are
also at the DFE. By induction, all patches that are in P→1 are at the
DFE.
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3.8 Bounds on R0

The expression obtained forR0 in all three models is complicated. There-
fore, it is useful to derive some bounds on the value of R0. We do so
in the most complicated case, that of the SEIRS model with residency
patch. The results are also formulated in the simpler cases, but no proofs
are provided.

3.8.1 SEIRS with residency patch

For convenience, write

∂ΦD
pr

∂Ijk

:=
∂Φpr

∂Ijk

∣

∣

∣

∣

DFE

.

Theorem 3.17. Let v−1
m and v−1

M be the minimum and maximum col-
umn sums of the (2,1) block

⊕p̄

p=1(ApC
−1
p Bp) in matrix V −1 defined by

(3.27). Then there holds that

p̄

(

min
i,j,k=1,...,p̄

∂ΦD
ik

∂Ijk

)

v−1
m ≤ R0 ≤ p̄

(

max
i,j,k=1,...,p̄

∂ΦD
ik

∂Ijk

)

v−1
M . (3.36)

Proof. We denote G(⊕(A•C
−1
• B•)

−1) := G
(

⊕k(AkC−1
k Bk)−1

)

for sim-

plicity. The (p, q) block of G
(

⊕(A•C
−1
• B•)

−1
)

is Gpq(AqC
−1
q Bq)

−1 for
all p, q. As Gpq is diagonal, multiplication with (AqC

−1
q Bq)

−1 amounts

to multiplying row k = 1, . . . , p̄ of (AqC
−1
q Bq)

−1 by the kth diagonal

entry of Gpq, that is, ∂ΦD
pk/∂Iqk. Let v−1

kl (q) denote the (k, l) entry of

(AqC
−1
q Bq)

−1, for k, l = 1, . . . , p̄. Then a given block Gpq(AqC
−1
q Bq)

−1

takes the form

Gpq(AqC
−1
q Bq)

−1 =















∂ΦD
p1

∂Iq1
v−1
11 (q) · · ·

∂ΦD
p1

∂Iq1
v−1
1p̄ (q)

...
...

∂ΦD
pp̄

∂Iqp̄

v−1
p̄1 (q) · · ·

∂ΦD
pp̄

∂Iqp̄

v−1
p̄p̄ (q)















It follows that

1lT Gpq(AqC
−1
q Bq)

−1 =

(

p̄
∑

k=1

∂ΦD
pk

∂Iqk

v−1
k1 (q), . . . ,

p̄
∑

k=1

∂ΦD
pr

∂Iqk

v−1
kp̄ (q)

)

Summing for p = 1, . . . , p̄ gives the column sums in the qth block of
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columns as

[

1lT G
(

⊕(A•C
−1
• B•)

−1
)

]

[q]
=





p̄
∑

p,k=1

∂ΦD
pk

∂Iqk

v−1
k1 (q), . . . ,

p̄
∑

p,k=1

∂ΦD
pk

∂Iqk

v−1
kp̄ (q)



 ,

where we denote
p̄
∑

p,k=1

:=

p̄
∑

p=1

p̄
∑

k=1

in order to simplify notations. Thus, for the whole matrix,

1lT G
(

⊕(A•C
−1
• B•)

−1
)

=




p̄
∑

p,k=1

∂ΦD
pk

∂I1k

v−1
k1 (1), . . . ,

p̄
∑

p,k=1

∂ΦD
pk

∂Ip̄k

v−1
kp̄ (p̄)



 . (3.37)

Define
∂ΦD

imkm

∂Ijmkm

= min
i,j,k=1,...,p̄

∂ΦD
ik

∂Ijk

and
∂ΦD

iM kM

∂IjM kM

= max
i,j,k=1,...,p̄

∂ΦD
ik

∂Ijk

.

Then, for any column c in the jth block of columns, there holds

p̄
∑

i,k=1

∂ΦD
imkm

∂Ijmkm

v−1
kc (j) ≤

p̄
∑

i,k=1

∂ΦD
pr

∂Ijk

v−1
kc (j) ≤

p̄
∑

i,k=1

∂ΦD
iM kM

∂IjM kM

v−1
kc (j)

⇔
∂ΦD

imkm

∂Ijmkm

p̄
∑

i,k=1

v−1
kc (j) ≤

p̄
∑

i,k=1

∂ΦD
pr

∂Ijk

v−1
kc (j) ≤

∂ΦD
iM kM

∂IjM kM

p̄
∑

i,k=1

v−1
kc (j)

⇔ p̄
∂ΦD

imkm

∂Ijmkm

p̄
∑

k=1

v−1
kc (j) ≤

p̄
∑

i,k=1

∂ΦD
pr

∂Ijk

v−1
kc (j) ≤ p̄

∂ΦD
iM kM

∂IjM kM

p̄
∑

k=1

v−1
kc (j).

(3.38)

Defining v−1
m and v−1

M as in the theorem, it follows that for all c, j =
1, . . . , p̄,

p̄
∂ΦD

imkm

∂Ijmkm

v−1
m ≤

p̄
∑

i,k=1

∂ΦD
pr

∂Ijk

v−1
kc (j) ≤ p̄

∂ΦD
iM kM

∂IjM kM

v−1
M ,



Diseases in metapopulations 43

and thus

p̄
∂ΦD

imkm

∂Ijmkm

v−1
m ≤ 1lT G

(

⊕(A•C
−1
• B•)

−1
)

≤ p̄
∂ΦD

iM kM

∂IjM kM

v−1
M .

Using a standard result on the localization of the dominant eigenvalue
of a nonnegative matrix (see, e.g., [42, Theorem 1.1]), which states that
the dominant eigenvalue of a nonnegative matrix is bounded below and
above by the minimum and maximum of its column sums, the result
then follows.

Consider patch p isolated from the other patches (with movement
rates into and out of the patch set to zero). In this case, all nonresident
populations tend to zero. The basic reproduction number in patch p,
Rp

0, is given by

Rp
0 =

εpp

(εpp + dpp)(γpp + dpp)

∂ΦD
pp

∂Ipp

Corollary 3.18. Suppose that Φpq = Φq for all p, q = 1, . . . , p̄, i.e.,
infection occurs at the same rate for all individuals in a given patch q.
Then

min
p=1,...,p̄

Rp
0 ≤ R0 ≤ max

p=1,...,p̄
Rp

0

Proof. Note that Gpq represents infections in patch q of susceptibles from
patch p. The assumptions of the corollary imply that Gpq = Gq for all
p = 1, . . . , p̄.

In the particular case where parameters except the force of infection
are equal in each patch, the bounds in Theorem 3.17 take an easier form.

Theorem 3.19. Suppose that for system (3.10), parameters are the
same in all patches, i.e., εpq = ε, γpq = γ and dpq = d for all p, q =
1, . . . , p̄. Then

(

min
i,j,k

∂ΦD
pr

∂Ijk

)

p̄ε

(γ + d)(ε + d)
≤ R0 ≤

(

max
i,j,k

∂ΦD
pr

∂Ijk

)

p̄ε

(γ + d)(ε + d)
(3.39)

Proof. Under the assumptions of the theorem, the following holds true:

1lT Ap = (ε + d)1lT ⇒ 1lT ApC
−1
p =

ε + d

ε
1lT

⇒ 1lT ApC
−1
p Bp =

(ε + d)(γ + d)

ε
1lT .
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Consider an invertible matrix M such that 1lT M = c1lT . Then there
holds that 1lT MM−1 = c1lT M−1, and thus 1lT M−1 = 1/c. This implies
that

1lT (ApC
−1Bp)

−1 =
ε

(ε + d)(γ + d)
.

Substituting this value for
∑p̄

p=1 v−1
pc (j) in (3.38), and using in (3.37)

gives the result.

So, in the case that disease characteristics are identical for all individ-
uals, and that transmission is identical for all individuals in a given patch,
there are easily computable bounds for R0. In particular, if Rp

0 < 1 for
all p = 1, . . . , p̄, then the DFE is locally asymptotically stable, or glob-
ally asymptotically stable if the stronger hypotheses needed for this are
satisfied; if Rp

0 > 1 for all p = 1, . . . , p̄, then the DFE is unstable.
If, additionally, Φpq = Φ for all patches, thenR0 for the whole system

is equal toR0 as obtained with the 4-dimensional system (1.1). Although
this seems obvious, it seems interesting to point out that this is obtained
while the 4p̄2-dimensional system (3.10) does not aggregate to (1.1), in
the sense that the nonlinearities do not cancel. For example, for system
(3.10), letting E = E11 + · · · + Ep̄p̄, we have, under the assumption of
equal parameters in all patches and all subpopulations,

E′ =

p̄
∑

p,q=1

Φ− (d + ε)E,

but it is not possible to simplify
∑p̄

pq=1 Φ to obtain an expression of the
form E′ = Φ− (d + ε)E.

3.9 Further problems

I mention briefly here other problems that could and should be consid-
ered. They are not detailed here, but references are provided in Section 4.

3.9.1 Existence of endemic equilibria

The existence of endemic equilibria, that is, equilibria with positive num-
bers of infectives, has barely been discussed here. In Section 3.7, it was
established that endemic equilibria, if they exist, populate whole strongly
connected components. However, no method was given to prove their
existence. Numerical simulations seem to indicate that, for the systems
presented here, there is a unique, globally asymptotically stable equilib-
rium point, when R0 > 1.

Clearly, establishing properties of persistence of the system when
R0 > 1 would be interesting steps in that direction.
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3.9.2 Understand the effect of movement

Theorem 3.17 establishes that in the case of a relatively homogeneous
system, the movement matrix plays a role only insofar as it determines
the value at the DFE. If disease transmission is also homogeneous within
each patch, then Corollary 3.18 proves that the situation is even more
constrained. In particular, in that case, it is impossible, for example, for
movement to stabilize an unstable situation, or to destabilize a stable
situation. Indeed, consider a system consisting of two connected patches,
and suppose that both are such that their Rp

0 < 1 when taken in iso-
lation. If the conditions of Corollary 3.18 hold, then movement cannot
change this situation. The same holds true if both patches are such that
Rp

0 > 1: movement cannot stabilize such a situation.

In a less restrictive setting, movement can either stabilize an unstable
situation, or destabilize a stable one. This has been investigated, for
example, in [1, 49, 50].

4 Diseases in metapopulations – A review

4.1 Focus of the review

Our definition of metapopulations de facto excludes pure group mod-
els, that consider strict interactions between groups. Such models have
been considered for about the same amount of time as metapopulation
models. The first such models are due to Rushton and Mautner [47]
and Haskey [29]. Other well known examples are due to Lajmanovich
and Yorke [37], Hethcote [33], Hethcote and Thieme [31]. While these
models are conceptually quite similar to metapopulation models, they
make the assumption that there is no exchange of individuals between
the subpopulations. Their analysis can be quite similar to the analysis of
metapopulation models, and much can be gained by comparing the two
types of approaches. Also, our emphasis is on deterministic models that
have been mathematically analyzed. Finally, we focus on time continu-
ous models. There are some very interesting works that are formulated
in discrete time (see, e.g., [2, 16]), but the theory is quite different.

In summary, the review that follows concerns the analysis of deter-
ministic models with explicit movement of individuals between patches.

4.2 Early works

Bartlett, 1956 The first work that we are aware of that uses a patch
approach is due to Bartlett [11]. He considers the following model on
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two patches,

S′
1 = −(β1I1 + β2I2)S1 + b + mS(S2 − S1) (4.1a)

I ′1 = (β1I1 + β2I2)S1 − (d + ρ)µI1 + mI(I2 − I1) (4.1b)

S′
2 = −(β1I1 + β2I2)S2 + b + mS(S1 − S2) (4.1c)

I ′2 = (β1I1 + β2I2)S2 − (d + ρ)I2 + mI(I1 − I2) (4.1d)

The rate d + ρ incorporates the natural death rate d as well as the rate
ρ of occurence of any other event leading to an individual leaving the
infected class (disease specific death, recovery, etc.). b is the birth rate.
Note that this model is a hybrid of metapopulation and group models.
Indeed, there is an exchange of individuals between patches through
migration, but there is also cross patch infection.

Baroyan and Rvachev, late 60s, and directly related articles
Following the work of Bartlett comes works by Baroyan, Rvachev and
collaborators [9, 10]. They consider the spatial spread of influenza be-
tween cities in the Soviet Union. In their approach, a large geographic
region (country) is partitioned into smaller sub-regions (cities). Migra-
tion and transportation between these cities are explicitly incorporated,
and within a given city, transmission is modeled by a discrete determin-
istic compartmental SIR model. In [48], the parameters of the model
are estimated using Hong Kong as a reference; the model is then used
to simulate the spread of the Hong Kong influenza pandemic between
52 world cities. In [40], an epidemic threshold theorem is obtained. An
SEIR version of this model was used recently [26].

Using the framework of Rvachev and Longini, Hyman and LaForce
[34] formulate a multy-city transmission model for the spread of influenza
between cities (patches) with the assumption that people continue to
travel when they are infectious and there is no death due to influenza.
Because influenza is more likely to spread in the winter than in the
summer, they assume that the infection rate has a periodic component.
In addition, they introduce a new disease state P in which people have
partial immunity to the current strain of influenza. Thus they have an
SIRPS model in which both susceptible and partially immune individuals
can be infected, but this is more likely for susceptibles. A symmetric
travel matrix M = [mij ] with mij = mji is assumed, thus the population
of each city remains constant. Their model for p cities is formulated as a
4p system of non autonomous ODEs. Epidemic parameters appropriate
for influenza virus are used, in particular for strains of H3N2 in the
1996-2001 influenza seasons with an infectious period of 1/α = 4.1 days
in all cities. Parameters modeling the number of adequate contacts per
person per day and the seasonal change of infectivity are estimated by
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a least squares fit to data. The populations of the largest 33 cities in
the US are taken from 2000 census data, and migration between cities is
approximated by airline flight data. A sensitivity analysis reveals that
1/α, the average duration of infection, is the most important parameter.

4.3 Kermack-McKendrick-type models

The model known as the Kermack-McKendrick (KMK) model takes the
form [36]

d

dt
S = −βSI

d

dt
I = βSI − γI

d

dt
R = γI,

that is, an SIR model without demography. The parameter γ represents
here the rate of removal from the I class, it aggregating disease induced
death and recovery from the disease. This system has the advantage
that an explicit solution can be found (see, e.g., [13]). Several authors
have used KMK-type models in a metapopulation context.

Faddy, 1986 In a short note, Faddy [22] introduces a KMK-type SI
model

S′
i = −Si

n
∑

j=1

βjiIj (4.2a)

I ′i = Si

n
∑

j=1

βjiIj − γiIi +
∑

j 6=i

mijIj −
∑

j 6=i

mjiIi, (4.2b)

where γi represents the sum of all removals from the I class. As in
the case of system (4.1), this system mixes group models with migra-
tion. An interesting remark made by Faddy is that there exists a sort of
conservation law, since the quantity

Si + Ii −

∑

j 6=i

mij + γi

βii

log Si −













mji +

(

∑

j 6=i

mij + γi

)

βji

βii













∑

j 6=i

∫

Ijdt

does not change over time. The interest here is on the final size of the
epidemic, for which an expression is obtained.
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In the spatially homogeneous case where Si(0) = S(0), a given value
in all patches, mi =

∑

j 6=i mij = m, βij = β and γi = γ, he obtains that

Si(0)− Si(∞)

S(0)
= 1− exp

(

−β
Si(0)− Si(∞)

γ

)

,

where Si(∞) is the final number of susceptibles remaining uninfected in
patch i.

Clancy, 1996 Clancy [20] introduces a Kermack-McKendrick type
model on patches, but that describes the dynamics of a very simple
epidemic with carriers, whose numbers is denoted C. The carriers are
subject to specific removal (either through treatment of death), at a rate
γ. The system includes a removed class, that we do not show here as it
bears no influence on the dynamics of the system. The latter takes the
form

S′
i = −

β

Ni

SiCi +
n
∑

j=1

mS
jiSj (4.3a)

C ′
i = −γCi +

n
∑

j=1

mC
jiCj . (4.3b)

He also introduces a corresponding stochastic version. The focus here is
on the ultimate size of the epidemic; more precisely, estimates of Si as
t→∞ are sought.

Rodŕıguez and Torres-Sorando, 2001, consider in [44] a direct
transmission model and a model of malaria. The malaria model tracks
the evolution of the numbers Ii and Yi of infectious humans and infec-
tious mosquitoes, respectively, on patch i. The total population of both
species is assumed constant on each patch, and denoted Ni and Mi,
respectively, for humans and mosquitoes. Thus, the numbers of suscep-
tibles are obtained by Si = Ni− Ii and Zi = Mi− Yi. The system takes
the form

I ′i = βSiYi − γIi + βSi

∑

j 6=i

mijYj (4.4a)

Y ′
i = βZiIi − dMYi + βZi

∑

j 6=i

mjiIj . (4.4b)

β is the rate of transmission of the disease when a contact occurs. They
consider the effect of different migration patterns and of the environ-
ment heterogeneity on the dynamics of the system, and in particular
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on the possibility of the disease becoming established. To study this,
they consider the jacobian matrix at the DFE, and study the sign of the
dominant eigenvalue.

4.4 Migration models

Wang and Mulone, 2003 Wang and Mulone [63] consider the fol-
lowing model in the case p̄ = 2 patches,

S′
i = di(Ni − Si)− βiSi

Ii

Ni

+ γiIi +

p̄
∑

j=1

mS
ijSj (4.5a)

I ′i = βiSi

Ii

Ni

− (di + γi)Ii +

p̄
∑

j=1

mI
ijIj . (4.5b)

They establish a series of interesting results concerning the conditions
under which the disease is persistent in the system. One particular con-
clusion that they draw is that, provided they are positive, the migration
rates of susceptibles mS

12,m
S
21 do not play a role in the permanence con-

ditions.

Wang and Zhao, 2004 Wang and Zhao [64] consider a model of the
form

S′
i = Bi(Ni)Ni − µiSi − βiSiIi + γiIi +

n
∑

j=1

mS
ijSj (4.6a)

I ′1 = βiSiIi − (µi + γi)Ii +

n
∑

j=1

mI
ijIj . (4.6b)

With this more general birth function Bi, even finding a disease free
equilibrium is a difficult task. It is shown that, in this case, population
movement can either intensify or reduce the spread of disease.

Salmani and van den Driessche, 2006 Salmani and van den Driess-
che introduce in [50] a single species SEIRS model with status dependent
movement and disease induced death, from which (3.2) is derived. In a
first part, following the approach of [6, 7], they establish a basic repro-
duction number for the system, and as in [4], the global stability of the
DFE when R0 < 1. They then proceed to a more detailed study of
an SIS particular case in two patches. They establish that with differ-
ent movement rates, different situations can prevail, with for example a
global R0 < 1 and individual Rp

0 in the patches less than 1.
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Fulford, Roberts and Heesterbeek, 2002 The spread of bovine
tuberculosis amongst the common brushtail possum in New Zealand, is
modeled by Fulford et al [25]. Since only maturing possums (1 to 2
year old males) travel large distances, a two-age class metapopulation
model is formulated, with juvenile and adult possums. As this disease is
fatal, a SEI model is appropriate. In addition to horizontal transmission
between both age-classes, pseudo-vertical transmission is included since
juveniles may become infected by their mothers. Susceptible and exposed
juveniles (but not infective juveniles) travel between patches as they
mature. For p̄ patches, the authors formulate a system of 6p̄ ODEs to
describe the disease dynamics. Using the next generation matrix method
[21], the authors explicitly calculate R0 for p̄ = 1 and for p̄ = 2, and
give the structures of the next generation matrices for p̄ = 4 and three
spatial topologies, namely a spider, chain and loop. The design of control
strategies (culling) based on these three spatial topologies is considered.
The critical culling rates (where R0 = 1) are calculated and the spatial
aspects are shown to be important.

4.5 Model including residency patch

Sattenspiel and coauthors In [55], Sattenspiel and Simon intro-
duced a model for the interaction between individuals in p̄ neighbor-
hoods, taking into account that some individuals only have contacts in
their neighborhoods. Although this is a strict group model, since indi-
viduals do not move explicitly between neighborhoods, it is mentioned
here because it is an obvious basis to the models with residency patch.
Also, it contains some interesting matrix-based analysis.

Sattenspiel and Dietz [51] introduced a single species, multi-patch
model that describes the travel of individuals, and keeps track of the
patch where an individual is born and usually resides as well as the
patch where an individual is at a given time. Hence this type of model
describes human travel rather than migration.

This framework was subsequently used numerically by Sattenspiel
and others to describe various situations linked to the spread of influenza
in the Canadian subartic [52], the effect of quarantining [53] and the
influence of the mobility patterns [54].

Arino and van den Driessche We studied the model of [51] in [6, 7],
giving some analytical results and calculating the basic reproduction
number in the SIS [7] and SEIRS [6] cases, giving the first example of
application of the method of [60] to such high dimensional models. These
models have a unique DFE. Numerical simulations show that a change in
travel rates can lead to a bifurcation at R0 = 1; thus travel can stabilize
or destabilize the disease free equilibrium. This model is the basis for
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[8], which extends the model of [51] by allowing individuals to travel
between two patches that are not their residency patch. The resulting
model is system (3.10), analyzed in detail in Section 3.

Ruan, Wang and Levin, 2006 Using the framework of [51], Ruan,
Wang and Levin [45] study the global spread of SARS. The system takes
the form of an SEIRS model with an additional class for quarantined
individuals, denoted Q, that do not travel. They study the existence of
a DFE, and establish the basic reproduction number R0, deducing the
local asymptotic stability of the DFE when R0 < 1 using the result of
[60], as detailed in the SEIRS case in Section 3.5. The basic reproduction
number depends explicitly on quarantining parameters. A particular
case for two cities (Honk Kong and Toronto) is then considered.

4.6 New directions

To conclude this brief review of diseases in metapopulations, a few di-
rections that appear promising to the author are now listed. It is hoped
that, although necessarily biased by the author’s opinions, this will en-
courage readers to study more in detail some of the aspects.

4.6.1 True patch heterogeneity

Metapopulations have been introduced in the context of epidemic dis-
eases to take into account spatial heterogeneities. However, in all the
models discussed so far, the spatial heterogeneity is not ‘true’. Indeed,
it is assumed that in the different patches, parameters are different, but
that the incidence function is similar. The effect of the contact structure
(the nature of the incidence function) on the dynamics is determinant.
A model of Fromont, Pontier and Langlais [24] is the first we know that
breaks this homogeneity. They consider a model appropriate for Fe-
line Leukemia Virus among a population of domestic cats. There are
p̄ patches called farms or villages depending on the magnitude of the
patch carrying capacity. Dispersal (which depends on disease state) can
take place between any pair of patches or into/out of non-specified pop-
ulations surrounding the patches (representing transient feral males).
Infected cats become either infectious or immune and remain so for life,
thus the model is of SIR type, but a proportion of cats go directly from
the susceptible to the immune state. A density dependent mortality
function is assumed, as well as different incidence functions depending
on the population density (mass action for cats on farms, standard inci-
dence for cats in villages).

The model consists of 3p̄ ODEs and is analyzed for the case p̄ = 2,
taking data appropriate for the virus with one patch being a village
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and one patch being a farm, or both patches being farms. For a set of
parameters such that in isolation the virus develops in the village but
goes extinct on the farm, travel between the patches of either susceptible
and immune cats or of infective cats can result in the virus persisting in
both patches. Thus results show that, in general, spatial heterogeneity
promotes disease persistence.

4.6.2 Models with infinite dimensional aspects

Wang, Fergola and Tenneriello, 2003 Wang, Fergola and Ten-
nierello [62] study a model for the diffusion of innovation in a two patch
environment. Although not strictly an epidemic model, the spread of in-
novation can easily be reread in terms of disease propagation. They first
formulate the model in ODE and show that it has a globally asymptoti-
cally stable equilibrium (note that this is different from classical epidemic
models, in the sense that there is no bifurcation from a disease free equi-
librium to an endemic equilibrium). They then incorporate delay, in the
form of product duration. Written in epidemiological terms, the model
then takes the form

d

dt
S1 = Π1 − (α1 + β1I1)S1 − d1S1 + m2(S2 + (1− k2)I2)−m1S1

+ e−d1τ1(γ1S1(t− τ1) + β1S1(t− τ1)I(t− τ1)) (4.7a)

d

dt
I1 = (α1 + β1I1)S1 − d1I1 −m1I1 + k2m2I2

− e−d1τ1(γ1S1(t− τ1) + β1S(t− τ1)I(t− τ1)) (4.7b)

d

dt
S2 = Π2 − (α2 + β2I2)S2 − d2S2 + m1(S1 + (1− k1)I1)−m2S2

+ e−d2τ2(γ2S2(t− τ2) + β2S2(t− τ2)I(t− τ2)) (4.7c)

d

dt
I2 = (α2 + β2I2)S2 − d2I2 −m2I2 + k1m1I1

− e−d2τ2(γ2S2(t− τ2) + β2S(t− τ2)I(t− τ2)). (4.7d)

In each patch i = 1, 2, besides the usual parameters, Πi is the birth rate
(a constant), αi is the intensity of advertisement for the products (this
additional recruitment term is the main difference from classical epidemic
models) and τi is the duration of the product (that is, of infection) in
each patch. The migration is slightly different from the other models
seen so far, in the sense that individuals can change status when they
move from one patch to the other: m1 is the rate of movement from
1 to 2, m2 is the rate of movement from 2 to 1, k1 is the fraction of
infected from patch 1 that remain infected when moving to 2 and k2 is
the fraction of infected from patch 2 that remain infected when moving
to patch 1.
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Here again, there is a unique positive equilibrium, which is shown to
be globally asymptotically stable under some conditions on parameter
values. The paper concludes with a study of periodic solutions in the
case where advertisement, i.e., αi, is periodic (in the delayed case). It is
shown that there exists parameter values for which a periodic solution
exists and is globally stable.

Wang and Zhao, 2005 Wang and Zhao [65] formulated a model for
an SIS model on patches, with a class of juveniles (denoted by J). On
each patch p = 1, . . . , p̄,

d

dt
Jp = Bp(Ap)Ap − dJ

p Jp −Rp(t) +

p̄
∑

k=1

mJ
pkJk (4.8a)

d

dt
Sp = Rp(t)− dpSp − βpSpIp + γpIp +

p̄
∑

k=1

mS
pjSj (4.8b)

d

dt
Ip = βpSpIp − (dp + γp)Ip +

p̄
∑

k=1

mI
pjIj , (4.8c)

where Ap = Sp + Ip (the population of adults), dJ
p is the death rate

of juveniles and dp is the death rate of adults, and Rp(t) is rate of
recruitment of juveniles into the susceptible adult class. It is assumed
that B(Ap) > 0 for Ap > 0, Bp continuously differentiable for Ap > 0
and B′p(Ap) < 0 for all Ap > 0.

Recruitment into the adult class has to take into account that juve-
niles can be born in a given patch, and become adults in another patch.
Let r be the age of recruitment into the adult class (assumed the same
in each patch), and J(t, a) := (J1(t, a), . . . , Jp̄(t, a))T , with Jp(t, a) the
number of juveniles in patch p at time t that are of age a. The re-
cruitment R(t) then satisfies R(t) := (R1(t), . . . , Rp̄(t))

T = J(t, r). The
age-space dynamics is described by

(∂t + ∂a)Jp(t, a) =

p̄
∑

k=1

mJ
pkJk(t, a)−

(

p̄
∑

k=1

mJ
kp + dJ

p

)

Jp(t, a)

=

p̄
∑

k=1

mJ
pkJk(t, a)− dJ

p Jp(t, a),

with J(t, 0) = B(A(t)) := (B1(A1(t))A1(t), . . . ,Bp̄(Ap̄(t))Ap̄(t))
T . Then,

after some computations,

R(t) = J(t, r) = exp(CJr)B(A(t− r)),



54 J. Arino

where

CJ =









−dJ
1 + mJ

11 c12 · · · mJ
1p̄

mJ
21 −dJ

2 + mJ
22 · · · mJ

2p̄

· · · · · · · · · · · ·
mJ

p̄1 mJ
p̄2 · · · −dJ

p̄ + mJ
p̄p̄









.

Using R(t), the equations for S and I decouple from the equations for
J , giving a system of 2p̄ delay differential equations.

The authors then establish the existence of a unique disease free
equilibrium under a certain number of assumptions. They then derive
a basic reproduction number for the system, and consider the global
stability of the disease free equilibrium, as well as the persistence of
the system when this equilibrium is unstable, and the existence of an
endemic equilibrium. The paper concludes with a study of a two patch
particular case.

5 Conclusion

My aim here was to show that metapopulation models are usable in
the context of epidemiology, to provide an extensive overview of the
mathematical problems that arise when studying such models, and to
illustrate some of the solutions that can be given to these problems.
This was done through two classes of models that van den Driessche and
I have considered, with a simple single population SEIRS also used to
illustrate the most simple properties.

I hope to have convinced the reader, at the cost of maybe a little
too much detail, that the mathematical complications arising in these
models can be dealt with, and that there is a pattern to these solutions
that allows a general theory of metapopulation models in epidemiology
to be envisioned. This theory is barely sketched here.
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[61] R.S. Varga. Geršgorin and His Circles. Springer, 2004.

[62] W. Wang, P. Fergola, and C. Tenneriello. Innovation diffusion
model in patch environment. Applied Mathematics and Compu-
tation, 134:51–67, 2003.

[63] W. Wang and G. Mulone. Threshold of disease transmission in a
patch environment. J. Math. Anal. Appl., 285:321–335, 2003.

[64] W. Wang and X.-Q. Zhao. An epidemic model in a patchy environ-
ment. Mathematical Biosciences, 190(1):97–112, 2004.

[65] W. Wang and X.-Q. Zhao. An age-structured epidemic model in a
patchy environment. SIAM J. Appl. Math., 65(5):1597–1614, 2005.


