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Abstract. A model is developed to study the in vivo intermediate filament

organization in terms of repartition between four different structural states:
soluble proteins, particles, short, and long filaments. An analysis is conducted,

showing that the system has a unique, globally asymptotically stable equilib-

rium. By means of sensitivity analysis, the influence of parameters on the
system is studied. It is shown that, in agreement with biological observations,

posttranslational modifications of intermediate filament proteins resulting in

filament solubilization are the main regulators of the intermediate filament or-
ganization. A high signalling-dependent solubilization of filaments favours the

intermediate filament aggregation in particles.

1. Introduction. The cytoskeleton is a complex arrangement of structural pro-
teins organized in three different networks: microfilaments, intermediate filaments,
and microtubules. Each network has specific physical properties and spatial organi-
zation, and plays particular roles in the cell. Here, the focus is on the intermediate
filament network, which is involved in the stabilization and mechanical resilience of
the cell, cell migration, and signal transduction [6, 8].

Intermediate filaments are cell-type and differentiation-stage dependent. They
are classified in five different types: Types I-IV are cytoplasmic filaments; Type V,
lamins, are nuclear filaments. Intermediate filament proteins share a central rod do-
main that forms a highly conserved α-helix involved in the formation of coiled-coil
structures [11]. The central rod domain is flanked by the head and tail domains,
which are less conserved and confer specific structural properties to the different
types of intermediate filament proteins. Mutations occur at the conserved central
rod domain, which modulates the assembly; they then lead to defaults in the orga-
nization of intermediate filament networks [1]. The head and tail domains contain
the sites that can undergo posttranslational modifications [16, 18]; therefore, the
terminal domains have mainly regulatory roles. The α-helical coiled-coil structures,
called dimers, laterally associate to form tetramers. The latter are considered as the
soluble subunits of intermediate filaments. Depending on the type of intermediate
filament proteins, dimers are hetero- or homopolymers.

The in vitro assembly process of cytoplasmic intermediate filaments is initiated
by a rapid lateral aggregation of tetramers into unit-length filaments (ULFs) [10];
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this aggregation is directly followed by filament elongation, resulting from end-to-
end annealing of ULFs and filaments [10, 13]. Evidence seems to indicate that
tetramer addition to the filament ends does not contribute significantly to filament
elongation [13]. Finally, the assembly process is terminated by a compaction event
inducing a reduction of the filament diameter [10].

The in vivo assembly process of intermediate filament networks (Types I-IV) is
also a multistage process: soluble proteins aggregate rapidly to constitute particles
[5]. The ultrastructural organization of the particles is still not known; however,
it is likely that they consist of filament precursors such as ULF [8], otherwise the
emergence of the objects in the next stage of assembly, “squiggles” alias short
filaments, that are longer than the restrictions imposed by the diffraction limit of
the light microscope, would make no sense (in particular in the light of the in vitro
data as published by Kirmse et al. [13]). These particles then grow and elongate into
short filaments; particles are the precursors of filaments [21, 27]. Short filaments
assemble into longer filaments which are also able to self-interact to create networks
[5, 29]. Filaments are regulated by posttranslational modifications of intermediate
filament proteins resulting in solubilizations and reorganizations [18, 22, 25].

The organization of a cytoskeletal network is the main determinant of its function
in cells. Defects in the intermediate filament network organization are correlated
to different human pathologies, such as skin fragility disorders, myopathies, and
neurodegenerations [3, 15, 17]. Understanding mechanisms determining the inter-
mediate filament network organization in cells, hence its cytopathological features
in diseases, could lead to new therapies.

To the best of our knowledge, so far only a few mathematical models studying
the organization of the intermediate filaments were developed. Beil et al. [2] inves-
tigate, with a nondynamical approach, the structural organization of cytokeratin
networks by fitting stochastic tessellations to graph structures obtained by image
segmentation of networks visualized by scanning electron microscopy. Brown et
al. [4] use stochastic simulations to study the pulsatile motion of neurofilaments
in axons. They do not describe the kinetics of neurofilament assembly. Craciun et
al. [7] develop a deterministic analogue of the model in [4] and obtain comparable
results in agreement with experimental data. Portet et al. [19] focus on the cy-
tokeratin network organization in a cell in response to its extracellular mechanical
environment. A hybrid model governing the soluble pool diffusion and the dynam-
ics of individual filaments is introduced and simulations are conducted. In Portet
et al. [20], two dynamical models of the in vitro and in vivo intermediate filament
assembly are proposed, but the mathematical analysis is limited and no sensitivity
analysis is conducted. In Kirmse et al. [13], the in vitro model in [20] is extended
and its reponses are compared to experimental data to determine the elongation
mechanism of a vimentin filament.

The aim of the present work, which extends that of [20] in the in vivo case, is to
model the assembly dynamics of in vivo intermediate filaments,

• to better understand the steps leading to the organization of the intermediate
filament material,

• and to identify the major reactions acting on the whole process.

Here, the organization of the network is described in terms of the repartition of
intermediate filament material between the different structural states that this ma-
terial can be in: soluble proteins, particles, and short and long filaments.
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2. Modelling concepts. It is assumed that the simplest intermediate filament
structural state is the tetramer, which constitutes the pool of soluble proteins of
intermediate filaments. Three other structural states for the intermediate filament
material are considered: particles, short filaments, and long filaments [9].
The dynamics of these four structural states are governed by five reactions: particle
formation, particle growth, filament formation, integration, and solubilization.

A particle is arranged from the soluble protein pool, particle formation is the
aggregation of several soluble proteins to form particles [5]. The size of a particle
is unknown [8]; a particle can take the form of an octamer (2 tetramers), ULF
(8 tetramers), or a bigger structure. The size of a particle is defined here as the
number of soluble proteins initially constituting a particle.

Particles grow by addition of soluble proteins [28]; this process is called the
growth of particles. As lateral interactions between intermediate filament pro-
teins can occur in three different manners [24], particle formation and growth of
particles are described with different rates. Here, the particle is assumed to be the
sole structural state recruiting from the soluble protein pool.

Particles convert to short filaments, this conversion is called filament forma-
tion. Particles are the precursors of filaments [21, 27]. Particles are considered here
as nonfilamentous units in the sense that they are not yet components of the fila-
mentous pool and cannot directly interact with filamentous units. Note, however,
that the specific shape of objects such as the form of particles or the configuration
of the networks are neither described nor addressed by the model.

Short filaments assemble to form longer filaments; short and long filaments also
interact. These two mechanisms are described by the same rate; this hypothesis
is supported by the fact that there exists a single mode of longitudinal interaction
between intermediate filament proteins [24]. Based on observations made during in
vitro assembly [13], it is also assumed that filament elongation results only from the
interaction of filamentous units; soluble protein addition is considered as playing
a significant role only in particle formation and growth. Filaments elongate and
self-interact to form the network [28]. This set of processes (filament elongation
and linking) is called integration. Intermediate filament linking does not require
any associated proteins, and the integration of filaments to the network results
solely from the interactions between long filaments. Consequently, for the sake
of simplicity and because the model is expressed in mass, filament linking is not
explicitly described in the integration. Here, long filaments are implicitly considered
to constitute the networks.

Particles and short and long filaments can disassemble into soluble proteins; this
is called solubilization. The solubilization of particles can result from the insta-
bility of the particle structure. The solubilization of filaments results from post-
translational modifications of intermediate filament proteins in response to stress,
apoptosis or mitosis (e.g., phosphorylation) [14, 18, 22, 23, 25]. Such signalling
events can also cause particle solubilization.

Particle formation, particle growth, and integration of filaments are assumed to
be biochemical events. Therefore, they are modelled using the Law of Mass Action.
On the other hand, the conversion of particles into short filaments (the formation
of filaments) is modelled as a structural event, a change of state, because little is
known about the process involved. The initial number of soluble proteins involved
in the formation of particles can also be interpreted as a structural feature.
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Table 1. Parameters in the model.

Parameter Signification
a Initial number of soluble proteins in a particle
α Rate of particle formation
π Rate of growth of particles
ε Rate of formation of a short filament
µ Rate of assembly of two filaments

κP (·) Rate of solubilization of particles
κF (·) Rate of solubilization of filaments

3. The model. The model describes the dynamics of the four structural states of
the intermediate filament material: soluble protein, particle (precursor of filaments),
short filament, and long filament. So, four state variables are defined:

• S(t), density of soluble proteins at time t,
• P (t), density of particles at time t,
• FS(t), density of short filaments at time t, and
• FL(t), density of long filaments at time t.

The soluble pool is the state variable S. The insoluble pool consists of particles,
short and long filaments, P +FS +FL. The filamentous pool is composed of short
and long filaments, FS + FL.

Based on the modelling concepts above, the following system is obtained:

dS

dt
= −αSa︸ ︷︷ ︸

Particle formation

− πSP︸ ︷︷ ︸
Particle growth

+κP (·)P + κF (·)(FS + FL)︸ ︷︷ ︸
Solubilization

(1a)

dP

dt
= αSa︸ ︷︷ ︸

Particle formation

+ πSP︸ ︷︷ ︸
Particle growth

− εP︸ ︷︷ ︸
Filament formation

− κP (·)P︸ ︷︷ ︸
Solubilization

(1b)

dFS

dt
= εP︸︷︷︸

Filament formation

−µF 2
S − µFSFL︸ ︷︷ ︸

Integration

− κF (·)FS︸ ︷︷ ︸
Solubilization

(1c)

dFL

dt
=µF 2

S + µFSFL︸ ︷︷ ︸
Integration

− κF (·)FL.︸ ︷︷ ︸
Solubilization

(1d)

The constant a represents the initial number of soluble proteins involved in a par-
ticle; it is assumed that a ≥ 2. The aggregation rate of soluble proteins to form
a particle is α. The constant π is the growth rate of particles. The constant ε
represents the filament formation rate. The parameter µ represents the rate of
assembly of filaments. The functions κP (·) and κF (·) represent the rate of sol-
ubilization of the particles and the filamentous pool, respectively. The rates of
solubilization can take the form of a constant rate, a time-dependent function, or
a concentration-dependent function of signalling proteins. All numbers and rate
constants are positive; they are listed in Table 1.

System (1) is considered with nonnegative initial conditions such that M0 :=
S(0) + P (0) + FS(0) + FL(0) > 0; i.e., there is initially a positive concentration of
proteins.
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4. Mathematical analysis. Since S′+P ′+F ′S +F ′L = 0, it follows that, defining

Ω = {(S, P, FS , FL) : S + P + FS + FL = M0},

Ω is positively invariant under the flow of system (1), and thus (1) is well-posed,
with bounded nonnegative solutions.

The following result is a corollary of Theorem A.3, Appendix A. The existence
and uniqueness of S∗ is obtained in Theorem A.1, Appendix A.

Theorem 4.1. Suppose that κP (·) ≡ κP ∈ R+ and κF (·) ≡ κF ∈ R+. Then system
(1) has with respect to Ω the unique globally asymptotically stable equilibrium point

Ē := (S̄, P̄ , F̄S , F̄L) =
(

M0S
∗,

M0κF

ε + κF
(1− S∗),M0F

∗
S ,M0F

∗
L

)
,

with S∗ the only solution of

P(S) = −α(ε + κF )Ma−1
0 Sa + κF (ε + κP − πM0S)(1− S) = 0

that satisfies 0 < S∗ < min
(

1,
ε + κP

πM0

)
, F ∗S given by

F ∗S =
εκF (1− S∗ − F ∗)

M0εµ(1− S∗ − F ∗) + κ2
F

and F ∗L given by

F ∗L =
µM0ε

2(1− S∗ − F ∗)2

κF (µM0ε(1− S∗ − F ∗) + κ2
F )

,

where the equilibrium proportion of the filamentous pool F ∗ is

F ∗ =
ε(1− S∗)
ε + κF

.

Interpretation: When particle and filament solubilization can occur, then
starting with any initial structural configuration of the intermediate filament ma-
terial, the system reaches an equilibrium distribution in which all structural states
are present. The equilibrium distribution depends on parameter values. The level
of filamentous pool is directly determined by the rate of network solubilization due
to signalling.

The following result can be proved using the same arguments as in Appendix A,
but for κP (·) ≡ κP ∈ R+ and κF (·) ≡ 0.

Corollary 4.2. Suppose that κP (·) ≡ κP ∈ R+ and κF (·) ≡ 0. Then system (1)
has with respect to Ω the globally asymptotically stable equilibrium

Ē = (S̄, P̄ , F̄S , F̄L) = (0, 0, 0,M0).

Interpretation: When there is no solubilization of the filamentous pool (no
signalling), then starting with any initial configuration of the intermediate filament
material, the system reaches an equilibrium at which all intermediate filament ma-
terial is integrated in the network.



122 STÉPHANIE PORTET AND JULIEN ARINO

5. Numerical results. System (1) has seven parameters. For most of these pa-
rameters, the values are difficult to estimate. The first estimates of in vitro lateral
and longitudinal aggregation rates of intermediate filament proteins were published
only recently [13]. In vivo studies have established only the time scales of the
processes involved [27, 28].

As the variation of the parameters of system (1) considered with constant rates
does not induce any change of stability but changes the value of the unique positive
equilibrium, a sensitivity analysis allows us to overcome the limitations resulting
from the uncertainty on parameter values and to better understand how parameters
influence the intermediate filament organization. Numerical simulations are then
run to investigate the response of system (1) considered with time-dependent rates.

5.1. Constant rates κF (·) ≡ κF and κP (·) ≡ κP : sensitivity analysis and nu-
merical simulations. Understanding the influence of each reaction on the organi-
zation is very important, but characterizing reactions that determine the structural
distribution of intermediate filaments is essential.

For instance, the value of the rate of particle growth depends on the molecular
affinities of soluble proteins. If a mutation occurs on an intermediate filament gene,
the affinity of soluble proteins can be modified [1, 15]. Hence, the value of the rate
π can increase or decrease relative to a typical value. Also, cell signalling (mitosis,
apoptosis, or mechanical stimulation) regulates posttranslational modifications of
intermediate filament proteins resulting in the solubilization of the filamentous pool
[14]; this is described in the model by the rate κF .

Sensitivity analysis allows the characterization of any change in structural state
concentrations induced by the variation of a given parameter. Hence, influences of
each reaction on the different structural states, and as a consequence on the whole
intermediate filament organization, can be quantified.

Mathematical procedures used for performing the sensitivity analysis are sum-
marized in Appendix B. To obtain sensitivities of various structural states to pa-
rameters, a system of 4×(7+1) equations consisting of (13) and (14) is numerically
integrated with respect to time. Here transient behaviours are not examined, just
the effect of parameters on the equilibrium values. To allow comparisons, normal-
ized sensitivity coefficients (15) are used. Results of sensitivity analysis are shown
in Figure 1, some illustrations of the dependence of equilibrium proportions on
parameters are depicted in Figure 2, and the main conclusions are discussed below.

The initial size of particles, a, does not really change the organization: it mainly
acts positively on the soluble pool and negatively on the insoluble pool. Results
are not shown in Figure 2, as an increase of a does not induce any fundamental
modification of the repartition of the states as the other parameters do.

High lateral aggregation rates, α and π, favour the insoluble pool. These param-
eters, which can be interpreted as rates of lateral aggregation of soluble proteins
[24], affect similarly each structural state. High rates of lateral aggregation can
modify the organization of intermediate filaments from a soluble configuration to
an arrangement in networks (Figs. 2(a)-2(b)).

A high rate of conversion of particles to short filaments, ε, favours solubility. Par-
ticles are the only recruiters of soluble proteins: the faster particles convert to short
filaments in comparison to the growth of particles (π), the lower the soluble pool
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Figure 1. Normalized sensitivity coefficients of the structural
states to the seven reactions estimated using (15): (a) soluble pro-
teins, (b) particles, (c) filaments, and (d) filaments integrated in
networks. For each structural state, computations were repeated
for 4096 sets of parameters; results are displayed as boxplots for
each parameter. The box shows the interquartile range. The me-
dian is indicated as the dividing line in the box. The length of the
whiskers is specified as 1.5 times the interquartile range. All data
with values beyond the ends of the whiskers are outliers, they are
displayed with a + sign.

consumption. This explains the non-monotonic dependence of equilibrium propor-
tions on ε (Figure 2(c)).

The rate of integration of filaments, µ, regulates the repartition of the filamentous
pool. The proportion of filamentous pool stays constant, but the repartition of the
filamentous pool between short and long filaments is modified. A high integration
rate favours the organization of intermediate filament material in networks (Fig.
2(d)).
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Influence of the rates α, π, ε, µ, κP and κF on equilib-
rium proportions.

The rate of solubilization of particles, κP , can affect the organization. An increase
in κP can switch the repartition between the soluble and insoluble pool (Fig. 2(e)).

A high signalling-regulated filament solubilization rate, κF , favours particles. An
increase in κF has opposite effects on filaments integrated in networks and particles,
changing the organization of intermediate filaments from a network configuration
to a particle configuration (Fig. 2(f)).
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In biological terms, reactions related to the lateral assembly and disassembly of
intermediate filament proteins (α, π, and κP ), which can be affected by mutations
[1], determine the structural organization of the intermediate filament material, and
regulate the repartition between soluble and insoluble pools (mainly between soluble
proteins and filaments integrated in networks). The signalling-regulated reaction
(κF ) totally determines the type of organization and favours particles [30].

5.2. Nonconstant rate κF (t): numerical simulations. It is shown above that
a main determinant of the intermediate filament organization is the rate of solu-
bilization of filaments. Effects of non-constant rates of filament solubilization are
now numerically investigated.

The rate κF (·) is taken to be a time-dependent function, with a baseline rate of
solubilization and peaks resulting from signalling events. Two signalling events are
considered here; they differ in duration and magnitude; they can be triggered by a
mechanical stimulation or mitosis [14, 23].

The nonconstant rate of solubilization is defined as follows (bottom of Fig. 3)

κF (t) = κF + κm exp−b(t−t1)
2
+κM exp−c(t−t2)

2
, (2)

with all parameters positive. Parameters t1 and t2 (t1 < t2) are times at which
signalling events take place. Parameters b and c regulate the slope of the functions.
Finally, κF represents the magnitude of the baseline solubilization rate of filaments,
κm is the maximal magnitude of the rate of solubilization induced by the first
signalling event, and κM is the maximal magnitude of the rate of solubilization
resulting from the second signalling event (κF � κm < κM ).

When the rate of filament solubilization κF is at its baseline level, intermediate
filament material organizes in long filaments constituting networks. Interphasic
cells have intermediate filaments organized in networks; the soluble pool represents
a low proportion of the material, the major part is assembled in filaments [27].

Due to the first signalling event, the magnitude of κF starts increasing; con-
sequently, the proportion of long filaments drops as they disassemble into soluble
proteins that in turn aggregate in particles. Almost instantaneously, these parti-
cles convert into short filaments. The increase in the proportion of particles stops
when the magnitude of the rate of filament solubilization decreases. For a while,
short filaments are the dominant structural state. As the rate κF returns to its
baseline level, the network reorganizes. This first signalling event can result from
a mechanical stimulation that locally acts on the cell. The induced solubilization
is not dramatic and induces the disassembly-reassembly of about 20% of the long
filaments involved in the network; this can be interpreted as a local reorganization
of the network in response to the stimulation.

The second signalling event induces a longer and stronger increase of the mag-
nitude of the solubilization rate. Similarly as with the first signal, long filaments
first disassemble, inducing an increase of the soluble pool followed by an increase of
the proportion of particles and subsequently, an increase of the proportion of short
filaments. For a while, particles dominate, and, as the magnitude of the solubiliza-
tion rate decreases, short filaments reassemble and become the dominant structural
state; finally the network reorganizes. In certain cell types, at metaphasis, cells have
a reduced filamentous pool, the intermediate filament material is mainly soluble or
aggregated into granules and short rod shaped objects [27]. This second signal can
therefore be interpreted as a mitosis, inducing an almost complete disassembly of
the network of the cell before the reformation of networks in daughter cells.



126 STÉPHANIE PORTET AND JULIEN ARINO

Figure 3. (Top) Temporal evolution (in seconds) of the propor-
tions of intermediate filament material, with a = 8, α = 5× 10−3,
π = 2 × 10−2, ε = 3 × 10−3, κP = 10−4, µ = 10−3 and κF as
in (2). (Bottom) Time-dependent rate of solubilization defined by
(2). At about t = 10000s, a signal triggers posttranslational mod-
ifications of intermediate filament proteins resulting in an increase
of the rate of solubilization with a maximal magnitude κm = 10−3

at t1 = 12150s. Similarly, at about t = 22500s, a second sig-
nalling event takes place, inducing a solubilization with a maximal
magnitude κm = 4 × 10−3 at t2 = 26500s. The baseline rate of
solubilization is κF = 10−4.

Note that similar results are obtained when using a square wave instead of a
smooth function such as (2) for the non-constant rate of solubilization (results not
shown).

6. Discussion. A nonlinear model for the dynamics of in vivo intermediate fila-
ments is proposed; the model describes the assembly and the organization of this
cytoskeletal component in terms of repartition between different structural states:
soluble proteins, particles, short filaments, and filaments integrated in networks.
The model includes several nonlinearities, one of which is of the form Sa. Because
of these nonlinearities, the analysis is complicated. However, using mass conserva-
tion properties and the theory of asymptotically autonomous systems, it is shown
that the system has a unique positive globally asymptotically stable equilibrium.
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When signalling events occur (κF 6= 0), all structural states of intermediate fil-
aments are present (Theorem 4.1). In the absence of signalling events (κF = 0),
the intermediate filament material is entirely organized in networks (Corollary 4.2).
In both cases, due to the global stability, there is no dependence on the initial
configurations of the intermediate filament material. Moreover, the proportion of
filamentous pool is inversely proportional to the rate of signalling-dependent solubi-
lization of filaments κF . Qualitative behaviours of the model are in agreement with
biological observations [27]: the organization of intermediate filament networks is
mainly regulated by the filament solubilization [30], which can be interpreted as a
consequence of posttranslational modifications.

By means of sensitivity analysis, reactions involved in intermediate filament as-
sembly are studied to identify those that are the most determinant for the orga-
nization. The lateral aggregation of soluble proteins and the signalling-dependent
solubilization of filaments are found to be the major regulators of this organization.
The lateral aggregation of proteins acts on the solubility of the intermediate filament
material. The signalling-dependent solubilization of filaments determines the inter-
mediate filament organization and favours aggregation in particles. Furthermore,
filament integration only modifies the distribution of the filamentous pool in terms
of short and long filaments. This induces changes in the mechanical properties of
networks.

More and more diseases have been associated with mutations of intermediate
filament genes [17]. These mutations are not well understood, but they are known
to affect the assembly of filaments and their integration in networks: the cytological
signature of these diseases is a misorganization of the intermediate filament material.
For example, in certain skeletal and cardiac myopathies, large aggregates of desmin
are observed [1]. Furthermore, for several neurodegenerative diseases, intermediate
filament aggregates also are a pathological hallmark; they seem to be correlated
to high phosphorylations [23]. The putative effects of mutations on the network
organization or the formation mechanismes of aggregates could be studied using
models of the type proposed here.

Furthermore, the total length L of intermediate filament material assembled into
filaments can be computed from this model. Letting ` be the linear density of
intermediate filaments [10], the total length L can be expressed as

L(t) =
FS(t) + FL(t)

`
.

The length L is an experimentally observable quantity, which could help identify
parameter values of the system, as this was done in vitro in [13].

The model has limitations; it does not specify the synthesis of the soluble pool,
and motile properties of different structural states of intermediate filament material
[9, 29] are not described. Depending on the cell type, antero and/or retrograde
transports have been observed, with varying speeds for the different structural states
of intermediate filaments. Some of those intracellular motions are related to the
microtubule network, whereas others are microfilament network dependent [29].
Further work will extend the model by taking into account the motile properties of
each structural state of the intermediate filament material.

Acknowledgements. The authors thank the editor and two anomynous referees,
whose comments improved the present paper.
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Appendix A. Proof of Theorem 4.1.

A.1. Simplified models. Summing the four equations in system (1), the conser-
vation equation

d

dt
(S + P + FS + FL) = 0

is obtained. Consequently, there holds that S(t) + P (t) + FS(t) + FL(t) ≡ M0,
that is, solutions are confined to the hyperplane S + P + FS + FL = M0. Using
P (t) = M0−S(t)−FS(t)−FL(t), the dimensionality of system (1) can be reduced
to 3. Considering the proportions S̄ = S/M0, F̄S = FS/M0 and F̄L = FL/M0 of
soluble pool, short filaments and long filaments in the cell, respectively, system (1)
is now expressed as follows (bars are omitted)

dS

dt
= −αMa−1

0 Sa + (κP − πM0S)(1− S − F ) + κF F (3a)

dFS

dt
= ε(1− S − F )− µM0F

2
S − µM0FSFL − κF FS (3b)

dFL

dt
= µM0F

2
S + µM0FSFL − κF FL, (3c)

where F := FS +FL is the filamentous pool. The dynamics of P (in proportions) is
reconstructed from the state of system (3) using the fact that P (t) = 1−S(t)−F (t).
This system is called the 3-dimensional system in proportions. Note that since for
system (1), S+P +FS +FL ≡ M0, the dynamics of (1) can be entirely reconstructed
from the dynamics of (3) by multiplying variables of (3), as well as P = 1−S −F ,
by M0. The two systems are therefore equivalent.

The dynamics of the filamentous pool F is obtained by summing equations (3b)
and (3c), giving

dF

dt
= ε(1− S − F )− κF F.

Consequently, system (3) can be reduced to
dS

dt
= −αMa−1

0 Sa + (κP − πM0S)(1− S − F ) + κF F (4a)

dF

dt
= ε(1− S − F )− κF F (4b)

and the dynamics of P is deduced from P (t) = 1 − S(t) − F (t). Model (4) is
considered with nonnegative initial conditions S(0) = s0, F (0) = f0 and P (0) =
p0 = 1− s0 − f0, with s0 + p0 + f0 = 1.

System (3) has nonnegative solutions bounded above by 1, summing to 1 if
the dynamics of P (t) is also considered. Since system (4) is obtained by linear
combination of variables of (1), the problem (4) is also well-posed, with solutions
bounded above by 1, summing to 1 if the dynamics of P (t) is also considered.

A.2. Existence and stability of equilibria for the two-dimensional system
(4). First, the existence stability of equilibria of system (4) is considered. Let

Ω̃ = {(S, P, FS , FL) : S + P + FS + FL = 1}.

Theorem A.1. Suppose that κP (·) ≡ κP ∈ R+ and κF (·) ≡ κF ∈ R+. Then
system (4) has with respect to Ω̃ a unique globally asymptotically stable equilibrium

E∗ = (S∗, F ∗) :=
(

S∗,
ε(1− S∗)
ε + κF

)
,
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where S∗ is the only solution of

P(S) = −α(ε + κF )Ma−1
0 Sa + κF (ε + κP − πM0S)(1− S) = 0

that satisfies 0 < S∗ < min
(

1,
ε + κP

πM0

)
.

Proof. Existence and uniqueness of the equilibrium E∗.
To find the equilibria of system (4), consider its nullclines; an equilibrium point

(S∗, F ∗) is solution to the following system,

0 = −αMa−1
0 Sa + (κP − πM0S)(1− S − F ) + κF F (5a)

0 = ε(1− S)− (κF + ε)F. (5b)

From equation (5b), it is obtained that

F =
ε(1− S)
ε + κF

. (6)

Substituting (6) in (5a) implies that

0 = −α(ε + κF )Ma−1
0 Sa + κF (ε + κP − πM0S)(1− S). (7)

Thus, the positive roots S∗ of (7) are the S components of the equilibrium solutions
of (5). Rewriting (7) as

P(S) = Φ(S)−Ψ(S), (8)

with
Φ(S) = κF (ε + κP − πM0S)(1− S)

and
Ψ(S) = α(ε + κF )Ma−1

0 Sa,

implies that the roots S∗ lie at the intersections in R2
+ of Φ and Ψ.

The polynomial Ψ is an increasing function on R+ such that Ψ(0) = 0. Φ is a con-
cave up parabola such that Φ(0) = κF (ε+κP ) > 0 and with 2 positive roots, 1 and
ε + κP

πM0
. Φ decreases on

(
0,

πM0 + ε + κP

2πM0

)
, increases on

(
πM0 + ε + κP

2πM0
,∞

)
, is

positive on
(

0,min
(

1,
ε + κP

πM0

))
and

(
max

(
1,

ε + κP

πM0

)
,∞

)
. It follows that Ψ

and Φ have an unique intersection for 0 < S < min
(
1, ε+κP

πM0

)
. The second positive

intersection, if it exists, has S > max
(

1,
ε + κP

πM0

)
≥ 1.

Since state variables in system (4) are in proportions, a biologically relevant
equilibrium must satisfy the condition S ≤ 1. As a consequence, S∗ is unique and
satisfies

0 < S∗ < min
(

1,
ε + κP

πM0

)
,

and system (4) has a unique interior equilibrium

E∗ =
(

S∗,
ε(1− S∗)
ε + κF

)
.

Stability of E∗.
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The Jacobian of system (4) at E∗ is

JE∗ =


−aαMa−1

0 S∗
a−1 − πκF M0

κF + ε
(1− S∗)

+πM0S
∗ − κP

πM0S
∗ − κP + κF

−ε −(κF + ε)

 .

The trace of JE∗ is

tr(JE∗) = −aαMa−1
0 S∗

a−1
+

πM0(2κF + ε)
κF + ε

S∗

− πκF M0 + (κP + κF + ε)(κF + ε)
κF + ε

. (9)

Begin with the conclusion. In those regions in parameter space where the Jacobian
matrix JE∗ has a negative trace, it follows from Bendixson’s criterion that there
are no nonconstant periodic solutions in the positive quadrant. It already has been
shown that solutions of (4) are bounded. As the equilibrium E∗ is unique, it follows
from the Poincaré-Bendixson theorem that all trajectories limit to the equilibrium
E∗, i.e. that the equilibrium E∗ is globally asymptotically stable with respect to Ω̃.

So now the sign of the trace of JE∗ is studied. Rewrite tr(JE∗) as the difference
between two polynomials in S∗,

tr(JE∗) = P1(S∗)− P2(S∗),

where

P1(S∗) =
πM0(2κF + ε)

κF + ε
S∗ − πκF M0 + (κP + κF + ε)(κF + ε)

κF + ε
,

and
P2(S∗) = aαMa−1

0 S∗
a−1

.

The sign of tr(JE∗) then depends on the relative positions of the graphs of P1 and
P2. The following observations can be made.

First, P1 is an increasing function whose graph is a straight line with negative
y−intercept,

−πκF M0 + (κP + κF + ε)(κF + ε)
κF + ε

,

and a positive S∗−intercept denoted Sint,

Sint :=
πκF M0 + (κP + κF + ε)(κF + ε)

πM0(2κF + ε)
.

Therefore, P1 is negative for all S∗ < Sint. On the other hand, P2 is an increasing
function with P2(0) = 0, so P2 is positive for all S∗ > 0.

It follows that
∀S∗ ∈ [0, Sint] , P1(S∗) < P2(S∗),

which implies that ∀S∗ ∈ [0, Sint], tr(JE∗) < 0.
Clearly, if Sint ≥ 1, since S∗ < 1, it follows that tr(JE∗) < 0, giving the global

stability of S∗. The condition Sint ≥ 1 is equivalent to κP + κF + ε ≥ πM0.
Now suppose that Sint < 1, that is, κP + κF + ε < πM0. This implies that

min(κP +ε
πM0

, 1) = κP +ε
πM0

, and therefore the case under consideration is that where
S∗ ∈ (0, κP +ε

πM0
].
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The relative positions of Sint and κP +ε
πM0

are not known a priori, but note that if
κP +ε
πM0

≤ Sint, then (0, κP +ε
πM0

] ⊂ [0, Sint] and thus for any S∗, P1(S∗) < P2(S∗), and
thus S∗ is globally asymptotically stable.

At this point, the result that S∗ is globally asymptotically stable has been shown
everywhere except in the case where S∗ is between Sint and κP +ε

πM0
, with Sint < κP +ε

πM0
,

that is,
πκF M0 + (κP + κF + ε)(κF + ε)

πM0(2κF + ε)
<

κP + ε

πM0
.

But this inequality is equivalent to πM0 − κP + κF < 0, that is, πM0 < κP −
κF . However, the current case corresponds to κP + κF + ε < πM0. Using both
inequalities, there must hold that κF + ε < −κF , a contradiction. Therefore the
case Sint < (κP + ε)/(πM0) is irrelevant.

It follows that tr(JE∗) < 0, implying that E∗ is globally asymptotically stable.

A.3. Existence and stability of equilibria for the three-dimensional sys-
tem (3). In the system (3) at equilibrium, the variables S, F , and P take their
equilibrium values S∗ and F ∗ obtained in Theorem A.1, and P ∗ = 1 − S∗ − F ∗,
respectively.

Since S and F converge to S∗ and F ∗, respectively, it follows that (3) is an
asymptotically autonomous system, with limiting system

dFS

dt
= ε(1− S∗ − F ∗)− µM0F

2
S − µM0FSFL − κF FS (10a)

dFL

dt
= µM0F

2
S + µM0FSFL − κF FL. (10b)

In (10), the dynamics of S and F , which reduce to S(t) ≡ S∗ and F (t) ≡ F ∗, are
omitted. The following result holds.

Theorem A.2. Suppose that κP (·) ≡ κP ∈ R+ and κF (·) ≡ κF ∈ R+ \ {0}. Then
system (10) has with respect to Ω̃ a unique globally asymptotically stable equilibrium
(F ∗S , F ∗L), with

F ∗S =
εκF (1− S∗ − F ∗)

M0εµ(1− S∗ − F ∗) + κ2
F

(11)

and

F ∗L =
µM0ε

2(1− S∗ − F ∗)2

κF (µM0ε(1− S∗ − F ∗) + κ2
F )

. (12)

Proof. The value of the equilibrium (FS , FL) = (F ∗S , F ∗L) is readily established.
Also, at an arbitrary point (FS , FL), the Jacobian matrix takes the form(

− (2FS + FL) M0µ− κF −µM0FS

µM0(2FS + FL) µM0FS − κF

)
and has eigenvalues −κF and −κF−µM0(FS+FL), so that the equilibrium (F ∗S , F ∗L)
is locally asymptotically stable. Furthermore, the Jacobian has trace −(FS +
FL)M0µ − 2κF < 0, so that Bendixson’s criterion applies, implying, since solu-
tions are bounded, that the equilibrium (F ∗S , F ∗L) is globally asymptotically stable
for the limit system (10).

At this point, the following has been done/shown:
1. System (1) has solutions on the affine hyperplane S(0)+P (0)+FS(0)+FL(0) =

M0.
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2. Therefore, system (1) can be transformed into a lower dimensional system,
involving S, FS , and FL, with P = M0−(S+FS +FL). Going to proportions,
this is formulated as the 3-dimensional system (3). Systems (1) and (3) are
equivalent, and therefore (3) is considered.

3. System (4), in the variables (S, F ), is then deduced from (3) by considering
the compounded variable F = FS + FL.

4. System (4) has a unique, globally asymptotically stable equilibrium point
(S∗, F ∗) (Theorem A.1).

5. System (3) is then considered as a system in which S(t) and F (t) are time
dependent quantities (and not obtained as solutions of a differential equation).
Thus, (3) is of the form x′ = f(t, x), with f(t, x) → g(x) as t → ∞, where g
has S = S∗ and F = F ∗. In this new system, called the limiting system of
“(3) seen as a non-autonomous system”, the equation for S is trivial, so only
(10) is studied.

6. For (10), it is shown in Theorem A.2 that there is a unique globally asymp-
totically stable equilibrium point (F ∗S , F ∗L).

So it remains to show that the behaviour of system (3) in proportions can indeed
be derived from the information obtained on S, FS and FL. Note that the method
that is used in the proof of Theorem A.1 to establish the existence of S∗ involves
FS and FL only has a sum, i.e., as F = FS + FL. The method is thus unchanged
when considering FS and FL rather than F , and the conclusion still holds that there
can be only one equilibrium value of S∗ such that 0 < S∗ < min

(
1, ε+κP

πM0

)
. It is

then easy to check that the equilibrium obtained from (3b) and (3c) with FS + FL

substituted to F in (3b), is the same to the one obtained for (10),

F ∗S =
εκF (1− S∗)

κF (ε + κF ) + M0εµ(1− S∗)

and

F ∗L =
µM0ε

2(1− S∗)2

(ε + κF ) (κF (ε + κF ) + M0εµ(1− S∗))
,

which are the values given by (11) and (12) in which
ε(1− S∗)
ε + κF

is substituted to

F ∗. Thus (3) also has a unique equilibrium.
From the theory of asymptotically autonomous differential equations, using for

example Theorem 4.2 and Corollary 4.3 in [26], since the limit system (10) has the
unique equilibrium point (S∗, F ∗S , F ∗L), it follows that every forward orbit of (3)
converges to (S∗, F ∗S , F ∗L). As a consequence, the following result holds.

Theorem A.3. The 3-dimensional system in proportions (3) has with respect to Ω̃
the globally asymptotically stable equilibrium point (S, FS , FL) = (S∗, F ∗S , F ∗L), with
S∗ given as in Theorem A.1, F ∗S given by (11) and F ∗L given by (12).

From this, the value of P ∗ can be deduced. Since P (t) = 1 − S(t) − F (t), it
follows that

P ∗ := lim
t→∞

P (t) = 1− S∗ − F ∗ =
κF (1− S∗)

ε + κF
.

The equilibrium values of S, P , FS and FL in (1) are then deduced by multiplying
all terms by M0. This equilibrium is globally asymptotically stable for system (1).
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Appendix B. Sensitivity analysis. System (1) can be expressed as follows

dy

dt
= f(t, y, p) (13)

where f is the right-hand side vector of (1), y is the 4-vector of state variables
(S, P, FS , FL), and p is the 7-vector of parameters (a, α, κF , κP , µ, π, ε). Sensitivity
of structural states with respect to parameter pi, i ∈ {1, . . . , 7}, is defined as the
7-vector ∂y(t)

∂pi
satisfying the forward sensitivity equations,

d

dt

∂y(t)
∂pi

=
∂f

∂y

∂y

∂pi
+

∂f

∂pi
, (14)

obtained by differentiating the original system (1) with respect to pi and inverting
the differentiation operators. The sensitivities are the derivatives of the model
responses with respect to parameters; they represent the rates of change of structural
state concentrations with respect to an increase in a given parameter pi. To allow
comparisons, normalized sensitivity coefficients defined by

pi

y

∂y

∂pi
(15)

are considered. See, e.g., [12] for details.
In Figure 1, the sensitivities are obtained as follows. All parameters pi are made

to vary, giving a lattice, L, in the 7-dimensional parameter space. The normalized
sensitivity coefficient (15) of each structural state to each parameter is computed at
each point in L, and the values obtained for these sensitivity coefficients are used
to generate the box plot.
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