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We formulate an SIS epidemic model on two patches. In each patch, media coverage about the cases pres-
ent in the local population leads individuals to limit the number of contacts they have with others, induc-
ing a reduction in the rate of transmission of the infection. A global qualitative analysis is carried out,
showing that the typical threshold behavior holds, with solutions either tending to an equilibrium with-
out disease, or the system being persistent and solutions converging to an endemic equilibrium. Numer-
ical analysis is employed to gain insight in both the analytically tractable and intractable cases; these
simulations indicate that media coverage can reduce the burden of the epidemic and shorten the duration
of the disease outbreak.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The severe acute respiratory syndrome (SARS), which spread
around the globe in 2003, was one of the first novel infectious dis-
eases to emerge in the twenty-first century. It was not, as far as the
magnitude of the event, a major epidemic: 8096 and 774 people
are known to have been infected and killed by SARS, respectively.
However, the amount of media coverage garnered by this event
was colossal. For example, in Britain, a study found that 3 tabloids
and 2 broadsheets ran a total of 1153 news stories mentioning
SARS from March to July 2003 [27]; the New Zealand Herald ran
261 articles from March 13 to June 11, 2003 [28]. In fact, media
coverage of health related events has become so important that
several surveillance systems now rely on active trolling of Internet
news media and blogs to detect emerging disease threats [8,19].

The effect of media in infectious disease spread has long been
under investigation, for example in the case of HIV/AIDS [17,24].
Media coverage of an infectious outbreak can be seen as following
two major routes. The first route is when the media report directly
to the public on facts that they (the media) observe; the second has
public health authorities using mass media or the Internet to com-
municate about the outbreak [1]. Because information is widely
available and that it is difficult for public health authorities to ar-
ll rights reserved.
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mh.ca (K. Khan).
range a permanent flow of information, it is frequent that during
a crisis, the media try to create ‘value’ from very sparse informa-
tion, thus following the first route rather than the second. This
can be detrimental. For example, a study conducted after the SARS
outbreak shows that students from Ontario, Canada were aware
that the risk of becoming infected by the SARS coronavirus was
low, but they also predominantly had misconceptions about the
virus [5]. It is therefore important for public health authorities to
communicate accurate and timely information to the public about
infectious disease outbreaks. Communication is also extremely
important in determining vaccine uptake [13,21,22].

Because it gives a sense about the risk level and the relative
need for precautions in risk areas, media coverage about an epi-
demic can encourage the public to take precautionary measures
against the disease such as wearing masks, avoiding public places,
avoiding travel when sick, frequent hand washing, etc. [6]. This in
turn reduces the frequency of potentially infecting contacts and
helps lower the probability of disease transmission among the
well-informed population. This is extremely important in the early
stages of an epidemic, when pharmaceutical interventions are not
often possible because treatment or vaccination options have not
yet been developed.

In view of the discussion above, it is not surprising that a com-
munication aspect was included in the pandemic influenza plans of
many countries. At the international level, the WHO guidance doc-
ument [23] breaks down the actions to be taken when in Influenza
Phases 5–6 into five categories: Planning and coordination, Situation
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monitoring and assessment, Reducing the spread of disease, Continuity
of health care and provision and Communications. In the Reducing the
spread of disease category, many actions to be taken at the national
level require the use of media. More significantly, the Communica-
tions category discusses actions to circulate information between
national public health authorities but also with the public. The
WHO must ‘Update national authorities, other partners and stake-
holders, and the public on global situation, trends, epidemiological
characteristics, and recommended measures’, while member na-
tions must ‘Regularly update the public on what is known and un-
known about the pandemic disease, including transmission
patterns, clinical severity, treatment, and prophylaxis options’,
‘Provide regular communications to address societal concerns,
such as the disruption to travel, border closures, schools, or the
economy or society in general’ and ‘Regularly update the public
on sources of emergency medical care, resources for dealing with
urgent non-pandemic health care needs, and resources for self-care
of medical conditions’.

The use of media in the context of an infectious disease out-
break is therefore well accepted. However, the precise functioning
of media coverage of epidemics is not well understood. Mathemat-
ical modeling can therefore play an important role in helping
understand the potential effects of media coverage on infectious
disease transmission.

Several modeling articles address this problem. Xiao and Ruan
[29] formulated an SIR (susceptible, infectious and recovered)
model and proposed a non-linear incidence rate

gðIÞS ¼ kSI

1þ aI2 ; ð1:1Þ

to describe the effect of mass media coverage. They showed that in
this case, media coverage did not have any obvious effect on disease
dynamics. Liu et al. [18] emphasized media impact in an EIH model,
where H denotes hospitalized individuals, and assumed a transmis-
sion coefficient of the form

b0 ¼ be�a1E�a2 I�a3H: ð1:2Þ

Possible multiple outbreaks and even sustained periodic oscillations
of the infection were found. Zhu et al. [10] used a similar function as
(1.2) and studied an SIR model. Numerical simulations in [10]
suggested that the media impact was stronger when the basic
reproduction number R0 > 1, and the model exhibited multiple en-
demic equilibria. Cui et al. [11] presented an SIS epidemic model
incorporating media coverage and held the contact rate to be a
function of the number of infectives in the population of the form

cðIÞ ¼ c1 � c2f ðIÞ: ð1:3Þ

They observed a classic threshold-type behavior, with the disease
becoming extinct when R0 < 1 and going to a globally asymptoti-
cally stable equilibrium when R0 > 1. They concluded that media
coverage was critical in disease eradication.

All the mathematical models referenced above assume that
space is homogeneous and investigations are confined to a popula-
tion. However, infectious diseases spread geographically over time.
For example, West Nile virus arrived in New York in the late 1990s
and later on spread all the way to the west coast of North America.
People also travel more frequently, which no doubt speeds up dis-
ease transmission through transportation. Two illustrations are
SARS spreading from China to the rest of the world in 2002–2003
and Swine Flu (pH1N1) from Mexico to other countries in the
world in 2009 [16]. Therefore, incorporating spatial heterogeneity
in epidemic models is important (see, e.g. [2–4] and the references
therein). The question we ask here is the following: does the addi-
tion of space perturb the results previously obtained? In the case of
classical epidemic models, it is generally true that the addition of
space by means of linearly interconnected patches does not lead
to a change of behavior. However, restricting contacts when the
incidence rises introduces effects that could lead to differences
with the classical cases. We show here that such is not the case
and that, at least in the model considered, which is a modification
of [11], the addition of space is inconsequential as far as the
dynamics is concerned.
2. Model formulation

We consider two patches connected by population movement.
The population in each patch is divided into two compartments,
depending on the epidemiological status of individuals: suscepti-
ble to ðSÞ or infectious with ðIÞ the disease. Infectious individuals
become susceptible again as soon as they recover from the disease,
with no immune period. Each patch is thus equipped with an SIS
epidemic model, where the only difference with classic SIS models
on several patches [2] lies in the nature of the incidence function
used.

In the absence of media effect, we assume a classic standard (or
proportional) incidence, with the rate at which new infections
arise in patch i given by biSiIi=Ni; bi being the infection coefficient
in patch i. When media coverage is present, social distancing
mechanisms come into effect. The reporting by media is assumed
to be an increasing function of the number of infectious cases pres-
ent in a patch, and as a consequence, the contact rate between sus-
ceptible and infectious individuals there is a decreasing function of
the number of infectious cases present. We take similar non-linear
functions as in [11] and denote the effective contact rate as

biðIiÞ ¼ ai � bifiðIiÞ; ð2:1Þ

where ai is the maximal effective contact rate between the suscep-
tibles and infectives in patch i and bi is the maximal reduced effec-
tive contact rate due to mass media alert in the presence of
infectives. We here assume that ai P bi and

fið0Þ ¼ 0; lim
Ii!1

fiðIiÞ ¼ 1; 0 < f 0i ðIiÞ 6 1; f 00i ðIiÞ < 0: ð2:2Þ

The basic SIS metapopulation system under consideration is then

dS1

dt
¼ K1 � b1ðI1Þ

S1I1

S1 þ I1
þ c1I1 � d1S1 �m12S1 þm21S2; ð2:3aÞ

dI1

dt
¼ b1ðI1Þ

S1I1

S1 þ I1
� ðc1 þ d1ÞI1 �m12I1 þm21I2; ð2:3bÞ

dS2

dt
¼ K2 � b2ðI2Þ

S2I2

S2 þ I2
þ c2I2 � d2S2 þm12S1 �m21S2; ð2:3cÞ

dI2

dt
¼ b2ðI2Þ

S2I2

S2 þ I2
� ðc2 þ d2ÞI2 þm12I1 �m21I2; ð2:3dÞ

under initial conditions

S1ð0Þ þ S2ð0Þ > 0; I1ð0Þ; I2ð0ÞP 0; I1ð0Þ þ I2ð0Þ > 0: ð2:4Þ

In system (2.3), Ki is the (constant) recruitment into patch i ¼ 1;2.
The parameter mij ði; j ¼ 1;2; i – jÞ is the travel rate from patch i to
patch j; here we assume that the travel rates for susceptible and
infective individuals are the same, i.e., the disease is not severe en-
ough to impede travel. ci is the individuals’ rate of recovery due to
natural causes or treatment, and di is the natural death rate. Be-
cause most diseases that fit within the framework of an SIS model
are benign, we ignore disease-caused death. The population in
patch i is denoted by Ni ¼ Si þ Ii and the total population is
N ¼ N1 þ N2.
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3. Mathematical analysis

3.1. Basic results

Model (2.3) is well posed, as established by the following
theorem.

Theorem 3.1. Consider system (2.3) with initial conditions (2.4). The
positive orthant R4

þ is invariant under the flow of (2.3), with
Si ði ¼ 1;2Þ remaining positive. The total population within each
patch converges to a steady state as t !1 and solutions are bounded.
Proof. Under initial conditions (2.4), if for instance I1 becomes
zero at some time t1 before I2 becomes zero, then from (2.3b),
dI1=dt ¼ m21I2 P 0 at t1, which shows that I1 is a non-decreasing
function of t at t1. Hence, I1 stays non-negative. Similarly, so does
I2. Suppose now that at some time t2; S1ðt2Þ ¼ 0 before S2 goes to
zero. Then at t ¼ t2, from (2.3), dS1=dt ¼ K1 þm21S2 þ c1I1 > 0,
which implies that dS1=dt > 0 when S1 is positive and small. Thus,
there is no time t2 such that S1ðt2Þ ¼ 0. Therefore, S1 stays positive
for t > 0 when the initial condition S1ð0Þ > 0. By a similar argu-
ment, we obtain the positivity of S2.

From system (2.3), the differential equations governing the
evolution of N1 and N2 are

dN1

dt
¼ K1 � ðm12 þ d1ÞN1 þm21N2; ð3:1aÞ

dN2

dt
¼ K2 þm12N1 � ðm21 þ d2ÞN2: ð3:1bÞ

A simple calculation shows that the positive equilibrium ðN�1;N
�
2Þ is

the unique equilibrium of (3.1) and is a stable node, with

N�1 ¼
K1ðd2 þm21Þ þK2m21

m12d2 þm21d1 þ d1d2
; ð3:2aÞ

N�2 ¼
K2ðd1 þm12Þ þK1m12

m12d2 þm21d1 þ d1d2
: ð3:2bÞ

Since the positive orthant R4
þ is invariant under (2.3) and that the

total population is bounded, the individual components are also
bounded. h
3.2. Local properties of the disease-free equilibrium

Setting the right-hand side of system (2.3) to zero, there always
exists the disease-free equilibrium E0 :¼ ðI10; I20; S10; S20Þ ¼
ð0;0;N�1;N

�
2Þ. Following the next generation matrix method

[12,26] for deterministic compartmental models, we calculate the
basic reproduction number R0 at E0. Using the same notations as
in [26], we write

F ¼
ða1 � b1f1ðI1ÞÞ S1 I1

ðS1þI1Þ

ða2 � b2f2ðI2ÞÞ S2 I2
ðS2þI2Þ

0@ 1A; V ¼ ðm12 þ c1 þ d1ÞI1 �m21I2

�m12I1 þ ðm21 þ c2 þ d2ÞI2

� �
:

Taking the Fréchet derivatives of F and V and evaluating them at
the disease free equilibrium, we find

F ¼
a1 0
0 a2

� �
; V ¼

m12 þ c1 þ d1 �m21

�m12 m21 þ c2 þ d2

� �
;

where F is non-negative and V is a non-singular M-matrix. Denote
D :¼ ðm12 þ c1 þ d1Þðm21 þ c2 þ d2Þ �m12m21. Then

FV�1 ¼ 1
D

a1ðm21 þ c2 þ d2Þ a1m21

a2m12 a2ðm12 þ c1 þ d1Þ

� �
:

Therefore, FV�1 is non-negative and

R0 :¼ qðFV�1Þ;

where qðXÞ is the spectral radius of matrix X. Note that media cov-
erage does not play a role in the basic reproduction number since
bið0Þ ¼ ai. From [26, Theorem 2], we then have the following.

Lemma 3.1. The disease-free equilibrium E0 of (2.3) is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1.
3.3. Global dynamics

In fact, the threshold behavior established in Lemma 3.1 is
sharp and distinguishes between the global stability of the
disease-free equilibrium and of a unique endemic equilibrium. To
show this, we start by considering the global stability of the dis-
ease-free equilibrium when R0 < 1.

Theorem 3.2. The disease-free equilibrium E0 of (2.3) is globally
asymptotically stable if R0 < 1.
Proof. Since for i ¼ 1;2; Si=ðSi þ IiÞ 6 1 and biðIiÞ 6 ai, (2.3b) and
(2.3d) satisfy

dI1

dt
6 ½a1 � ðm12 þ c1 þ d1Þ�I1 þm21I2; ð3:3aÞ

dI2

dt
6 m12I1 þ ½a2 � ðm21 þ c2 þ d2Þ�I2: ð3:3bÞ

Define an auxiliary linear system using the right hand side of (3.3):

dI1

dt
¼ ½a1 � ðm12 þ c1 þ d1Þ�I1 þm21I2;

dI2

dt
¼ m12I1 þ ½a2 � ðm21 þ c2 þ d2Þ�I2;

or, in other words,

d
dt

I1

I2

 !
¼ ðF � VÞ I1

I2
:

 !
ð3:4Þ

We have R0 < 1() rðF � VÞ < 0, where rðXÞ is the stability mod-
ulus (or spectral abscissa) of matrix X (see the proof of [26, Theorem
2]). So, when R0 < 1, both eigenvalues of F � V are with negative
real parts. Thus all non-negative solutions of (3.4) are such that
limt!1Ii ¼ 0; i ¼ 1;2. By a standard comparison principle [25, The-
orem B.1] and the non-negativity of Ii, we conclude that when
R0 < 1, all non-negative solutions of (2.3) satisfy limt!1Ii ¼
0; i ¼ 1;2.

Since Ii tends to zero as t !1, (2.3) is an asymptotically
autonomous system [9, Theorem 2.5] with limit affine system

dS1

dt
¼ K1 � ðm12 þ d1ÞS1 þm21S2; ð3:5aÞ

dS2

dt
¼ K2 þm12S1 � ðm21 þ d2ÞS2: ð3:5bÞ

It is known from (3.1) that the positive equilibrium ðN�1;N
�
2Þ of (3.5)

is (globally) asymptotically stable. The proof is complete. h

Following the proof of Theorem 3.2, when R0 < 1, there does
not exist any endemic equilibrium. We now turn to the case where
R0 > 1. We first establish the uniform persistence for (2.3) when
R0 > 1, by applying the following result of Zhao [30].

Lemma 3.2 [30]. Let /t : X ! X be a semiflow and X0 � X an open
set. Define @X0 ¼ X n X0, and M@ ¼ fx 2 @X0 : /tx 2 @X0; t P 0g.
Assume that
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ðC1Þ /tX0 � X0 and /t has a global attractor A;
ðC2Þ there exists a finite sequence M¼ fM1; . . . ;Mkg of disjoint,

compact, and isolated invariant sets in @X0 such that

(a) XðM@Þ :¼ [x2M@

xðxÞ � [k
i¼1Mi;

(b) no subset of M forms a cycle in @X0;
(c) Mi is isolated in X;
(d) WsðMiÞ \ X0 ¼ ;, where WsðMiÞ ¼ fx 2 X0 : xðxÞ � Mig,

for each 1 6 i 6 k.
Then / is uniformly persistent with respect to ðX ; @X Þ, i.e., there
t 0 0

exists g > 0, such that lim inf t!þ1dð/tx; @X0ÞP g for x 2 X0.
Theorem 3.3. If R0 > 1, then system (2.3) is uniformly persistent,
namely, there exists g > 0, such that lim inf

t!1
fSiðtÞ; IiðtÞgP g for initial

conditions Sið0Þ; Iið0Þ > 0 ði ¼ 1;2Þ.
Proof. Choose X ¼ R4
þ; X0 ¼ fðI1; I2; S1; S2Þ 2 X; I1 þ I2 > 0g, and

@X0 ¼ X n X0 ¼ fðI1; I2; S1; S2Þ 2 X; I1 ¼ I2 ¼ 0g: Let /t be the semi-
flow induced by the solutions of system (2.3). We have proved in
Theorem 3.1 that /tX0 � X0 and /t is ultimately bounded in X0;
so there always exists a global attractor for /t . It is obvious that
E0 is the unique boundary equilibrium on @X0, which implies that
E0 is globally stable on @X0. Moreover, ðS1; S2Þ converges to
ðN�1;N

�
2Þ on @X0. Let M1 ¼ fE0g and M¼ fM1g. Then [x2M@

xðxÞ ¼
M1 and no subset of M forms a cycle in @X0. If R0 > 1, then E0 is
unstable in X0. Therefore, conditions (c) and (d) are satisfied and
the proof is complete. h

We have thus shown that if R0 > 1 then the disease is endemic.
We now use another result of Zhao [30] to show that endemicity is
in fact at an equilibrium level.

Lemma 3.3 [30]. Let /t : X ! X; t P 0, be an autonomous semiflow
with /tX0 � X0 for all t P 0. Assume that

(1) /t : X ! X is point dissipative;
(2) /t is compact for each t > 0; or alternatively, /t is an a-con-

traction with its contracting function kðtÞ 2 ½0;1Þ; 8t > 0, and
cþðUÞ is strongly bounded in X0 if X0 is strongly bounded in X0;

(3) /t is uniformly persistent with respect to ðX0; @X0Þ.

Then there exists a global attractor A0 for /t in X0 that attracts
strongly bounded sets in X0, and /t has a stationary coexistence state
x0 in A0, i:e:; x0 2 X0 and /tx0 ¼ x0 for all t P 0.

A continuous mapping f : X ! X is point dissipative if there is a
bounded set B0 in X such that B0 attracts each point in X. Thus
the semiflow /t we choose above is point dissipative, all the solu-
tions are ultimately bounded in X0, which also implies the satisfac-
tion of condition (2) in Lemma 3.3. Therefore, we have the
following result.

Theorem 3.4. If R0 > 1, then (2.3) has at least one endemic
equilibrium.

Next, we consider the uniqueness of the endemic equilibrium.
Note that system (2.3) can be rewritten as follows.

dI1

dt
¼ ða1 � b1f1ðI1ÞÞ

ðN1 � I1ÞI1

N1
þm21I2 �m12I1 � ðc1 þ d1ÞI1;

ð3:6aÞ

dN1

dt
¼ K1 � ðm12 þ d1ÞN1 þm21N2; ð3:6bÞ

dI2

dt
¼ ða2 � b2f2ðI2ÞÞ

ðN2 � I2ÞI2

N2
�m21I2 þm12I1 � ðc2 þ d2ÞI2;

ð3:6cÞ
dN2

dt
¼ K2 þm12N1 � ðm21 þ d2ÞN2; ð3:6dÞ

For subsystem (3.6b) and (3.6d), the unique positive equilibrium
ðN�1;N

�
2Þ is asymptotically stable, from the discussion in the proof

of Theorem 3.1. Substituting N�i ði ¼ 1;2Þ into the asymptotically
autonomous planar system (3.6a) and (3.6c) gives the limit system

dI1

dt
¼ ða1 � b1f1ðI1ÞÞ

ðN�1 � I1ÞI1

N�1
þm21I2

�m12I1 � ðc1 þ d1ÞI1 ¼: PðI1; I2Þ; ð3:7aÞ

dI2

dt
¼ ða2 � b2f2ðI2ÞÞ

ðN�2 � I2ÞI2

N�2
�m21I2 þm12I1

� ðc2 þ d2ÞI2 ¼: QðI1; I2Þ: ð3:7bÞ

In the limit system (3.7), we have I1 < N�1 and I2 < N�2. Indeed, from
Theorem 3.1, for i ¼ 1;2 we have limt!1SiðtÞ þ IiðtÞ ¼ N�i and
SiðtÞ > 0 for all t > 0; therefore, there exists s P 0 such that
IiðtÞ < N�i for all t P s and this is true in particular for (3.7).Theo-
rem 3.5 If R0 > 1, (3.6) has a unique endemic equilibrium
E�ðI�1; I

�
2;N

�
1;N

�
2Þ.
Proof. Suppose E�ðI�1; I
�
2Þ is the endemic equilibrium of (3.7). Then

I�1; I�2 are the positive solutions of the following equations:

I2 ¼
1

m21
ðc1 þ d1 þm12Þ � ða1 � b1f1ðI1ÞÞ

N�1 � I1

N�1

� �
I1 ¼: g1ðI1Þ;

ð3:8aÞ

I1 ¼
1

m12
ðc2 þ d2 þm21Þ � ða2 � b2f2ðI2ÞÞ

N�2 � I2

N�2

� �
I2 ¼: g2ðI2Þ:

ð3:8bÞ

Denote

/1ðI1Þ :¼ ðc1 þ d1 þm12Þ � ða1 � b1f1ðI1ÞÞ
N�1 � I1

N�1
; ð3:9aÞ

/2ðI2Þ :¼ ðc2 þ d2 þm21Þ � ða2 � b2f2ðI2ÞÞ
N�2 � I2

N�2
: ð3:9bÞ

The derivatives of /1ðI1Þ and /2ðI2Þ with respect to I1 and I2 are:

d/1ðI1Þ
dI1

¼ b1f 01ðI1Þ
N�1 � I1

N�1
þ a1 � b1f1ðI1Þ

N�1
> 0; ð3:10aÞ

d/2ðI2Þ
dI2

¼ b2f 02ðI1Þ
N�2 � I2

N�2
þ a2 � b2f2ðI2Þ

N�2
> 0; ð3:10bÞ

since I1 < N�1 and I2 < N�2 in system (3.7).
Differentiating g1ðI1Þ and g2ðI2Þ with respect to I1 and I2,

respectively, gives

dg1ðI1Þ
dI1

¼ 1
m21

b1ðN�1 � I1Þðf1 þ I1f 01Þ
N�1

þ a1I1 þ I1ða1 � b1f1Þ
N�1

�
þ c1 þ d1 þm12 � a1� ¼

1
m21

d/1ðI1Þ
dI1

I1 þ /1ðI1Þ
� �

;

dg2ðI2Þ
dI2

¼ 1
m12

b2ðN�2 � I2Þðf2 þ I2f 02Þ
N�2

þ a2I2 þ I2ða2 � b2f2Þ
N�2

�
þ c2 þ d2 þm21 � a2� ¼

1
m12

d/2ðI2Þ
dI2

I2 þ /2ðI2Þ
� �

:

Assume that system (3.7) has multiple endemic equilibria when
R0 > 1. Suppose that E� ¼ I�1; I

�
2

� �
is the one with the smallest I1

component, namely, if there is another equilibrium, say,



Table 1
Parameter values used in simulations.

Parameter Value or Unit Interpretation
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bE� ¼ bI�1;bI�2	 

, then I�1 6 bI�1. It follows from (3.9) that /1 I�1

� �
;

/2 I�2
� �

> 0. Moreover, /1ðI1Þ > 0 and dg1ðI1Þ
dI1

> 0, if I�1 6 I1 6 N�1. Then

there is no such equilibrium as bI�1;bI�2	 

, such that bI�1 > I�1 andbI�2 < I�2, namely, if bI�1 > I�1, then bI�2 > I�2. Therefore, /2ðI2Þ > 0 and

dg2ðI2Þ
dI2

> 0, if I�2 6 I2 6 N�2. Thus, the following inequality holds.

dg1ðI1Þ
dI1

dg2ðI2Þ
dI2

¼ 1
m21

d/1ðI1Þ
dI1

I1 þ /1ðI1Þ
� �

1
m12

� d/2ðI2Þ
dI2

I2 þ /2ðI2Þ
� �

>
1

m12m21
/1ðI1Þ/2ðI2Þ

P
1

m12m21
/1 I�1
� �

/2 I�2
� �

: ð3:11Þ

From (3.8),

I�2 ¼ /1 I�1
� �

I�1=m21; I�1 ¼ /2 I�2
� �

I�2=m12: ð3:12Þ

Substituting (3.12) into (3.11) gives

dg1ðI1Þ
dI1

dg2ðI2Þ
dI2

> 1:

Therefore, since dg1ðI1Þ
dI1

> 1 dg2ðI2Þ
dI2

	. 

, starting from the point E�, the

curve determined by I2 ¼ g1ðI1Þ is always above the curve deter-
mined by I1 ¼ g2ðI2Þ. So, in the I1 � I2 plane, the two curves can only
intersect once at E� in the interval fI1j0 < I1 < N�1g. This implies that
(3.6) has a unique endemic equilibrium E�.

To show that the unique endemic equilibrium in fact is globally
asymptotically stable, we need first show that there are no closed
orbits for (3.7). To do this, take as Dulac function the function
D ¼ 1=ðI1I2Þ. Then

@ðDPÞ
@I1

ðI1; I2Þ ¼ �b1f 01ðI1Þ
N�1 � I1

N�1I2
� ða1 � b1f1ðI1ÞÞ

1
N�1I2

�m21

I2
1

;

@ðDQÞ
@I2

ðI1; I2Þ ¼ �b2f 02ðI2Þ
N�2 � I2

N�2I1
� ða2 � b2f2ðI2ÞÞ

1
N�2I1

�m12

I2
2

;

Under the assumption ai > bi and the properties of fi in (2.2), it fol-
lows that

@ðDPÞ
@I1

ðI1; I2Þ þ
@ðDQÞ
@I2

ðI1; I2Þ < 0:

From the Bendixson–Dulac criterion [20], we have the result.

Theorem 3.6. System (3.7) does not admit any cycle in the positively
invariant region C :¼ fðI1; I2Þj 0 < Ii 6 N�i ; i ¼ 1;2g.
range

N�1 95,000 Individuals Population size in patch 1
N�2 105,000 Individuals Population size in patch 2
m12 0.008 Day�1 Travel rate from patch 1 to patch 2

m21 0.009 Day�1 Travel rate from patch 2 to patch 1

d1 1=ð78� 365Þ Day�1 Average life expectancy in patch 1
is 78 years
Note that this result holds true throughout parameter space un-
der the assumptions on the media coverage effect function.

Theorem 3.7. IfR0 > 1, then the unique endemic equilibrium of (3.6)
is globally asymptotically stable.
d2 1=ð70� 365Þ Day�1 Average life expectancy in patch 2
is 70 years

c1 1/10 Day�1 Average infectious period 10 days

c2 1/12 Day�1 Average infectious period 12 days

a1 0.09 or 0.12 Day�1 Maximal effective contact rate in
patch 1

a2 0.08 or 0.11 Day�1 Maximal effective contact rate in
patch 2

b1 0.02 to 0.05 Day�1 Maximal reduced effective contact
rate in patch 1

b2 0.02 to 0.05 Day�1 Maximal reduced effective contact
rate in patch 2
Proof. When R0 > 1, by Lemma 3.1, E0 is a hyperbolic unstable
saddle point or a node and repels solutions in its neighborhood.
Due to the hyperbolicity of E0, it is not part of any cycle chain in
C. Following Theorem 3.6, and also by Castillo-Chavez and Thieme
[9], every bounded forward orbit of (3.7) in C converges towards
ðI�1; I

�
2Þ, which is globally asymptotically stable. Therefore, the

unique endemic equilibrium E� of (3.6) is globally asymptotically
stable. The proof is complete. h
Since systems (2.3) and (3.6) are equivalent, Theorems 3.2, 3.5
and 3.7 yield the following result, which completely characterizes
the dynamics of system (2.3).Theorem 3.8If R0 < 1, then all solu-
tions to (2.3) with initial conditions (2.4) tend to the disease-free
equilibrium. If R0 > 1, then (2.3) has the unique globally asymp-
totically stable endemic equilibrium E�.
4. Simulation study

To complement the mathematical analysis carried out in the
previous section, we now investigate some of the numerical prop-
erties of system (2.3). We choose parameters characteristic of the
common cold, as detailed in Table 1.

Note that in the simulations, the variables N�i are considered as
parameters and are set once and for all. The parameters Ki; i ¼ 1;2,
are determined using (3.2), i.e.,

K1 ¼ ðm12 þ d1ÞN�1 �m21N�2

K2 ¼ �m12N�1 þ ðm21 þ d2ÞN�2;

in order to maintain constant populations. Carrying capacities (and
other parameters) are chosen to be slightly different, in order to
study the effect of varying parameters: a common problem in
the numerical study of metapopulation systems stems from the
use of equal parameters in the different patches, which tends to
reduce or completely hide the effect of coupling [2]. Demographic
and disease parameters are chosen to illustrate the situation that
would prevail if the two patches had very different health sys-
tems: patch 1 is a wealthy nation or city, with higher mean life
expectancy and better care for infectious individuals than patch
2. Here, we assume a non-fatal disease and therefore that ‘better
care’ implies a shorter recovery time. In the case of diseases that
cause mortality, it could be necessary to nuance this hypothesis
for individuals with severe infections; for instance, influenza pa-
tients put under respirators can spend a long time before recover-
ing, whereas patients in poorer settings with no access to
respirators who would be subject to an influenza infection of sim-
ilar severity, generally die.

Finally, we choose a very simple ‘media coverage function’: for
i ¼ 1;2,

f ðIiÞ ¼
Ii

1þ Ii
:
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Fig. 1. Illustration of the nature of the intersections in the ðI1; I2Þ-plane of the curves g1ðI1Þ and g2ðI2Þ defined by (3.8), when (a) R0 < 1 and (b) R0 > 1.
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First, let us illustrate the situation that occurs about the ende-
mic equilibrium. Fig. 1 shows the curves g1ðI1Þ and g2ðI2Þ defined
by (3.8). For parameter values corresponding to R < 1, as in
Fig. 1, the only point of intersection between the curves is the ori-
gin, and there is no endemic equilibrium. When R > 1, as in Fig. 1,
there is an additional point of intersection, the (unique) endemic
equilibrium.

Next, we investigate in Fig. 2 the effect of media coverage on the
time that it takes for an epidemic to go extinct, in the case where
R < 1. Note that this is an hypothetical situation: when R < 1,
there is no transient increase of the infected population, only a
steady decrease to 0. Therefore, a situation such as the one shown
in Fig. 2 implies that the situation would have had to change dras-
tically before the beginning of simulations, with R brought from a
value larger than 1 to a value smaller than 1. But if such were the
case, it is clear from Fig. 2 that media coverage would lead to a
large reduction in the time to extinction of the disease.

We now consider the effect of media coverage on the system.
Fig. 3 shows the equilibrium values of I�1 and I�2 as the intensity
of the effect of media coverage, b1 and b2, are varied, in a situation
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Fig. 2. Effect of media coverage on the time to extinction of a pre-existing epidemic,
when R < 1.
where R > 1. Recall from the derivation of R in Section 3.2 that R
does not depend on the effect of media coverage. However, while
increasing the intensity of the effect cannot bring R down to a va-
lue less than 1, it is clear from Fig. 3 that it can contribute to a con-
siderable reduction of the burden of the disease. The curvature of
the iso-infection curves differs between the patches; it is more pro-
nounced for patch 2. This is a consequence of the different condi-
tions that prevail in the patches.

In Fig. 4, we show the value of I�1 at the endemic equilibrium,
when R and the intensity of the effect of media coverage b1 are
varied. The variation of R is obtained by varying the value of a1.
The region to the left has positive values of I�1, but they are small
and thus appear as zero because of the scale of the color bar. We
see that there seems to exist a linear relationship between the va-
lue of I�1 and the values of R and b1. For low values of R, it is pos-
sible to greatly reduce the burden of disease in patch 1 by using
media coverage. As R becomes larger, it becomes increasingly dif-
ficult to bring the infection down to the same type of values.

Finally, Fig. 5 presents a sensitivity analysis of the value ofR0 to
the variation of parameters. Parameters are made to vary in the fol-
lowing ranges: mij 2 ½0:001;0:01�, di 2 ½1=90;1=45� (1/years),
ci 2 ½1=30;1=4� (1/days), ai 2 ½0:02;0:2� and bi 2 ½0:01;0:05�. Sam-
ple points are chosen within this range using Latin hypercube sam-
pling. Fig. 5 shows the range of values obtained for R when 10,000
such sample points are chosen. The red bar shows the median va-
lue of R, the box indicates the interquartile range, while the whis-
kers show the extent of values not considered to be outlying.
Outlying values are not shown here.

In Figs. 5(b) and (5c), the role of individual parameters is inves-
tigated. In order to do so, all parameter values are fixed to the val-
ues in Table 1, and each of m12; d1; c1; a1 and b1 is successively
made to vary 10,000 times in the ranges indicated above.
5. Discussion

In this paper, we study an SIS model on two patches that takes
into account a reduction of interpersonal contacts as a result of
media coverage about the disease. Media coverage is described in
patch i ¼ 1;2 by a general non-linear function bifiðIiÞ, which is as-
sumed to be an increasing but saturating function of the number
of infectious individuals present in a given patch; its effect is to re-
duce the contact rate between individuals. The global dynamics of
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the model is analyzed. It is found that when the basic reproduction
number R0 < 1, system (2.3) has only one disease free equilibrium
point E0, which is globally asymptotically stable. When R0 > 1,
system (2.3) is uniformly persistent, and in addition, there exists
a unique globally asymptotically stable endemic equilibrium E�.

Because media coverage is assumed to have no effect in the ab-
sence of disease and that the basic reproduction number is evalu-
ated in the absence of disease, media coverage does not play a role
in R0. This feature is of course also present in [11], from which our
model is derived. Hence, changing the intensity of media coverage
cannot be used to trigger the passage of R from values larger to
values smaller than 1. Increasing the intensity of media coverage
can however greatly reduce the number of infectious individuals
at the endemic equilibrium in an endemic situation, i.e., if R > 1.
On the other hand, if other means are used to bringR to values less
than 1, then media coverage can help speed up the extinction of
the epidemic.

This work is just a preliminary exploration of the conse-
quences of media coverage on the spatial spread of an infectious
disease, and there are many ways in which it could be improved.
The first limitation of the system is that it uses a very simple SIS
model, whereas a lot of the diseases that would be relevant are
expected to follow an SEIRS-type progression. However, this dis-
tinction is not as important here as it would be should we have
considered problems related to the control of the spread of the
infection. In the latter case, the presence of a class of incubating
individuals makes controlling the infection hard (since E individ-
uals might travel undetected). In the case of media-induced social
distancing, the presence of an E class simply delays the ‘birth’ of
new infectives, so we expect similar results to the ones obtained
here. The system should be studied with an arbitrary number of
patches. It can be expected, though, that the global results we
were able to establish here, in particular about the endemic equi-
librium, will be hard to carry through to higher dimensionality.
Also, while media coverage can help curtail an epidemic, it can
also have negative consequences. The WHO guidance document
[23] states, among the Communications actions to be taken in
the event of a pandemic, that the WHO should ‘Continue to work
with partners to promote consistent messages’. We have assumed
in our model that communication is always beneficial in mitigat-
ing the spread of disease. However it is possible that some forms
of messaging could be counterproductive from a public health
standpoint (e.g. messages inciting fears over vaccine safety).
Therefore, more elaborate forms of the ‘media coverage effect
function’ should be considered. This would be a very interesting
problem on many different levels: the interaction of patches with
different media coverage effect functions, some decreasing, some
increasing, would most likely pose difficult and interesting math-
ematical problems. There are additional temporal effects in social
distancing that are important but not taken into consideration
here. For example, [7] found that social distancing was generally
well accepted, but only insofar as it did not have major economic
consequences for the individuals involved. During the 2009 pan-
demic influenza outbreak, [14] found that after initially experi-
encing high anxiety about getting infected by the virus,
individuals were becoming less and less concerned. There is,
therefore, a waning of the effect at the individual level that could
be taken into account. Finally, knowledge of the presence of a dis-
ease could also lead to modification of the rate of travel between
locations. During the 2009 H1N1 pandemic, it was for instance
observed [15] that air traffic to Mexico was affected in the early
stages of the epidemic, although the effect on the overall global
air transportation network was less evident. Work is in progress
to incorporate such effects to our model.
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