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SOME METHODOLOGICAL ASPECTS
INVOLVED IN THE STUDY BY THE

BIO.DIASPORA PROJECT OF THE SPREAD OF
INFECTIOUS DISEASES ALONG THE GLOBAL

AIR TRANSPORTATION NETWORK
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ABSTRACT. The Bio.Diaspora Project studies infectious
disease threats involving the rapid translocation of an infectious

agent across vast distances induced by the travel of infected

individuals using the global air transportation network. In this
paper, the basic methodology used in the project is described.

1 Introduction The SARS epidemic of 2003 was very important
in many aspects. Because of the severity of its symptoms, SARS was
relatively easy to detect. Because the number of people infected was not
too large, most cases were relatively well documented. The epidemic
showed some of the positive and negative aspects of control measures.
Although there were of course shortcomings, that it was contained in
such a relatively short time is a testament to the efficacy of some of the
control procedures that were put into effect.

But what is perhaps the most important teaching of the SARS epi-
demic are the potentially disastrous consequences of the globalization
and acceleration of travel. SARS was exemplary of the ability of an
emerging disease to spread very fast over large distances. The following
numbers summarize easily the importance of air travel on the spatio-
temporal spread of this pathogen: of the documented 137 SARS cases
that are known to have crossed state boundaries, 129 traveled by plane.

Of the initiatives that followed in the wake of the SARS epidemic, two
are of particular importance in the present paper. The Mathematics of
Information Technology and Complex Systems (MITACS—now Mprime,
Canada) put together a team of modellers and public health practition-
ers to work on mathematical models of infectious disease spread, which
greatly facilitated communications between modellers and public health
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officials in Canada. This team became the Centre for Disease Modelling,
hosted by York University. Another consequence was the creation of the
Bio.Diaspora Project at St Michael’s Hospital, in Toronto.

The Bio.Diaspora Project studies the risks of importation of infec-
tious agents to other health regions by means of the air transportation
network. To work towards developing an understanding of the network
and to be able to effectively help in public health decision processes, a set
of techniques were developed or adapted. The object of this paper is to
briefly present some of these techniques. Results are not presented here:
the interested reader can consult some publications of the Bio.Diaspora
Project such as [7–11].

2 The data The Bio.Diaspora Project focuses on air travel, al-
though it also documents “ground conditions” in order to assess risk. In
this paper, we only describe the data pertinent to air travel and human
population.

Both the OAG (Official Airline Guide) and IATA (International Air
Transport Association) data sets detailed below document movements
out of a (mostly) common list of airports. At the time of writing, a
total of 4,984 airports appeared at one time or another in one or both of
the databases. Of these, a core group of a little less than 3,500 airports
are active at any one time. Airports may become inactive for several
reasons, and the ones that are not active throughout the span of our
databases are typically very small airports or airstrips with infrequent
scheduled flights.

There exists two types of letter codes to identify airports. The IATA
(airport) code is a three letter identifier used for commercial purposes.
ICAO (International Civil Association Organization) airport codes com-
prise four letters and are used for navigation. As the data we use is com-
mercial data, we use IATA airport codes. For cities that comprises more
than one airport, IATA uses metacodes that pool together the IATA
codes for the airports in that city. For instance, London, UK, has IATA
code LON corresponding to London Heathrow (LHR), Gatwick (LGW),
Stansted (STN), Luton (LTN), City (LCY) and Biggin Hill (BQH) air-
ports.

Two databases are specific to airports: ACI (Airport Councils Inter-
national) and ICAO (International Civil Aviation Organization, a UN
agency). They are not detailed here, as their content is not used in the
work described in this paper.

Throughout this document, N represents the total number of airports
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in the database. We refer to an arbitrary airport either using an index
i = 1, . . . , N or the fictitious code XY Z.

The Official Airline Guide regroups over 1000 transporters. The
database details planned regular and charter flights for the coming year.
Information is relative to the companies, schedules, planned capacity
and flight duration, among others. As such, it establishes the potential
traffic for the coming year. This information is used mainly to study
the network architecture. The temporal resolution of this data is the
minute; the project has data for 2000-2010.

The International Air Transportation Association regroups 240 trans-
porters accounting for 84% of flights worldwide. The data details on a
monthly basis the trips taken including up to five intermediate stops.
Therefore, from this data, we deduce the effective traffic. The project
has data for 2007, 2008 and 2009.

For some applications, it is necessary to obtain information on the
population that uses a given airport (see later). In order to compute
this quantity, we use data from SEDAC and LandScan.

3 Characterization of the network Before discussing measures
to characterize the network and study its evolution, let us give some
notation for network related aspects.

3.1 Time dependence As indicated earlier, the data we have is tem-
poral, with a resolution of one minute for OAG and one month for IATA.
As a consequence, it is important to take time into account, all the more
so that travel volumes vary widely depending on the period of the year;
see, e.g., Figure 1.

So, in all considerations that follow, it should be understood that
graphs evolve with time and the measures computed also do.

3.2 Notation Connections between airports are represented by several
N × N -matrices. The connection (or adjacency) matrix C(t) = [cij(t)]
is a boolean matrix that has cij(t) = 1 if there is direct flight (in the
OAG database) or a trip (in the IATA database) from i to j at time t,
and cij(t) = 0 otherwise. We omit time dependence if this does not lead
to confusions. To distinguish between OAG and IATA data, we denote
CO and CI , respectively, the matrices deduced using the OAG and IATA
data. In this matrix as well as throughout the remainder of the text, we
use the notation cij for travel from i to j, rather than the notation cji
used in [2].

Corresponding to C are the matrices V of volumes, detailing, for any
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FIGURE 1: Number of trips each month originating in Winnipeg, Man-
itoba, Canada (YWG) and terminating in Cancun, Mexico (CUN) in
the years 2007 to 2009.

pair i, j = 1, . . . , N for which cij = 1, the volume vij of travel between
airports i and j. Note that the volume here can be either potential
seats information from the OAG database, with matrix denoted VO, or
effective trips information from the IATA database, with matrix denoted
VI .

Another type of matrix are the connection time matrices T = [tij ],
which give the weighted median flying time between any two airports
i and j. For the OAG data, the median flying time is computed as
follows. If cij = 1, then tij is median of the flight times between i and
j, weighted using the number of seats in the OAG database between i
and j. If cij = 0, then tij = 0.

Corresponding to these matrices, different digraphs describe move-
ment: GO(t) is the graph obtained from the OAG data and GI(t) is the
graph obtained from the IATA data.

3.3 General network information The digraph GO is evidently non-
planar and since GO is a subgraph of GI , the latter is also nonplanar. For
the purpose of network analysis, we generally consider the OAG digraph
GO, since it describes the network itself and not the way the network
is used. To simplify the analysis, the data is aggregated monthly: any
arc that is active some time during a given month is assumed active
the whole month. Several graph related measures are computed: den-
sity (ratio of arcs present in the digraph to arcs that would be present
if the digraph were completely connected); strong components are iso-
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lated. The following airport-related measures are computed: indegree,
outdegree, degree, betweenness centrality, closeness, k-cores, cut ver-
tices, shortest paths (geodesic –number of flights, in time, in great circle
distance) and excentricity.

4 Airport catchment areas For some aspects of the work, it is
necessary to have an estimate of the population that uses a given air-
port for its transportation needs, i.e., the population situated within
the so-called catchment area of each airport. Because the airports are
located throughout the world, it is unrealistic to gather this information
manually. In order to gather this information automatically, we use a
Dirichlet tessellation of the plane. This proceeds as follows; see, e.g.,
[3]. Let P be a finite set of points on a sphere, the sources. For each
pair of points P,Q ∈ P, define

HPQ =

{
X :
|X − P |
σ(P )

≤ |X −Q|
σ(Q)

}
where σ(P ) > 0, and

KPQ := HPQ ∩HQP =

{
X :
|X − P |
σ(P )

=
|X −Q|
σ(Q)

}
For each P ∈ P, let Rp =

⋂
Q6=P HPQ and R = {RP , P ∈ P}. Then

R(P) is the Dirichlet (or weighted Voronoi) tessellation of the sphere.
If the weight function σ(P ) = 1 for all P , then in the plane, the regions
are polygons and the result is often called a Voronoi diagram.

In the top part of Figure 2, the result of using a weight function
σ(P ) = 1 is shown for a region covering part of northeastern United
States, Ontario and Quebec. Limitations of this weighting function is
that it does not take into account the importance of the airports. Using
a weight equal to the volume of trips out of an airport overemphasizes
the roles of major airports, so we use Holling type 2 function of the form

σ(vi) = vmax(t)
vi(t)

vi(t) + vmed(t)
,

where vmax(t), vmed(t) and vi(t) are the volume out of the busiest airport,
median volume and volume out of the airport i under consideration,
respectively, from the IATA database. The tessellation is computed for
every month in the database, since the relative importance of airports
vary monthly.

Note that the results obtained using this method are not meant to
represent the exact location where people using the airports live.
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FIGURE 2: Regular Voronoi diagram and weighted Voronoi diagram
obtained by considering (top) a weight function σ(P ) = 1 and (bottom)
a Holling type 2 weight function as explained in the text.
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5 Stochastic modelling Because of the nature of the data, we
consider cities with airports as the units of analysis. The population of
such a city consists of the population in the catchment area of the airport
serving that city. We describe the model in three steps: 1) the epidemi-
ology in cities, 2) the description of transport and 3) the integration of
both.

5.1 Description of the epidemiology in cities The model in each
city i = 1, . . . , N is a classical SEIR model, which has individuals in
one of the epidemiological states: susceptible, exposed, infectious and
recovered, with numbers at time t in airport i denoted Si(t), Ei(t), Ii(t)
and Ri(t), respectively. When this does not lead to ambiguities, the
dependence of the state variables on t is not indicated.

Prior to an epidemic event, susceptibles represent almost all the pop-
ulation. They are potentially affected by the disease, if subject to
an infecting contact. Such contacts occur at the rate SiIi/Pi, where
Pi = Si+Ei+ Ii+Ri is the population in the airport, and result in new
infections at the rate βiSiIi/Pi. βi is the disease transmission coefficient
in airport i. This type of incidence is called proportional incidence. The
disease transmission coefficient represents the probability that infection
occurs, given contact. We allow it to vary from location to location,
since factors such as hygiene or social distance play a role in the trans-
mission of the disease. Exposed (or latent) individuals are susceptibles
who have become latently infected because of an infecting contact with
an infectious individual. It is assumed that patients in this state do
not transmit the disease. The time spent incubating is exponentially
distributed with mean 1/εi time units. Infectious individuals actively
spread the infection through contacts with susceptible individuals. The
remain infectious for an average 1/γi time units, with the sojourn time
in the infectious class exponentially distributed. Finally, recovered indi-
viduals are individuals who have ceased to be infectious and are immune
to reinfection (permanently in the case of an SEIR model, temporarily
in the case of an SEIRS model).

Because we are interested in the course of the epidemic over a short
time interval of at most a few weeks and that our focus is on the ap-
pearance of new cases in airports rather than the global course of the
epidemic, we make a certain number of simplifying assumptions. Note
that a nonsimplified model is also used, but for the simplicity of the
exposition here, we present the simplified version.

First, we suppose that the total population in each airport is large and
roughly constant, and that Pi ≈ Si, that is, the quantity Ei + Ii + Ri



132 J. ARINO ET AL.

is negligible compared to Pi (or Si). This implies that proportional
incidence takes the form βiIi. Thus, the incidence function is linear;
note that this may not be true for other diseases or situations. It is
also not true if the disease were considered on a longer time period,
since in this case, Ei + Ii + Ri might increase to such a point that
Si no longer is approximately equal to Pi. However, this assumption
greatly simplifies the problem, since the system becomes independent
of the population in each airport/city. Finally, we interpret the class of
recovered individuals as in the first meaning it was given [6], in terms
of removed individuals. Individuals are removed from the I class either
by recovery or by death. Individuals in the recovered class play no role
in the short term transmission of the disease, and thus we neglect this
class from now on.

5.2 Transport model in the absence of infection The transport
operator involves the proportion of individuals moving from city to city;
denoting pij(t) the proportion of individuals in city i that travel to city
j, we have

pij(t) =
vij(t)∑N
j=1 vij(t)

,

where vij(t) is the volume of seats (OAG) or trips (IATA) from city i to
city j in the database at time t. The quantity pij(t) must then be related
to the likelihood that an individual in a city does travel. In this simple
model, it is assumed that all individuals in the city are equally likely to
travel, and therefore, the rate at which individuals travel is equal to the
ratio of the volume of travel per unit time with the total population in
the city; i.e., if Pi(t) is the population in city i, then the rate mij(t) of
movement of individuals from city i to city j is given by

mij(t) =

∑N
j=1 vij(t)

Pi(t)

vij(t)∑N
j=1 vij(t)

=
vij(t)

Pi(t)
.

This must in turn be related to the proportion of individuals in the
various states. So, finally, a simple model for the rate of movement of
individuals in epidemiological state X = {S,E, I,R} from city i to city
j is given by

mX
ij (t)Xi(t) =

Xi(t)

Pi(t)

vij(t)

Pi(t)
=
vij(t)

Pi(t)2
Xi(t),

where mX
ii (t) = 0.
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5.3 General model of infection-transport The stochastic process
of infection-transport can be derived in several ways, in particular, using
infinitesimal probabilities. However, we show here only the most useful
one for our purpose: the derivation in terms of times to transitions;
see, e.g., [1]. Numerical simulations are indeed run using the Gillespie
algorithm [5].

Suppose that the system is, at time t, in the state (e, i) = (e1, i1, . . . ,
eN , iN ). Then compute

(1) ξt :=

N∑
j=1

(
εjej +

(
βj
sj
Pj

+ γj

)
ij

)
+

N∑
j,k=1, k 6=j

(
mE
jkej +mI

jkij
)
,

the weight of possible events.
The next event then occurs at time t+ τt, where τt is one realization

of a random variable with exponential distribution with parameter ξt.
At time t+ τt, the transition (e, i)→ (e′, i′) occurs, where the new state
(e′, i′) corresponds to the following events. Note that only the variables
that are modified are indicated, for simplicity.

1. A susceptible is infected in city j, i.e, (e′, i′) = (. . . , ej + 1, . . .). This
occurs with probability

p(e,i)→(e′,i′) = βjij/ξt.

2. An exposed individual in city j develops the disease (end of incuba-
tion period), i.e., (e′, i′) = (. . . , ej − 1, ij + 1, . . .). This occurs with
probability

p(e,i)→(e′,i′) = εjej/ξt.

3. An infected individual in city j recovers, i.e., (e′, i′) = (. . . , ij−1, rj+
1, . . .). Such an event occurs with probability

p(e,i)→(e′,i′) = γjij/ξt.

4. An individual currently in the incubation period travels from city j
to city k (with k 6= j), i.e., (e′, i′) = (. . . , ej − 1, . . . , ek + 1, . . .), with
probability

p(e,i)→(e′,i′) = mE
jkej/ξt.

5. An infectious individual in city j travels to city k (with k 6= j), i.e.,
(e′, i′) = (. . . , ij − 1, . . . , ik + 1, . . .); this occurs with probability

p(e,i)→(e′,i′) = mI
jkij/ξt.

Note that this implies that the total population is infinite.
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5.4 Expected values Because the model is linear, the expected values
in the model, 〈Ej〉 := E(Ej(t)) and 〈Ij〉 := E(Ij(t)), verify for all j =
1, . . . , N , the deterministic model

d

dt
〈Ej〉 = βj〈Ij〉 − εj〈Ej〉+

N∑
k=1

mE
kj〈Ek〉(2a)

d

dt
〈Ij〉 = εj〈Ej〉 − γj〈Ij〉+ +

N∑
k=1

mI
kj〈Ik〉,(2b)

where mX
kk = −

∑N
`=1, 6̀=km

X
ik for X = {E, I}. Generically, initial con-

ditions are chosen with
∑N
i=1(Ei + Ii) > 1, i.e., there is initially at least

one individual who is exposed or infectious in the system of airports.

The behaviour of this type of system is well understood, in particular
in the linear case here. The basic reproduction number R0 can be com-
puted using the method in [2]. In the case of this linear system, R0 < 1
implies that solutions go to zero, while R0 > 1 implies that solutions
tend to infinity (which is consistent with the stochastic system being
one with infinite population).

6 Numerical simulations Travel rates are estimated using the
data from IATA on trips. The population in the catchment area of each
airport is estimated using the Dirichlet tessellation method.

For disease related parameters, values of the duration of the different
stages are known from the literature for many diseases. In the case of an
outbreak of a disease for specific parameters are not known, extensive
simulations are carried out using parameters in typical ranges.

Note that because of the short time frame within which it operates,
timing is essential in the present model. As a consequence, it is impor-
tant to be careful when choosing values for the parameters 1/εi and 1/γi
that represent the mean duration of stages. Suppose for example that
we observe a disease in its initial stages of spread and conclude that the
average incubation time is found to be on average 7 days. Inherent to
the formulation of the model is that the time spent in the exposed class
Ei for a given individual is an exponentially distributed random vari-
able with mean 1/εi. Considering 1/εi = 7 days implies that in a cohort
of individuals infected on a given day, almost 25% are still incubating
10 days later, and more than 5% are still incubating after 20 days. So
we consider the converse problem. We consider the data on incubation
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periods, and determine a 95% “confidence interval” of time spent incu-
bating. Say that, for example, 95% of individuals have become infective
after 10 days. Then we find θ, the mean of the exponential distribution,

by solving for θ the equation
∫ 10

0
e−s/θ/θ ds = 0.95, giving θ ' 3.34.

Note that this has the undesired consequence of a slight speed up of
processes.

Estimating β is probably one of the hardest tasks in epidemiological
modelling, and the value we use is deduced from running simulations
repeatedly and observing realistic spread times. In some simulations, we
have also used βi as a parameter to identify. Also useful in determining
β is (2): early on in an epidemic, a lot of work is conducted to estimate
the value of R0 using various methods. Using this value, the values
estimated for the rates of movement and epidemiological parameters,
one can estimate values of β from the expression for R0 deduced from
(2).

Numerical simulations are then carried out using high performance
computing resources (HPC) owned by the project as well as HPC re-
sources of Compute Canada. A large number of independent simula-
tions are performed and a number of characteristics of these simulations
are computed: number of realizations where the disease becomes ex-
tinct, number of realizations where a given city is “hit,” i.e., imports
an infected case, number of realizations with successful invasion, i.e.,
where an imported case infects a local individual, etc. Sample results
are shown in Figure 3.

7 Conclusions Here, we presented the basic methodological com-
ponents of the Bio.Diaspora Project. Many extensions of this framework
were considered or are under consideration. The model presented here
is one where the population is unbounded. Because the time to the
next event in the stochastic simulation is exponentially distributed, an
unbounded situation quickly leads to a decrease of the time step to an
unreasonably small size since the weight of events becomes increasingly
large. The first method used to circumvent this problem is to use the
so-called τ -leap method [4], which allows to consider “packets of events.”
The newer implementations of our stochastic models, though, use finite
populations: the simplifications explained here are not used and the
initial susceptible population in the catchment area of airports is the
one found using the Dirichlet tessellation method. Standard incidence is
used, so that the behaviour of means does not simplify as it does here.
Current work in the Bio.Diaspora Project focuses on linking the frame-
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Seed city: MEX (Mexico City) - 50000 simulations - Avg hit time 7.726723
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6

FIGURE 3: Sample result of the numerical simulations. Here, 50,000
realizations were run with a seed in Mexico City (MEX). With the pa-
rameters used, the average time when cities were hit conditional on
being hit was 7.7 days after the start of simulations. The colour of a
dot indicates the average hit time for a given city relative to the overall
average hit time, while the size of the dot indicates the number of hits.

work with real-time epidemic surveillance, in particular in the context
of a co-occurrence of a major epidemic event and a mass-gathering [9].
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