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ABSTRACT. We propose a modelling framework for inves-
tigating the dynamics of competition between immunologically-
related influenza viral strains in the absence of pre-existing im-
munity. Assuming that the host immune system will mount
partial protection (cross-immunity) against one strain by virtue
of having interacted with the other through exposure, we dis-
cuss the conditions for the occurrence of two distinct waves
of infection during a single epidemic episode. Numerical sim-
ulations are presented to illustrate the possibility of infection

waves with respect to the protection level induced by the first
strain, and the time-lag for evolving the second strain. We pro-
pose directions for future work that involves extension of the
model to include vaccination.

1 Introduction An important feature of influenza virus replica-
tion is the high mutation rates exhibited over short time scales [7, 11].
Influenza epidemics are usually triggered by viruses in the same subtype
which may confer protection against re-infection by successor mutants
with similar characteristics [14]. The level of this protection, however,
depends on several factors, and in particular, the antigenic properties of
such mutants [10, 14, 16]. If mutations with sufficiently distinct anti-
genicity arise (usually referred to as “drift” during seasonal influenza
epidemics), then pre-existing strain-specific immune responses of the
host may not provide adequate protection to inhibit virus replication.
As the level of protection (cross-immunity) due to prior exposure in-
creases, the disease is more likely to be asymptomatic if infection occurs
[8].

While the dynamics of influenza virus drift during seasonal epidemics
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have been discussed in previous work [1, 3, 9, 12, 13, 15, 17], the liter-
ature on competitive interference between immunologically-related viral
strains during the course of a single epidemic is rather scant. Here we
propose a mathematical model including two strains of influenza, and in-
vestigate the effects of two important factors in the population dynamics
of infection: (i) cross-immunity, considered as the reduction in the indi-
vidual risk of infection by one strain after recovery from infection by the
other strain; and (ii) the time-lags for the emergence of the second strain
after the onset of epidemic with the first strain. While co-circulation
of different subtypes of influenza viruses have been documented during
influenza seasons [22], we consider the model for two strains of a sin-
gle subtype of influenza viruses (e.g., several known strains of influenza
A/H1N1 virus that have been used for vaccine composition in the past 10
years include A/Solomon Islands/3/2006; A/Brisbane/59/2007; A/New
Caledonia/20/99; A/Beijing/262/95; [21]). The model is simulated to
illustrate two subsequent infection waves, a phenomenon that has been
observed in previous influenza outbreaks, most notably in the 1918 pan-
demic [19].

2 The model We develop a homogeneous compartmental model
that includes two influenza strains competing for a given susceptible
population (Figure 1). For the course of a single epidemic event, we
ignore recruitment, natural death, and other demographic variables. In-
fection with either strain may lead to asymptomatic or symptomatic
infection. We assume that recovery from infection by one strain confers
partial protection (cross-immunity) against the other strain, which re-
duces the transmissibility of the secondary exposure, and increases the
probability of being asymptomatic if a second infection occurs. The
model does not include simultaneous co-infection by different strains,
but assumes that subsequent infections with both strains will prevent
re-infection. With these assumptions, the model can be expressed by
the following systems of differential equations:

S′ = −(f + g)S,(1a)
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I ′
21

= p21δ21P2f − µI21, I ′
12

= p12δ12P1g − µI12,(1f)

where

f = β(δ
A
(A1 + A21) + I1 + I21),

g = β(δ
A
(A2 + A12) + I2 + I12),

and β is the baseline transmission rate; p, p12 and p21 are the probabil-
ities of developing symptomatic infection with no prior exposure, with
prior exposure to strain 1, and with prior exposure to strain 2, respec-
tively; δ

A
is the reduction in infectiousness of asymptomatic infection;

µ and µ
A

are the recovery rates from symptomatic and asymptomatic
infections, respectively; and δ12 and δ21 represent the reduction in trans-
missibility as a result of cross-immunity induced by previous exposure
to strain 1 and strain 2, respectively. Applying a previously established
technique [20], the basic reproduction number (defined as the number
of secondary infections generated by a single infected individual in an
entirely susceptible population [7]) can be expressed as

(2) R0 = βS0

(

(1 − p)δ
A

µ
A

+
p

µ

)

,

where S0 is the initial size of the susceptible population. By simulating
the model, we illustrate that the epidemic dynamics can be affected
by the lag-time between emergence of different strains and the level of
cross-immunity conferred through exposure to one strain.

3 Numerical simulations Using parameter values given in Table
1, we simulated the model to illustrate the possibility of two infection
waves during a single epidemic episode. For a given value of the basic
reproduction number, the transmission rate β can be obtained by sub-
stituting parameter values into the expression (2). It is assumed that
strain 2 emerges at time T ∗ ≥ 0 after the onset of an epidemic involving
strain 1. For simplicity, we assumed that exposure to different strains
results in the same level of cross-immunity with δ12 = δ21.

We seeded the epidemic with an individual infectious with strain 1 in
a susceptible population of 100,000 individuals, and assumed R0 = 1.6.
Given 40% cross-immunity between the two strain (δ12 = δ21 = 0.6),
Figure 2(a) illustrates the time-courses of disease (all infections) when
the second strain arises on day 10 (solid curves, T ∗ = 10) and day 60
(dashed curve, T ∗ = 60) after the onset of an epidemic with the first
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FIGURE 1: Model diagram for the movements of individuals between
population compartments.

strain. We observed that two infection waves can occur if the time-lag
for the emergence of the second strain during the epidemic is sufficiently
large. A similar scenario can be observed for different levels of cross-
immunity as shown in Figure 2(b). For a given time T ∗ = 60 days for
the emergence of the second strain, a single peak of infection occurs
for 60% cross-immunity (solid curve, δ12 = δ21 = 0.6), whereas two
infection peaks take place as the level of cross-immunity reduces to 10%
(dashed curve, δ12 = δ21 = 0.9). We also observed qualitatively similar
behaviour by simulating the stochastic version of the model proposed
here, where “random effects” are taken into account.
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parameter baseline value
R0 1.6
δ12, δ21 variable
p 0.67
p12 pδ12

p21 pδ21

δ
A

0.142
µ

A
1/4.1 day−1

µ 1/4.1 day−1

T ∗ variables

TABLE 1: Model parameters with their values [2, 5].
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FIGURE 2: Time courses of epidemics with two-strains: single wave
(solid curve) and two waves (dashed curve). (a) δ12 = δ21 = 0.6, solid
curve: T

∗ = 10 and dashed curve: T
∗ = 60; (b) T

∗ = 60, solid curve:
δ12 = δ21 = 0.4, and dashed curve: δ12 = δ21 = 0.9.

4 Concluding remarks We developed a simple homogeneous model
with two influenza strains and demonstrated that subsequent infection
peaks can occur in a single epidemic season for different combination of
two key parameters: the timing for the emergence of the second strain,
and the level of cross-immunity between the two strains. Our simula-
tions indicate that if the second strain emerges with a sufficiently small
delay, or the level of cross-immunity is sufficiently high, the epidemic
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unfolds with only a single illness peak. For the early evolution of the
second strain, infections with different strains merge into a single epi-
demic wave. When the degree of cross-immunity is sufficiently high,
the time at which the second strain emerges during the epidemic of the
first strain is crucial. If a significant number of susceptible hosts have
already been infected with the first strain, cross-immunity will prevent
the occurrence of a subsequent peak of illness.

In the context of cross-immunity, vaccination is an important factor
[18] which has not been included in our model. Vaccination can impact
the antigenic drift of influenza viruses and therefore the competitive in-
terference between influenza strains in several ways [4, 18]. First of all,
a vaccine could provide some level of cross-immunity between successor
strains related to its composition, and therefore reduce the population
incidence of a second emerging strain. Secondly, vaccination (with rea-
sonable individual’s protection and population’s coverage) can suppress
the epidemic of the first strain and decelerate its progression, result-
ing in a sufficiently large pool of susceptibles for the second strain (if
it emerges) to cause a subsequent outbreak. Furthermore, vaccination
against the first strain may start during the outbreak and provide insuf-
ficient level of protection (i.e., poor-match vaccine) or inadequate level
of cross-immunity between strains (due to antigenic drift of the virus),
which can influence disease dynamics in a complex manner. The impact
of these factors on epidemic dynamics is currently under investigation.
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