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Effect of a sharp change of the incidence function
on the dynamics of a simple disease
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We investigate two cases of a sharp change of incidencec functions on the dynamics of a susceptible-
infective-susceptible epidemic model. In the first case, low population levels have mass action incidence,
while high population levels have proportional incidence, the switch occurring when the total population
reaches a certain threshold. Using a modified Dulac theorem, we prove that this system has a single
equilibrium which attracts all solutions for which the disease is present and the population remains bounded.
In the second case, an increase of the number of infectives leads to a mass action term being added to a
standard incidence term. We show that this allows a Hopf bifurcation to occur, with periodic orbits being
generated when a locally asymptotically stable equilibrium loses stability.
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1. Introduction

One of the most critical aspects in modelling disease propagation is the choice of the incidence
function, which describes the rate at which new infectives are produced. If there are S susceptible
individuals and I infective individuals in a population, then the rate of creation of new infectives
typically involves a product of terms involving S and I . The most common incidence functions
are mass action SI , proportional incidence SI/N , where N is the total population, and general
incidence SpI q , but there are many other functions that have been used. There has been a debate for
quite some time about the nature of the functions to use; see, for example, McCallum et al. [9] and
the references therein. Most studies conducted to this day assume that the form of the incidence
function is fixed for a given model. In models where there are several groups, parameters of the
incidence function can vary from group to group, but the general nature of the function is unique.
In Fromont et al. [3], a model is introduced where different geographical locations have different
types of incidence functions; in this case, this is justified by the fact that some of the locations
are farms, others are villages, leading to different contact structures. In single populations [15], a
number of SI and SIS models are formulated with various types of demographic components, with
a smooth, density-dependent incidence function. Further mathematical results on some of those
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models are provided in Zhou [14]. In Brauer [1], the incidence takes the form β(N)SI , with β(N)

differentiable. In Zegeling and Kooij [13], an SI model is studied for micro- and macro-parasitic
diseases, with strong dependence of the incidence on the population size. In Liu et al. [8], an
incidence function that takes into account the number of hospitalized infectives is used; in both
Liu et al. [8] and Zegeling and Kooij [13], it is shown that such dependence leads to oscillations.
See also, for instance, [4,10,11].

In the present paper, we consider an SIS model for the spread of an infectious disease in a single
population. These models, with the population split between susceptible and infective individuals,
constitute the most elementary description of the spread of a disease in a population, and have
been extensively studied in the literature. However, we suppose that there is a population level
across which the contact structure is fundamentally modified. Hence, contrary to models with
varying contact levels [1], there is a sharp threshold where the nature of the incidence function
itself changes. A similar situation was considered in Kribs-Zaleta [7], with logistic dynamics.

We consider here an SIS model in an exponential population dynamics framework, with no
self-regulation effects due to intra-specific competition (crowding). Thus, if the birth rate is too
low or too high, the population can go extinct or become unbounded. In Section 2, we consider
this general model with unspecified incidence and establish some elementary properties.

We then specialize this framework to two different incidence functions with switching.
The first case we consider, in Section 3, has the same incidence form as in Kribs-Zaleta [7]. The

switching occurs when the total population reaches a certain threshold, with mass action incidence
for small populations and standard incidence for large populations. This can model a global (and
abrupt) modification of the contact structure for high population levels. To study the stability of
the endemic equilibrium, we use an extension of Dulac’s theorem that is developed inAppendixA.

The second switching scenario addresses the situation where treatment facilities are overcome.
At low incidence levels, standard incidence is used; when a certain threshold number of infectives
is reached, a mass action type term is added to the incidence function. This describes the situation
where, for example, a community has a limited number of hospital beds. When this capacity is
overcome, infectives are treated at home rather than in hospital, where their contact pattern is
more prone to the propagation of the disease. This change in the incidence is manifested in the
incidence function; if the number of infectives is below a threshold value then the incidence is
given by proportional mixing, whereas the additional incidence due to any amount of infectives
above the threshold is of mass action form. We formulate and analyse this model in Section 4,
studying in particular the occurrence of periodic solutions.

We now call attention to an important difference in the dynamics exhibited by the two models.
For the second model, it is possible to have a Hopf bifurcation, whereas this cannot happen for
the first model.

2. The general framework

We make the following assumptions. There is no vertical transmission of the disease, so all new-
borns are susceptibles; birth occurs with rate constant b > 0, proportional to the total population.
The mortality coefficient for non-disease-related reasons is d > 0. Infective individuals are sub-
ject to disease-induced death, which occurs with rate constant δ ≥ 0. Infective individuals may
recover after an average duration of infection of 1/γ time units. Finally, contacts between sus-
ceptible and infective individuals result in new infection with rate F(S, I ). We thus consider the
following SIS epidemic model,

S ′ = bN − dS − F(S, I ) + γ I, (1a)

I ′ = F(S, I ) − (d + δ + γ )I. (1b)
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492 J. Arino and C.C. McCluskey

The precise nature of the incidence function F will be made explicit later. For now, we only
assume that it is a continuous piecewise differentiable non-negative function such that F(S, 0) =
F(0, I ) = 0. It follows that the non-negative quadrant is positively invariant under Equation (1).
Let N = S + I . Then,

N ′ = (b − d)N − δI. (2)

Clearly, if N tends to zero, then so must S and I .

2.1. Equilibria

Disease-free equilibria are obtained by setting I = 0 in Equation (1). This yields the extinction
equilibrium (S, I ) = (0, 0), which is present for all parameter values; whereas, if b = d, then
(S, I ) = (S, 0) is an equilibrium for any S > 0. In this paper, we assume that b �= d and so we
ignore this latter case.

From Equation (2), endemic equilibria (EEP), that is, equilibria (S∗, I ∗) such that I ∗ > 0, can
only exist if d < b ≤ d + δ, and must satisfy

I ∗ = b − d

δ
N∗,

where N∗ = S∗ + I ∗ is determined by the exact form of the incidence function F that is used in
Equation (1). Additionally, if b = d + δ, then Equation (2) implies that an endemic equilibrium
would satisfy N∗ = I ∗, and so S∗ would be zero. Substituting this into Equation (1b) yields
I ∗ = 0. Thus, endemic equilibria are only possible if d < b < d + δ.

Proposition 1 A necessary condition for the SIS model (1) to have endemic equilibria is that

d < b < d + δ. (3)

2.2. The system in proportions

In order to simplify the problem, we consider from now on the system in proportions. We let

s = S

N
, i = I

N
,

and, noting that s + i = 1, we transform Equation (1) into a system in terms of (i, N).
Differentiating i with respect to t gives

i ′ = I ′

N
− i

N ′

N
.

Substituting Equation (1b) into this expression and using the notation

f (i, N) = F(S, I )

N
,

we obtain

i ′ = f (i, N) − (b + γ + δ)i + δi2.

This definition of f is only valid for N > 0, so we define

f (i, 0) = lim
N→0

f (i, N)

and require that this limit exist for i ∈ [0, 1]. This precludes, for example, the possibility that
F(αS, αI) is sublinear in α near 0.
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The system under consideration is then

i ′ = f (i, N) − (b + δ + γ )i + δi2, (4a)

N ′ = (b − d − δi)N. (4b)

Under the dynamics of Equation (4), i(t) remains in [0, 1] for all positive times since f is zero
if i is 0 or 1. If a solution starts with i(0) less than or equal to one, then i(t) is strictly less than one
for all positive time. Also, if N(0) ≥ 0, then N(t) remains non-negative for all time, and satisfies
N(t) ≤ N(0) exp((b − d)t), giving the following result.

Proposition 2 Solutions to system (4) beginning in the positively invariant rectangular half-strip
of the (i, N)-plane defined by

D = {(i, N) : 0 ≤ i ≤ 1, N ≥ 0}
exist for all positive times.

Equation (4b) is separable, yielding

N(t) = N(0) exp

(∫ t

0
b − d − δi(z)dz

)
.

Considering this in the cases b < d and d + δ < b gives a monotone function for N .

• If b < d , then N(t) < N(0) exp(−εt) for some ε > 0.
• Since i(t) ≤ 1 for all t , b − d − δi(z) > b − d − δ, and it follows that if b > d + δ, then

N(t) > N(0) exp(εt) for some ε > 0.

The following result has been proved.

Proposition 3 If b < d, then solutions of Equation (4) satisfy limt→∞ N(t) = 0. If b > d + δ

and N(0) > 0, then solutions of Equation (4) satisfy limt→∞ N(t) = ∞.

The Jacobian matrix associated with system (4) will often be used. At an arbitrary point (i, N)

for which f is differentiable, the Jacobian is given by

J =
(

∂f (i, N)

∂i
− (b + δ + γ ) + 2δi

∂f (i, N)

∂N−δN b − d − δi

)
. (5)

3. The model with switching on population density

The novelty of the model discussed here lies in the incidence function F . In this section, we
assume that the incidence is a continuous function of the form

F(S, I ) =

⎧⎪⎨
⎪⎩

βSI if N ≤ 1,

β
SI

N
if N > 1.

(6)

The situation described by Equation (6) is one where the type of contact structure varies sharply
as the total population density crosses a threshold value. Here, the population has been scaled to
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494 J. Arino and C.C. McCluskey

this threshold so that the transition occurs at N = 1. When the population is small enough, it is
assumed that every infective individual can potentially meet every susceptible in the population, so
that the incidence is of mass action type.As the population becomes larger, this hypothesis must be
relaxed, and every infective is able to make contact with only a certain fraction of the susceptible
population, leading to the use of proportional incidence. Note that F(S, 0) = F(0, I ) = 0, as
assumed in Section 2.

3.1. The system in proportions

The incidence function f for the system in proportions is as follows:

f (i, N) =
{

β(1 − i)iN if N ≤ 1,

β(1 − i)i if N > 1.
(7)

This incidence function is substituted into Equation (4) to obtain the main equations for this
section. For N ≤ 1, the dynamics are described by

i ′ = (βN(1 − i) − (b + δ + γ ) + δi)i, (8a)

N ′ = (b − d − δi)N, (8b)

whereas if N > 1, we have

i ′ = (β(1 − i) − (b + δ + γ ) + δi)i, (9a)

N ′ = (b − d − δi)N. (9b)

We call Equation (8) the lower system and Equation (9) the higher system. We distinguish between
the low strip DL, where N ≤ 1, and the high strip DH , where N ≥ 1.

3.2. Exact solution in DH

Let us first remark that the nature of those parts of a solution of Equation (4) that lie in DH are
known. Indeed, we have the following theorem.

Proposition 4 Suppose that, at some instant τ ≥ 0, we have (iτ , Nτ ) := (i(τ ), N(τ)) ∈ DH .
Then there exists a potentially infinite interval I with left endpoint τ such that, for all t ∈ I, we
have (i(t), N(t)) ∈ DH with

i(t) = Kiτ

	(t − τ)
,

N(t) = Nτ e(b−d)(t−τ) exp

(
−δKiτ

∫ t

τ

du

	(u − τ)

)
,

(10)

where K = β − (b + γ + δ) and 	(u) = iτ (β − δ)(1 − e−Ku) + K e−Ku.

Proof Assume that (iτ , Nτ ) ∈ DH for some τ ≥ 0. Then consider the initial value problem
consisting of Equation (9) together with the initial condition i(τ ) = iτ and N(τ) = Nτ . Integration
of Equation (9b) gives, for t ≥ τ ,

N(t) = Nτ e(b−d)(t−τ) exp

(
−δ

∫ t

τ

i(u) du

)
. (11)
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We denote by I the interval on which it remains true that (i(t), N(t)) ∈ DH . Now note that,
denoting K = β − (b + δ + γ ), Equation (9a) can be written as follows:

i ′ − Ki = −(β − δ)i2,

a Bernoulli equation (it is also separable). It follows that we have, for t ∈ I,

i(t) = Kiτ

	(t − τ)
,

where

	(u) = iτ (β − δ)(1 − e−Ku) + K e−Ku.

Therefore, for t ∈ I, ∫ t

τ

i(u) du = Kiτ

∫ t

τ

du

	(u − τ)
. (12)

Substituting Equation (12) into Equation (11), we obtain the result for t ∈ I. �

There are two ways for a solution curve to intersect DH . It can start in DH , that is, correspond
to an initial condition in DH , or it may correspond to a switching of incidence functions because
N = 1 is crossed as N increases. To take this information into account, we introduce the sequence
{tk} of switching times, which we define as follows. For k = 1, 2, . . ., the tk ∈ R̄ are the times at
which there is a change in Equation (6), that is, when N crosses the value 1, with tk+1 = ∞ if
there is no such crossing for t > tk . We take t0 = 0 to be the initial time; so N(t0) is the initial
condition. For subsequent tk , N(tk) = 1. So if the solution enters DH at tk , then the integral (11)
can be written as follows:

N(t) = e(b−d)(t−tk) exp

(
−δ

∫ t

tk

i(u) du

)
, (13)

for tk ≤ t < tk+1.

3.3. Local stability analysis

Theorem 1 For all values of the parameters, the disease-free equilibrium is given by

e0 := (i0, N0) = (0, 0).

If b < d, then there are no other equilibria and e0 is globally asymptotically stable. If d < b, then
e0 is unstable.

If d < b < d + δ, then the presence of endemic equilibria e∗ = (i∗, N∗), where i∗ = b − d/δ,
is related to the quantity N
 = δ(d + δ + γ )/β(d + δ − b).

e∗
N
 < 1 e∗ = (i∗, N
) is LAS
N
 = 1 e∗ = (i∗, N) for any N ≥ 1
N
 > 1 Does not exist

If d + δ ≤ b, then there are no endemic equilibria.

Proof For all parameter values, e0 is an equilibrium of the lower system. The point e∗ is an
equilibrium of the lower system if d < b < d + δ, guaranteeing that i∗ ∈ (0, 1), and N∗ < 1.
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496 J. Arino and C.C. McCluskey

A third solution to the equilibrium equations for the lower strip exists, but it is not biologically
relevant since it occurs at (i, N) = (1 + (b + γ /δ), 0), which lies outside of D.

The higher system (9) only yields equilibria for which N∗ > 1 if N
 = 1. In this case, there
is a continuum of equilibria of the form (i, N) = ((b − d)/δ, N) for N > 1. However, the con-
dition N
 = 1 is satisfied with probability zero, and so these equilibria are not considered to be
biologically significant.

Evaluating the Jacobian matrix (5) at e0, we have

J =
(−(b + δ + γ ) 0

0 b − d

)
.

It follows that the local stability of e0 is ruled by the sign of b − d, with e0 locally asymptotically
stable if b < d and unstable if b > d.

In the case b < d, Theorem 3 implies that N(t) → 0 as t → ∞. Now rewrite Equation (8a) as
follows:

i ′ = (βN(1 − i) + δ(i − 1) − (b + γ ))i < (βN − (b + γ ))i

since i ≤ 1. As N(t) → 0, there exists τ ≥ 0 such that βN(t) < b for t ≥ τ . As a consequence,
for sufficiently large t , i ′ < −γ i and it follows that i(t) → 0 as t → ∞. Thus e0 is globally
asymptotically stable for b < d.

For N
 < 1, the sign pattern of J (e∗) is

J =
(− +

− 0

)
,

which is a sign stable pattern [6], and so e∗ is locally asymptotically stable when it lies in the low
strip DL. �

3.4. Ruling out periodic solutions

Note that under the flow (4), the set {i = 0} is positively invariant, as is the set {N = 0}. Also,
i ′ = −(b + γ ) when i = 1. This implies that any periodic solution of Equation (4) is bounded
away from {i = 0}, {N = 0} and {i = 1}, that is, any periodic solution lies entirely in the interior
of D.

We apply Theorem 6 (Appendix 1), taking D = Int(D), with 
 = {N = 1}, D1 = DL ∩ D and
D2 = DH ∩ D. Then hypotheses (H1) and (H2) in Appendix 1 are satisfied.

We use the Dulac function α(i, N) = 1/i(1 − i)N, getting

div(αg) = − b + γ

N(1 − i)2
(14)

(which is strictly negative) on both D1 and D2. Thus, by Theorem 6 (Appendix 1), there are
no simple closed curves that are invariant under the flow (4). This rules out periodic solutions,
homoclinic orbits and heteroclinic cycles. Since e0 repels solutions from the interior of D, we
have the following theorem.

Theorem 2 Suppose b ∈ (d, d + δ). If N
 < 1, then each bounded solution in the interior of
D limits to the endemic equilibrium e∗. If N
 > 1, then there are no bounded solutions in the
interior of D.

We note that if i = 0 is attracting for N > 1, then for d < b there are solutions for which i

tends to zero and N tends to infinity. Thus, the presence of e∗ does not guarantee that it is globally
stable.
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This is distinct from the behaviour of the system studied in Kribs-Zaleta [7], where the endemic
equilibrium can be shown (using the extended Dulac theorem in Appendix 1) to be globally
stable whenever it is present. The difference in dynamics stems from the fact that the model in
Kribs-Zaleta [7] includes logistic demographics which prevents solutions from being unbounded.

4. A model where infection overcomes treatment facilities

In this section, we consider the case where instead of switching for a given value of N , the
switching occurs for a given value of I .

We want to model a situation, such as would occur in the event of overflow of treatment
capacities. Suppose that a given population, say a city, has a certain number of hospital beds
available, and that the disease under consideration requires hospitalization. While the number of
infectives remains lower than the number of beds, infectives are cared for in the hospital, in what
can be considered ideal conditions: their contacts with susceptibles from the general population
are much less frequent. Then, as the epidemic progresses, there is a point where not enough
beds are available, and some patients are sent home. In this situation, the contact pattern is much
less favourable, with some infectives mixing more freely in the population (or, at least, in a less
controlled setting). We suppose that the incidence function takes the form

F(S, I ) =

⎧⎪⎪⎨
⎪⎪⎩

β1
SI

N
if I ≤ Î ,

β1
SI

N
+ β2S(I − Î ) if I > Î ,

(15)

where Î > 0 is given. The term β2S(I − Î ) describes the additional infections caused by an
elevated mixing rate for the non-hospitalized infectives.

Note that this is a toy model. It is generally assumed (as is done, for example, in Section 3) that
proportional incidence is more appropriate to describe high population densities. Here, however,
we want to focus on the effect of a sudden change in the contact pattern that results in the contacts
becoming much more frequent. Hence the form chosen for Equation (15).

The basic analysis is very similar to the case of Section 3, and many results can be adapted.

4.1. The system in proportions

We consider the system in proportions, and so the incidence function is given by

f (i, N) =
⎧⎨
⎩

β1(1 − i)i if iN ≤ Î ,

β1(1 − i)i + β2(1 − i)(iN − Î ) if iN > Î .
(16)

Substituting into Equation (4), we obtain the main equations for Section 4. For iN ≤ Î , the lower
system is given by

i ′ = β1(1 − i)i − (b + δ + γ )i + δi2, (17a)

N ′ = (b − d − δi)N, (17b)

whereas if iN > Î , we consider the higher system

i ′ = β1(1 − i)i + β2(1 − i)(iN − Î ) − (b + δ + γ )i + δi2, (18a)

N ′ = (b − d − δi)N. (18b)
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498 J. Arino and C.C. McCluskey

One difference with the case of switching on the population density lies in the nature of the
low and high strips, DL and DH . Here, the boundary 
 is given, for i ∈ (0, 1], by the hyperbola
N = Î / i. Once the strips are thus defined, some of the analysis of Section 3 carries through to
the present model with little adaptation.

Note that Theorem 4 holds in DL, so that an explicit expression of the solution can be found in
the lower strip.

In the lower strip DL, there are two nullclines. The i nullcline, resulting from Equation (17a),
is given by

i = iLS = 1 − b + γ

β1 − δ
, (19)

for all N ∈ DL. The second nullcline is the N nullcline, resulting from Equation (17b). It is
given by

i = iN = b − d

δ
, (20)

for all N ∈ D (it exists both in the lower and upper strips). In the upper strip, apart from Equation
(20), there is a nullcline resulting from Equation (18a) given by

N = NHS(i) = Î

i
+ b + γ

β2(1 − i)
− β1 − δ

β2
. (21)

Note that the nullclines iLS and NHS coincide with the hyperbola 
, providing a strong connection
between the lower and the upper strips.

Evidently, if iLS = iN , then there is a continuum of equilibria in the lower strip. However, the
set of parameters for which this happens has measure zero in parameter space, and we choose to
ignore this situation. So the equilibria are e0 = (0, 0), ē = (iLS, 0), e∗ = (iN , NHS(iN))), when
ē, e∗ ∈ D.

Theorem 3 System (4) with incidence function (16) potentially has three equilibria, whose
existences and stabilities are summarized in the following table

e0 ē e∗

b < d

{
E < 1

E > 1
GAS

Unstable
Does not exist

GAS
Does not exist
Does not exist

d < b < d + δ Unstable Theorem 4 Theorem 4
d + δ < b Unstable Unstable Does not exist

where

E = β1

b + δ + γ
.

Proof The equilibrium e∗ does not exist if iN does not belong to (0, 1), hence the cases for e∗.
(e∗ might not exist even when iN ∈ (0, 1), which is treated in Theorem 4).

The extinction equilibrium e0 = (0, 0) always exists. At e0, the Jacobian matrix (5) takes the
form (

β1 − (b + δ + γ ) 0
0 b − d

)
.

Thus, e0 is locally asymptotically stable if, and only if, b < d and E < 1. Furthermore, if b < d

then N tends to 0. In this case, the asymptotic dynamics of i are governed by Equation (17a). If
E < 1, then i tends to 0, and if E > 1, then i tends to iLS. Thus, for b < d, if E < 1 then e0 is
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globally asymptotically stable, and if E > 1 then ē is globally asymptotically stable. (Note that
E > 1 requires β1 < δ, making iLS < 1.)

For d < b < d + δ, it follows from the Jacobian matrix that e0 is unstable. (The other equilibria
are treated in Theorem 4.)

Now suppose b > d + δ. Then, e∗ does not exist and both e0 and ē are unstable (since in this
case, iN > 1, implying that both Jacobians are evaluated on the left of iN ). Also, note that from
Theorem 3, N(t) becomes unbounded. �

Note that E resembles the classical basic reproduction number R0 in its interpretation. Indeed,
1/(b + δ + γ ) is the mean time spent in the infective class, if natural death is replaced with birth
as is the case when working in proportions. Multiplied by the rate β1 at which individuals enter
the infective class, this gives an estimation of the average number of new infections produced by
an infective individual. However, for b < d, as E passes through 1, the stability merely passes
rom one equilibrium with N∗ = 0 to another. Since this role is very different from the classical
role of R0, we use a different notation.

From now on, we choose to consider only the cases when all three nullclines exist in the interior
of D, that is, iLS, iN ∈ (0, 1). There are three cases to consider, which are shown in Figure 1. The
following theorem summarizes these cases.

Theorem 4 Suppose that d < b < d + δ. Then, for system (4) with incidence function (16), e0

is unstable, and the stability of ē and the existence and stability of e∗ are summarized in the table

ē e∗

iLS < iN

{
SN > 0

SN < 0
Unstable
Unstable

LAS
Unstable

iLS > iN GAS Does not exist

where

SN = (b + γ )(b − d)

d + δ − b
− β2Î (d + δ − b)

b − d

is the slope of NHS at e∗, when e∗ exists.

Proof That e0 is unstable is established in Theorem 3.

LSi

Î

Ni

N

1 i

(a)

LSi Ni

Î

N

1 i

(b)

LSiNi

Î

N

1 i

(c)

Figure 1. Phase plane situations when the incidence function takes the form (16), with the equilibria represented (circles
are unstable, squares are stable). In each panel, the switching curve is the monotone decreasing curve, the nullcline for
N ′ is given by i = iN , and the nullcline for i′ is the curve which has i = 1 as an asymptote (given by N = NHS(i)).
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When evaluated at ē = (iLS, 0) and to the left of iN (i.e. when iLS < iN ), the sign pattern of the
Jacobian (5) is (∗ 0

0 +
)

(where ∗ corresponds to a quantity that may be positive or negative), and thus ē is unstable when
iLS < iN because there is at least one positive eigenvalue. At ē and to the right of iN (i.e. when
iN < iLS), the sign pattern is (

sgn(1 − E) 0
0 −

)
and since E > 1 when ē exists, ē is locally asymptotically stable. That it is also globally asymp-
totically stable follows from a phase plane argument. First, because iLS > iN (see Figure 1(c)),
it is clear that the strip DiN = {(i, N); iN ≤ i ≤ 1, N ≥ 0} is positively invariant under the
flow of Equation (4) with incidence function (16). Second, all points such that i < iN satisfy
i ′ > i ′|i=iN > 0. It follows that all solutions with i < iN enter DiN in finite time. When a solution
is in DiN , N decreases so that eventually, the system is governed by the lower system. When this
happens, Theorem 4 applies with β = β1, and since E > 1, β1 > b + γ + δ and Equation (10)
implies that i(t) → iLS as t → ∞.

If iN < iLS, then NHS(iN) lies below the switching curve. Thus, if iN < iLS, then e∗ is not
present. For iN > iLS, the equilibrium e∗ is present. We now determine the stability of e∗ for
iLS < iN .

Evaluating the derivative of NHS(i) at iN gives the slope SN of the tangent to NHS(i) at e∗,
when e∗ exists. Then, at e∗, the Jacobian matrix (5) takes the form⎛

⎜⎜⎝
−SN

β2(b − d)(d + δ − b)

δ2

β1δ

β2
− δ2Î

b − d
− δ2(d + δ + γ )

β2(d + δ − b)
0

⎞
⎟⎟⎠ ,

and thus has the sign pattern

J =
(−sgn(SN) +

− 0

)
.

(The sign of J21 results from the fact that J21 = −δN ). If SN > 0, this is a stable sign pattern [6],
and so e∗ is locally asymptotically stable. If SN < 0, then this is an unstable pattern and so e∗ is
unstable. �

Interestingly, when it exists the stability of e∗ is thus determined by the sign of the slope of the
tangent to the nullcline NHS at e∗. In fact, we show in the next section that when the sign of this
slope changes, a Hopf bifurcation occurs at e∗.

4.2. Existence of periodic solutions

Theorem 4 states that the loss of stability of e∗ occurs when SN changes sign. The following
result relates this change in stability to a Hopf bifurcation. We treat SN as a bifurcation parameter,
noting that by using β2, we may consider SN to be independent of b, d, δ, iLS and iN . In the
theorem statement and proof, Bε(e∗) denotes the open ball centred at e∗ with radius ε.

Theorem 5 Suppose that d < b < d + δ and iLS < iN . Then for any ε > 0 and any S0
N > 0,

there exists S̄N ∈ (−S0
N, 0) such that system (4) with incidence function (16) has a non-trivial

periodic orbit in Bε(e∗) for SN = S̄N .
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Proof Using Lemma 1 in Appendix 2 with τ = SN , we see that the eigenvalues of the Jacobian
matrix at e∗ are purely imaginary conjugates when SN = 0, and the real part of these eigenvalues
decreases with SN in a neighbourhood of SN = 0. By using SN as a bifurcation parameter (or β2 as
a proxy for SN ), the transversality as it passes through 0 is immediate. It follows that a Hopf bifur-
cation occurs at SN = 0 [5]. In particular, e∗ is attracting for SN > 0 and is repelling for SN < 0.

The Hopf bifurcation is occurring at e∗ as SN passes through 0, but always with the underlying
assumption that iLS < iN . Since SN is the derivative of NHS(i) at i = iN (as is the case at e∗), it
follows that the bifurcation is happening in the interior of the high strip where the vector field
is C3. Any points of non-differentiability on the periodic orbit are the result of further (minor)
bifurcations as the expanding periodic orbit crosses the switching curve.

It remains to be shown that periodic orbits exist for negative SN . As seen in Figure 2, any
solution for which N(0) is sufficiently large begins in one of the Regions I, II, III or IV (where the
divisions between the regions are the isoclines and the switching curve). In any case, the solution
will eventually advance to Region IV. In Region IV, however, N is bounded below by N1. Then,
after leaving Region IV, the N coordinate of the positive semi-trajectory is bounded above by N2.
Thus, solutions are bounded and do not approach e0 or ē.

However, forSN negative, e∗ is repelling.Thus, by the Poincaré–BendixsonTheorem, the omega
limit set of a solution starting near e∗, or in Regions I, II, III or IV, must be a periodic orbit. In fact,
aside from e∗, any solution for which i(0) and N(0) are non-zero must limit to a periodic orbit. �

In Figure 3, the parameters are 1/b = 20 years, 1/d = 80 years, δ = 0.0004, γ = 1/3, β1 = 0.4
and β2 = 0.001. The initial population is N(0) = 1000, with one infective individual, and the
switching occurs at Î = 150.

Note (Figure 3(a)) that the periodic orbit intersects both the lower and the upper strips. This is
the situation after a so-called grazing bifurcation [2], where the periodic orbit whose existence is
established in Theorem 5 hits a smooth switching boundary.

LSi Ni

N2

N1
N=Î

N

1 i

I

IIIII

IV

Figure 2. Phase plane diagram showing the nullclines, directions (empty headed arrows) as well as two solutions (filled
head arrows), for the system with incidence function (16), in parameter regions where a periodic solution exists.
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Figure 3. (a) Phase plane diagram showing the nullclines (dashed curves), switching boundary 
 (dash-dotted curve),
as well as one solution along the hysteresis loop, for the system with incidence function (16). Parameters are indicated
in the text. (b) A solution along the hysteresis loop in the case of Figure 3(a). The left vertical axis shows the proportion
of infectives in the population, corresponding to the solid curve, while the right vertical axis shows the total population,
corresponding to the dashed curve.

5. Discussion

The model we introduce here is, in essence, quite different from other models that were published
on the subject. It does share some common properties with other models with exponential demog-
raphy and disease induced death, in which two extreme cases occur when the birth rate is either
too low or too high. For b < d, the population size limits to zero and extinction is inevitable,
independent of the disease dynamics. For b > d + δ, the population size grows without bounds.
In this case, it is impossible for the disease to limit the population growth. In between these two
extreme cases is a region where the disease persists.

For the model with switching on the population density of Section 3, if the population does not
become extinct because of excessive disease-induced death, then the disease remains endemic.
This result could be foreseen: we assume that the system switches between two well-studied
vector fields, with the upper vector field having no equilibrium per se. To show that the endemic
equilibrium attracts all bounded solutions, we use an extension of Dulac’s theorem for switching
vector fields developed in Appendix 1.

A different situation arises in the model of Section 4, with switching on the number of infectives.
An analysis of the phase plane, for the case when d < b < d + δ, shows that there are three major
configurations. In each of them, there are two equilibria where the population becomes extinct,
one that is always unstable, and one whose local stability depends on the sign of an R0-type
quantity. In two of the configurations, there also exists an endemic equilibrium. We show that
either this endemic equilibrium is locally asymptotically stable, or it is unstable and there is
a periodic orbit. In Zhou and Hethcote [15], periodic orbits are not present. There are several
major differences between the model presented here and that of Zhou and Hethcote [15], so
pinpointing one single cause for these oscillations is hard. However, it is likely that the single
most important difference between the models lies in the fact that in [15], the incidence function
is a non-decreasing function of the total population, whereas here it is a function of the infective
population. Note that the expression of SN suggests that oscillations occur when β2 and Î are
rather large. This means that in order to observe oscillations, the prevalence of the disease in
the population and the ‘cost’ of being treated outside the hospital must both be quite high. If, as
in Zhou and Hethcote [15], incidence depended on the total population, then prevalence cannot
reach such high levels as it does here.
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It is clear that the period of the oscillations obtained in Section 4 are unrealistic (e.g. 120 years
in the case of Figure 3). However, a more thorough exploration of the parameter space may reveal
areas where such behaviours occur with more realistic frequencies. The models we develop here
are toy models; SIS models are seldom used in real case studies, because of their simplicity.
More realistic SEIRS models would most likely exhibit the same type of behaviour as our models
here, if the same incidence functions were used, with perhaps more realistic oscillation periods.
Furthermore, the oscillations we observe seem quite robust to the type of incidence functions used,
provided the switching occurs as I passes through some threshold. For example, another way to
model the saturation of treatment resources of Section 4 would be to use an incidence of the form

F(S, I ) =

⎧⎪⎪⎨
⎪⎪⎩

β1
SI

N
if I ≤ Î ,

β1
SÎ

N
+ β2S(I − Î ) if I > Î ,

(22)

with Î > 0 given. Such an incidence function produces the same type of oscillations as
Equation (15).
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Appendix 1. A Dulac-type theorem

We give here an extension of Dulac’s Theorem that can be used to rule out periodic solutions when the vector field is
C1 everywhere except on a curve 
 on which it is non-differentiable. It was brought to our attention that this result is
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quite similar to a result of Wang [12]. However, the result here covers the more general case of the non-differentiability
occurring along a curve rather than along a straight line.

Let D be a simply connected open subset of R
2. Let 
 ⊂ D be a simple curve such that D \ 
 consists of two

components D1 and D2. We require the following:

(H1) For each ε > 0, there exist simple C1 curves 
jε in Dj , j = 1, 2, such that the C1 distance d(
1ε , 
2ε) is less
than ε.

A sufficient (but not necessary) condition for (H1) to be satisfied is that 
 be C2.
Consider the differential equation

x′ = g(x), (A1)

where x ∈ D, g is a C0 vector field given by

g =
{

g1 on D1,

g2 on D2,
(A2)

and gj is C1 on Dj , j = 1, 2. (Note that we are assuming g to be C1 everywhere except at 
, where it is not differentiable.)
We also assume the following:

(H2) Solutions to Equation (A1) are unique, and are transverse to 
 except possibly at a finite number of points.

Theorem 6 (A Dulac-type Theorem) Let α be a scalar function on D, bounded on compact subsets of D. If div(αg) has
constant sign on D1 ∪ D2, then there are no piecewise smooth, simple closed curves in D which are invariant under (A1).

Proof Suppose γ ⊂ D is a piecewise smooth, simple closed curve which is invariant under Equation (A1). The possibility
of γ being contained entirely in D1 or D2 is precluded by Dulac’s Theorem. Thus we may assume that γ intersects 
.
Let γj = γ ∩ Dj (see Figure A1).

By the Jordan Curve Theorem, there is a connected region U which is bounded by γ . Let Uj = U ∩ Dj . (We note that
U1 and U2 may not be connected.) Take ε > 0 small enough so that 
jε intersects each component of Uj .

Let Ujε be the maximal subset of Uj which is bounded by γj and 
jε and let Cjε be its boundary. Finally, let C
γ

jε and

C

jε be the parts of Cjε which coincide with γj and 
jε , respectively.

Then denoting g = (u, v) and x = (x, y), and using Green’s Theorem, we have∫ ∫
U1ε

div(αg) dx dy +
∫ ∫

U2ε

div(αg) dx dy =
∮

C1ε

(αu dy − αv dx) +
∮

C2ε

(αu dy − αv dx)

=
∫

C
γ
1ε

(αu dy − αv dx) +
∫

C

1ε

(αu dy − αv dx)

+
∫

C
γ
2ε

(αu dy − αv dx) +
∫

C

2ε

(αu dy − αv dx).

γ 2ε

γ 1ε

γ 1ε

2ε

Γ2ε

Γ2ε

Γ1ε

Γ

γ

1εΓ

~

γ (t)

U

Figure A1. Example of a situation covered by Theorem 6.
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Note that dx/dt = u and dy/dt = v on γ , it is clear that the integral over C
γ

jε has an integrand which is zero leaving

∫ ∫
U1ε

div(αg) dx dy +
∫ ∫

U2ε

div(αg) dx dy =
∫

C

1ε

(αu dy − αv dx) +
∫

C

2ε

(αu dy − αv dx). (A3)

Note that the integrations along C

1ε and C


2ε are well-defined as ε tends to zero, and are taken in opposite directions
in the sense that for ε = 0, they would involve integrating along the same segment of 
 but in opposite directions. Since
the C1 distance d(
1, 
2) < ε and α, u and v are bounded on the closure of U , it follows that as ε tends to zero, the
right-hand side of Equation (A3) tends to zero.

On the other hand, the left-hand side of Equation (A3) is bounded away from zero. To see this, we note that there is
an open set Ũ which is contained in U1ε ∪ U2ε for sufficiently small ε. Combining this with the fact that div(αg) has
constant sign on U1 ∪ U2 ⊇ U1ε ∪ U2ε implies that the left-hand side of Equation (A3) is bounded away from zero for
sufficiently small ε.

This gives a contradiction and so we see that a piecewise smooth, simple closed curve in D cannot be invariant under
Equation (A1). �

Appendix 2. A small lemma on eigenvalues

Lemma 1 Let

M =
(

α a

−b 0

)
, (A4)

where α, a, b are C1 functions of a parameter τ ∈ R. Suppose a(τ̄ ), b(τ̄ ) > 0 and α(τ̄ ) = 0. Then at τ = τ̄ , the matrix
M has a pair of purely imaginary eigenvalues λ1,2 that satisfy

d

dτ
�(λ1,2) = 1

2

dα

dτ
. (A5)

Proof The characteristic equation is

λ2 − αλ + ab = 0.

It follows that eigenvalues of M are given by λ1,2 = 1
2 (α ± √

), where  = α2 − 4ab. When τ = τ̄ , we obtain λ1,2 =√−ab which implies λ1,2 form a pair of purely imaginary eigenvalues, since ab > 0.
Since  is negative at τ̄ , it is negative on a neighbourhood of τ̄ , and so �(λ1,2) = α/2 in this neighbourhood. On

differentiating, we obtain Equation (A5). �
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