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Abstract A metapopulation malaria model is proposed using SI and SIRS models
for the vectors and hosts, respectively. Recovered hosts are partially immune to the
disease and while they cannot directly become infectious again, they can still transmit
the parasite to vectors. The basic reproduction number R0 is shown to govern the
local stability of the disease free equilibrium but not the global behavior of the system
because of the potential occurrence of a backward bifurcation. Using type reproduc-
tion numbers, we identify the reservoirs of infection and evaluate the effect of control
measures. Applications to the spread to non-endemic areas and the interaction between
rural and urban areas are given.
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424 J. Arino et al.

1 Introduction

Malaria is a mosquito-borne infection caused by protozoa of the genus Plasmodium,
which causes an estimated 1.5–3 million deaths annually, mostly in children
(WHO 2005). Here we shall focus on Plasmodium falciparum, which is the most
commonly encountered parasite responsible for malaria’s disease in the tropics. It is
also responsible for the largest part of the severe infections and mortalities in these
regions. The parasites are transmitted indirectly from human to human by the bite of
infected female mosquitoes of the genus Anopheles. The distribution of the vector is
well known to be highly spatially heterogeneous, even at a city’s scale. Despite the
obvious role of the spatial heterogeneity of vector distributions (Githeko et al. 2006),
this aspect has rarely been taken into account in models; neither has human movement,
despite the fact that travel of parasite bearing individuals may induce the translocation
of the parasites into other regions.

There are several methods that can be used to describe movement between spa-
tially heterogeneous regions. In this work, we shall use metapopulation theory; see,
e.g., Arino (2009). In Ariey et al. (2003), a patch occupancy discrete-time metapop-
ulation model is formulated to study the spread of resistance to chloroquine in the
pathogen. In Le Menach et al. (2005), the authors consider a metapopulation setting
with detailed description of mosquito oviposition behaviour. Metapopulations have
been used to model malaria assuming only migration of mosquitoes (Le Menach et al.
2005; Smith et al. 2005). Some authors have taken into account human migration
(Auger et al. 2008; Rodríguez and Torres-Sorando 2001). The effect of short term
human movement is investigated numerically in Adams and Kapan (2009).

However, the mobility models cited above do not differentiate semi-immune indi-
viduals from infectious ones, whereas most malaria models corroborate experimental
evidence and show that 60–90% of humans in endemic area are asymptomatic car-
riers of the parasites (Ducrot et al. 2009; see also Chitnis et al. 2006; Chiyaka et al.
2007; Ngwa and Shu 2000). Recall that in highly endemic region, some acquired
partial immunity to the pathogen in humans develops after many years of repeated
infections. For an extensive review of the process, see Doolan et al. (2009) and the
references therein; see also Artavanis-Tsakonas et al. (2003). Immunity is never per-
fect and is lost after a prolonged interruption of exposure to the parasites (Aron 1988).
However, immunity can be rapidly reacquired when an individual is re-exposed to
malaria (Gatton and Cheng 2004). Individuals who have acquired immunity can host
and tolerate malaria parasites without developing any clinical symptoms. They may
become asymptomatic carriers of parasites in the gametocyte form but the infectivity
of these gametocytes to mosquitoes is very low because of so-called transmission-
blocking immunity (Drakeley et al. 2006; Kaslow 1993). Acquired immunity was first
incorporated in a model by Dietz et al. (1974). See also Aron (1988), Chitnis et al.
(2006) and Yang (2000) for further studies incorporating immunity. In this work, we
call semi-immune an asymptomatic human carrier who is less infectious to mosquitoes
than a symptomatic carrier; we thus model transmission-blocking immunity. While
these individuals might be reinfected directly, albeit their susceptibility is less than
non-immune individuals, we assume here that they must first become susceptible again
before this happens.
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A metapopulation model for malaria 425

Fig. 1 A schematic of the mathematical model for malaria transmission involving human host and mos-
quito vector in each patch i , i = 1, . . . , n. The dotted arrows show the direction of transmission from
human to mosquito (infectious or semi-immune human to susceptible mosquito) or for mosquito to human
(infectious mosquito to susceptible human)

The aim of this work is to provide a mathematical model for the spatio-temporal
spread of malaria taking into account human movements and, especially, that of asymp-
tomatic carriers; and to study the impact of spatial heterogeneities on control strategies.
Underlying questions are the following. How is the heterogeneous local dynamics of
malaria transmission affected by the spatial displacement of humans? What is the
impact of human migrations from rural to urban areas?

2 The mathematical model

Suppose that space is subdivided into n regions called patches. In each patch i =
1, . . . , n, divide the human population into three subclasses (see Fig. 1): suscepti-
ble, infectious and semi-immune, with numbers at time t in these classes given by
SH,i (t), IH,i (t) and RH,i (t), respectively. Time-dependence is omitted for these and
other state variables in the remainder of the text if this does not lead to ambiguities.
Denote Hi = SH,i + IH,i + RH,i the total size of the human population in patch i at
time t . Divide the mosquito population in each patch i into two subclasses: susceptible,
SV,i and infectious, IV,i , and denote Vi = SV,i + IV,i the total mosquito population
in patch i at time t . Denote H = ∑n

i=1 Hi and V = ∑n
i=1 Vi (t) the total host and

vector populations in the system, respectively, at time t .
For i = 1, . . . , n, denote ΦH,i and ΦV,i the force of infection from mosquitoes

to humans and from humans to mosquitoes, respectively. Assume that ΦH,i and ΦV,i

depend on the individuals present in patch i and not in another patch j �= i : infec-
tion only involves the individuals (vectors and hosts) present in the patch, there is
no between-patch infection. Therefore ΦH,i = ΦH,i (SH,i , SV,i , IH,i , RH,i , IV,i ),
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ΦV,i = ΦV,i (SH,i , SV,i , IH,i , RH,i , IV,i ). The following forces of infection are found
in the literature and will be used here. The first is found for example in Anderson and
May (1991), Chiyaka et al. (2007) and Ngwa and Shu (2000) and takes the form

ΦH,i = ãiσVi Hi

IV,i

Hi
(F1a)

and

ΦV,i = ãi

(

σHi Vi

IH,i

Hi
+ σ̂Hi Vi

RH,i

Hi

)

, (F1b)

where ãi , σVi Hi , σHi Vi , σ̂Hi Vi ∈ R+. It is the classic form used in vector-host models,
but with the additional infectivity of semi-immune hosts added in (F1b). The second
form, found for example in Chitnis et al. (2006), is

ΦH,i = aV,i aH,i Vi

aV,i Vi + aH,i Hi
σVi Hi

IV,i

Vi
(F2a)

and

ΦV,i = aV,i aH,i Hi

aV,i Vi + aH,i Hi

(

σHi Vi

IH,i

Hi
+ σ̂Hi Vi

RH,i

Hi

)

, (F2b)

where aV,i , aH,i , σVi Hi , σHi Vi , σ̂Hi Vi ∈ R+. To explain the difference between F1
and F2, we follow (Chitnis et al. 2006) and refer to that paper for details. Both incidence
functions can be written as

ΦH,i = bH,i (Hi , Vi )σVi Hi

IV,i

Vi
(Fa)

and

ΦV,i = bV,i (Hi , Vi )

(

σHi Vi

IH,i

Hi
+ σ̂Hi Vi

RH,i

Hi

)

, (Fb)

where bH,i is the number of mosquito bites a human has per unit time and bV,i is the
number of humans a mosquito bites per unit time. The general model used in Chitnis
et al. (2006) is that the total number of mosquito bites on humans is given by

b = b(Hi , Vi ) = aH,i Hi aV,i Vi

aH,i Hi + aV,i Vi
.

Then bH,i = b/Hi and bV,i = b/Vi . When the number of humans becomes large or
the number of mosquitoes becomes small, bH,i → ãi Vi/Hi and bV,i → ãi , giving
form F1. Keeping the general form gives F2.

This general formulation make use of a kind of mean between the “availability of
humans” to be bitten, aH,i Hi , and the maximum number of bites that mosquitoes can
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A metapopulation model for malaria 427

produce per unit of time, aV,i Vi . When the number of mosquitoes is large, Vi →∞,
this formulation introduces competition between mosquitoes for “biting space” and
the corresponding biting rate reduces to aH,i Hi , the availability of humans. On the con-
trary, when the number of mosquitoes is low, there is no longer competition between
mosquitoes for bites and each mosquito that wants to bite can do so because of the
relative abundance of humans. The corresponding bitting rate then reduces to aV,i Vi .

Parameters of the incidence functions are interpreted in patch i = 1, . . . , n as
follows:

– σHi Vi is the probability of transmission of the parasite (in gametocyte form) from
an infectious human to a susceptible mosquito.

– σ̂Hi Vi is the probability of transmission of the parasite (in gametocyte form) from
a semi-immune human to a susceptible mosquito.

– σVi Hi is the probability of transmission of the parasite (in sporozoite form) from
an infectious mosquito to a susceptible human.

– aH,i is the maximum number of mosquito bites a human can receive per unit time.
– aV,i is the number of times one mosquito would “want to” bite humans per unit

time.
– ãi is the average number of bites given to humans by each mosquito per unit time.

Assume that humans can move from patch to patch but neglect the movement of
mosquitoes, since the latter explore only few kilometers during their lives (see, e.g.,
Ejercito and Urbino 1951; Russell and Santiago 1934). Assume that the time it takes
for humans to travel is small with respect to the incubation period and demographic
processes, so humans do not change their epidemiological status during travel. Let
mπ

i j , π = S, I, R, be the constant rate of travel of humans from patch j to patch i , for
all i, j = 1, . . . , n, i �= j . Let Mπ = [mπ

i j ], π = S, I, R, be the travel rate matrices.
We shall assume throughout this work that

The matrices Mπ , π = S, R, are irreducible.

mπ
i i = 0, for π = S, I, R and i = 1, . . . , n.

(A1)

Table 1 summarizes the model parameters and their biological interpretation.
We can now write the model describing the spread of malaria in the patch setting.

For notational simplicity, we introduce notation for the total within-patch removal rate
from the human infectious class,

εH,i = αH,i + γH,i + ρH,i + μH,i ,

and the total within-patch removal rate from the human semi-immune class,

δH,i = βH,i + μH,i .
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Table 1 Parameters of the model and their meaning, in patch i = 1, . . . , n

Parameters for humans
ΛH,i : recruitment into the susceptible class

αH,i : rate of progression from the infectious to the semi-immune class

ρH,i : rate of recovery from being infectious

βH,i : rate of recovery from being semi-immune

γH,i : disease induced death rate

μH,i : natural death rate

Parameters for mosquitoes

ΛV,i : recruitment into the susceptible class

μV,i : natural death rate

All parameters are positive except γH,i which is nonnegative

Then, for each i = 1, . . . , n, the model takes the form

d SH,i

dt
= ΛH,i + βH,i RH,i + ρH,i IH,i − μH,i SH,i −ΦH,i SH,i

+
n∑

j=1

mS
i j SH, j −

n∑

j=1

mS
ji SH,i , (4a)

d IH,i

dt
= ΦH,i SH,i − εH,i IH,i +

n∑

j=1

m I
i j IH, j −

n∑

j=1

m I
ji IH,i , (4b)

d RH,i

dt
= αH,i IH,i − δH,i RH,i +

n∑

j=1

m R
i j RH, j −

n∑

j=1

m R
ji RH,i , (4c)

d SV,i

dt
= ΛV,i − μV,i SV,i −ΦV,i SV,i , (4d)

d IV,i

dt
= ΦV,i SV,i − μV,i IV,i , (4e)

with initial conditions SH,i (0), SV,i (0) > 0, IH,i (0), RH,i (0), IV,i (0) ≥ 0.
We first consider the well-posedness of (4). Let Ω = R

∗2n+ × R
3n+ (where R

∗ =
R \ {0}), and denote points in Ω by (S, I )T , where S = (SH,1, SV,1, . . . , SH,n, SV,n)

and I = (IH,1, RH,1, IV,1, . . . , IH,n, RH,n, IV,n). Rewrite system (4) in compact
form as

d S

dt
= Ψ1(S, I ), (5a)

d I

dt
= Ψ2(S, I ). (5b)

The following result guarantees the global well-posedness of system (4).

123



A metapopulation model for malaria 429

Theorem 1 For any initial condition (S(0), I (0)) in Ω , system (4) has a unique glob-
ally defined solution (S(t), I (t)) which remains in Ω for all t ≥ 0. Moreover, the total
populations of humans, H(t), and mosquitoes, V (t), are bounded for all t ≥ 0.

Proof The local existence and uniqueness of solutions follows from the regularity
of the function Ψ = (Ψ1, Ψ2), which is of class C1 in Ω . It is also easy to see that
Ψ1(0, I ) > 0 and Ψ2(S, 0) ≥ 0. Thus Ω is forward-invariant under system (4). Add-
ing up equations (4a)–(4c) and (4d)–(4e), we obtain equations for the total human and
mosquito populations, respectively, in patch i = 1, . . . , n:

d Hi

dt
= ΛH,i − μH,i Hi − γH,i IH,i +

∑

π=S,I,R

⎛

⎝
n∑

j=1

mπ
i jπH, j −

n∑

j=1

mπ
j iπH,i

⎞

⎠,

(6a)
dVi

dt
= ΛV,i − μV,i Vi . (6b)

From (6a),

d H

dt
=

n∑

i=1

(ΛH,i − μH,i Hi − γH,i IH,i )

+
n∑

i=1

⎡

⎣
∑

π=S,I,R

⎛

⎝
n∑

j=1

mπ
i jπH, j −

n∑

j=1

mπ
j iπH,i

⎞

⎠

⎤

⎦ .

Straightforward computations show that the double sum in the equation above equals
zero, and since IH,i < Hi , it follows that

n∑

i=1

ΛH,i −
n∑

i=1

(μH,i + γH,i )Hi ≤ d Nh

dt
≤

n∑

i=1

ΛH,i −
n∑

i=1

μH,i Hi

and thus

n∑

i=1

ΛH,i − max
1≤i≤n

{μH,i + γH,i }Nh ≤ d Nh

dt
≤

n∑

i=1

ΛH,i − min
1≤i≤n

{μH,i }Nh .

We conclude that for all t ≥ 0,

min

{ ∑n
i=1 ΛH,i

max1≤i≤n{μH,i + γH,i } , H(0)

}

≤ H(t) ≤ max

{ ∑n
i=1 ΛH,i

max1≤i≤n{μH,i } , H(0)

}

.

Using similar arguments, we show using (6b) that for all t ≥ 0,

min

{ ∑n
i=1 ΛV,i

max1≤i≤n{μV,i } , V (0)

}

≤ V (t) ≤ max

{ ∑n
i=1 ΛV,i

min1≤i≤n{μV,i } , V (0)

}

.

This completes the proof of the result.
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3 Disease-free equilibrium point and basic reproduction number

3.1 Disease-free equilibrium point

A disease-free equilibrium is an equilibrium solution of system (4) at which there
is no disease in any of the patches. This corresponds to the solution S∗ of the alge-
braic system Ψ1(S, 0) = Ψ2(S, 0) = 0. Denote S∗h = (S∗H,1, S∗H,2, . . . , S∗H,n)T , S∗v =
(S∗V,1, S∗V,2, . . . , S∗V,n)T , Λh = (ΛH,1,ΛH,2, . . . , ΛH,n)T , Λv = (ΛV,1,ΛV,2, . . . ,

ΛV,n)T , Gh = diag(
∑n

j=1 mS
ji +μH,i )−M S and Gv = diag(μV,i ), i = 1, . . . , n.

Then we have the following result.

Theorem 2 Let (A1) be satisfied. Then (4) has a unique disease-free equilibrium
(S∗, 0) in Ω , with the vector and host components of this equilibrium given by S∗v =
G−1

v Λv and S∗h = G−1
h Λh, respectively.

Proof Let (S∗, 0) be a disease-free equilibrium of system (4). Then (S∗, 0) satisfies
the equilibrium equation Ψ1(S∗, 0) = Ψ2(S∗, 0) = 0 deduced from (5). This yields
the algebraic system ΛH,i − μH,i S∗H,i +

∑n
j=1 mS

i j S∗H, j −
∑n

j=1 mS
ji S∗H,i = 0 and

ΛV,i − μV,i S∗V,i = 0, for i = 1, . . . , n. Rewrite this system in matrix form,

Λh − Gh S∗h = 0, (7a)

Λv − Gv S∗v = 0. (7b)

Solving (7b) gives S∗v = G−1
v Λv = (ΛV,1/μV,1,ΛV,2/μV,2, . . . , ΛV,n/μV,n) > 0,

because μV,i ,ΛV,i > 0 for all i = 1, . . . , n. In order to solve (7a), recall that M S

is assumed to be irreducible. Also observe that Gh has negative off-diagonal entries
and positive column sums. It follows that Gh is a nonsingular M-matrix. Then, since
Λh > 0, from Berman and Plemmons (1979, Chap. 6, Theorem 2.7), G−1

h > 0, giving
G−1

h Λh > 0. Therefore there exists a unique solution of (7a) given by S∗h = G−1
h Λh .

So there exists a unique disease free equilibrium (S∗, 0) in Ω for system (4) and the
proof is complete.

3.2 Basic reproduction number

The basic reproduction number R0 is the expected number of secondary cases pro-
duced by a typical infective individual introduced into a completely susceptible popu-
lation, in the absence of any control measure. A general method for computing R0 is
the next generation method (Diekmann et al. 1990; van den Driessche and Watmough
2002). Mathematically, R0 is the spectral radius of the so-called next generation
matrix. We use the method described in van den Driessche and Watmough (2002).
Rewrite Ψ2 in (5b) as Ψ2(S, I ) = F(I ) − V(I ), where F(I ) is the inflow of new
individuals into the infected classes,

F = (ΦH,1SH,1, 0, ΦV,1SV,1, . . . , ΦH,n SH,n, 0, ΦV,n SV,n)T
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and V(I ) contains all other flows within and out of the infected classes,

V = −

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−ε2 IH,1 +
n∑

j=1
m I

1 j IH, j −
n∑

j=1
m I

j1 IH,1

αH,1 IH,1 − δH,1 RH,1 +
n∑

j=1
m R

1 j RH, j −
n∑

j=1
m R

j1 RH,1

−μV,1 IV,1
...

−εH,n IH,n +
n∑

j=1
m I

nj IH, j −
n∑

j=1
m I

jn IH,n

αH,n IH,n − δH,n RH,n +
n∑

j=1
m R

nj RH, j −
n∑

j=1
m R

jn RH,n

−μV,n IV,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let F = DF |(S∗,0) and V = DV|(S∗,0) be the Jacobian matrices of the maps V(I )
and F(I ), respectively, evaluated at the disease free equilibrium (S∗, 0). Following
van den Driessche and Watmough (2002), the matrix FV−1 is well defined, and is the
next generation matrix.

We have ∂ΦH,i/∂ IH, j = ∂ΦH,i/∂ RH, j = ∂ΦH,i/∂ IV, j = 0, for j �= i , and

∂ΦV,i/∂ IH, j = ∂ΦV,i/∂ RH, j = ∂ΦV,i/∂ IV, j = 0, for j �= i . Denote Φ
IV,i
H,i =

∂ΦH,i/∂ IV,i , Φ
IH,i
V,i = ∂ΦV,i/∂ IH,i and Φ

RH,i
V,i = ∂ΦV,i/∂ RH,i the partial deriva-

tives evaluated at the disease-free equilibrium (S∗, 0).
The matrices F and V are 3n× 3n matrices that we rewrite as F = diag(Fii ), i =

1, . . . , n, where

Fii =
⎡

⎢
⎣

0 0 Φ
IV,i
H,i S∗H,i

0 0 0

Φ
IH,i
V,i S∗V,i Φ

RH,i
V,i S∗V,i 0

⎤

⎥
⎦ ,

and V = (Vi j ), where Vi j = diag(−m I
i j ,−m R

i j , 0), i �= j and

Vii =

⎡

⎢
⎢
⎢
⎢
⎣

εH,i +
n∑

j=1
m I

ji 0 0

−αH,i δH,i +
n∑

j=1
m R

ji 0

0 0 μV,i

⎤

⎥
⎥
⎥
⎥
⎦

.

From van den Driessche and Watmough (2002, Theorem 2), the local stability of the
disease-free equilibrium (S∗, 0) is governed by the basic reproduction number R0,
with the disease-free locally asymptotically stable if R0 < 1 and unstable when
R0 > 1.

The element (�, s) in FV−1 is interpreted as the expected number of new infections
in compartment � generated by the infected mosquito or human originally introduced

123
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into compartment s. It is of interest to us here to go into more detail about this. Denote
K = FV−1, and Ki j the (i, j) block of size 3× 3 of K , i.e., for 1 ≤ i, j ≤ n,

Ki j =
⎡

⎣
(IH,i ←↩ IH, j ) (IH,i ←↩ RH, j ) (IH,i ←↩ IV, j )

(RH,i ←↩ IH, j ) (RH,i ←↩ RH, j ) (RH,i ←↩ IV, j )

(IV,i ←↩ IH, j ) (IV,i ←↩ RH, j ) (IV,i ←↩ IV, j )

⎤

⎦,

where the notation Y ←↩ X indicates that individuals from compartment X infect
individuals from compartment Y . The matrix Ki j thus describes the next generation
infection of vectors and hosts in patch i by vectors and hosts from patch j .

Because K involves the inverse of the 3n×3n matrix V , we do not have an explicit
expression for it. Information about the structure of the matrix K is useful, though, as
it allows to gain a better understanding of the spread of the infection.

Theorem 3 Elements of the matrix K take, for i, j = 1, . . . , n, the form

Ki j =
⎡

⎣
0 0 0
0 0 0

(IV,i ←↩ IH, j ) (IV,i ←↩ RH, j ) 0

⎤

⎦ if i �= j, (8a)

Kii =
⎡

⎣
0 0 (IH,i ←↩ IV,i )

0 0 0
(IV,i ←↩ IH,i ) (IV,i ←↩ RH,i ) 0

⎤

⎦ . (8b)

The proof of Theorem 3 is given in Appendix A. This result is expected since, in a
patch, secondary infections cannot result from the direct transmission of the infection
between humans or between mosquitoes.

Corollary 1 Let K̃ be the n×n block matrix of 2×2 matrices with elements extracted
from the matrix K , given for i, j = 1, . . . , n by

K̃i j =
[

0 0
(IV,i ←↩ IH, j ) 0

]

if i �= j, (9a)

K̃ii =
[

0 (IH,i ←↩ IV,i )

(IV,i ←↩ IH,i ) 0

]

. (9b)

Let PK (λ) and PK̃ (λ) be the characteristic polynomials of the next generation matrices
K and K̃ , respectively. Then we have

PK (λ) = (−λ)n PK̃ (λ). (10)

The proof of Corollary 1 uses basic multilinear algebra manipulations, as it can be
easily shown that, for all n ≥ 1,

det(K − λI3n) = (−1)2n2
(−λ)n det(K̃ − λI2n) = (−λ)n PK̃ (λ).
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Corollary 1 shows that the nonzero eigenvalues of the next generation matrix K are
equal to those of matrix K̃ . The spectral radius of these matrices remains unchanged.
In the sequel, to define R0, we shall use K̃ instead of K . To simplify notation, we set,
for 1 ≤ i, j ≤ n,

kHj Vi = (IV,i ←↩ IH, j ), (11a)

kHi Vi = (IV,i ←↩ IH,i ), (11b)

kVi Hi = (IH,i ←↩ IV,i ). (11c)

The element krs of K̃ represents the expected number of secondary cases in host s
generated by a typical primary case in host r , in a completely susceptible population.

One limiting case of interest is when Mπ = 0 for π = S, I, R, i.e., humans do not
travel. If R0i is the basic reproduction number in patch i = 1, . . . , n, then

R0i =
√

kVi Hi kHi Vi , (12)

where

kVi Hi = Φ
IV,i
H,i

ΛH,i

μH,i

1

μV,i
, (13a)

and

kHi Vi = Φ
IH,i
V,i

ΛV,i

μV,i

1

εH,i
+Φ

RH,i
V,i

ΛV,i

μV,i

αH,i

εH,i

1

δH,i
. (13b)

Therefore, for the system of isolated patches,

R0 = max
1≤i≤n

R0i . (14)

Note that this does not mean that the disease becomes prevalent in all patches when
R0 > 1. Since the patches are decoupled, the behaviour in a given patch is determined
by the value of the local basic reproduction number R0i in that patch. In fact, when
min R0i > 1 the disease-free equilibrium is unstable (in the classical sense) and on
the other hand, if R0 < 1, then all the patches have a locally asymptotically stable
disease-free equilibrium.

4 Existence of a backward bifurcation

Backward bifurcations have been investigated in epidemic models in two main areas:
vaccination, where they often arise in the presence of a loss of immunity (Arino
et al. 2003), and some vector-host models (Chitnis et al. 2006). Backward bifurca-
tions generally occur when there are several types of infective individuals and that
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one or several of these infective classes can flow directly back into the susceptible
class.

We do not provide theoretical results concerning the global stability of the disease-
free equilibrium (S∗, 0). But we can easily show by using the two incidence functions
F1 and F2 that, if the disease-induced death rate γH,i = 0 for all i = 1, . . . , n, then
the point (S∗, 0) is globally asymptotically stable when R0 < 1 and the backward
bifurcation cannot occur. On the other hand, when the disease may induce death in
each patch γH,i �= 0 for all i = 1, . . . , n and when it is sufficiently large, back-
ward bifurcation at R0 = 1 may occur for this model for one patch using the two
incidence functions F1 and F2; see Appendix B for the case of F1 (computations
in the case of F2 can be done similarly). Thus positive equilibria may exist even
when R0 < 1. Therefore small changes in the parameters (or initial conditions) of
the model may imply major changes in the dynamical behavior of the disease. This
result can be extended to the case of n weakly connected patches by considering low
migration.

Indeed, consider the equilibrium equation written in the formal form Ψ (M, x) = 0,
indicating the dependence on the travel matrix M = (M S, M I , M R) and where x =
(S, I ). Isolating the patches (by setting M = 0), assume that the equation Ψ (0, x) = 0
admits a solution x0 even when R0(0) < 1, where we have explicitly written down
the dependence of R0 on M . Such a solution is achieved by assuming that at least one
of the isolated patches is in a backward bifurcation situation.

Then connecting the patches with a migration matrix with small entries such that
R0(M) < 1, when the operator ∂Ψ

∂x (0, x0) is invertible, one can conclude from the
implicit functions theorem that there exists a branch (parametrized by M) of endemic
equilibria when the travel matrix M has small enough entries.

In order to check whether the backward bifurcation happened within a realistic range
of parameter values or was just an artifact, we performed some numerical simulations
in a single patch using incidence function F2. Parameters were chosen to represent a
typical malaria setting. The reproduction number R0 was made to vary between 0.7
and 1.5 by varying aV,1. Using a value of the disease induced rate γH,1 = 9 × 10−4

gave a backward bifurcation, while a lower γH,1 = 9 × 10−5 gave a forward bifur-
cation. Note that a value of γH,1 = 9 × 10−4 is not unreasonable: it indicates a
case-fatality ratio of the order of 1/1,000, which is in the order of the observed case-
fatality ratio: it is estimated that every year, 500 million people become infected with
malaria and deaths are between 1.5 and 3 million. Considering the same parameter
values in 3 patches connected with small migration rates, we observe the same type
of behaviour.

From Fig. 3, the threshold of additional mortality leading to bistability decreases
together with ΛH,1. This implies that bistability regimes can easily be obtained when
dealing with patches with relatively low human populations, such as in rural areas.
In addition, increasing the influx of mosquitoes ΛV,1 also decreases the threshold
of mortality leading to the presence of a backward bifurcation (Fig. 3). Thus con-
trolling the disease is hard in a region with low human population and high vec-
torial density. This is in agreement with the situation discussed in Dushoff et al.
(1998). Similarly, one can argue that acquired immunity in the human population
reduces the risk of a catastrophe (using the terminology of Ludwig et al. 1978).
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Fig. 3 Bistability region as a function of ΛH,1 and γH,1 for ΛV,1 = 1, 200 (left) and ΛV,1 = 700 (right)

Indeed, an increase in the parameter αH,1 increases flux out of the infected human
population, without increasing much the flux into the susceptible population because
immunity loss happens at a very low rate. This argument implies that in such a case,
the disease has much more difficulties to be established. This is also supported by
Fig. 2.

Thus, control strategies within patches with small human populations and high vec-
tor densities may induce backward bifurcation phenomena that can propagate through
to regions with higher human populations by way of the connections between regions
due to human movements. As will be discussed in the next section, this situation
typically describes the interaction between rural and urban habitats.
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5 Infection reservoir and control effort strategy

To control malaria, R0 must be reduced below 1 or Rc, depending on whether the
bifurcation is forward or backward at R0 = 1, respectively. For the human population,
this involves using insecticide-treated bed nets, intermittent prophylactic treatment or
a vaccine (if one were to become available); for mosquitoes, control measures involve
indoor residual spraying and reduction of breeding sites. It is however difficult and
expensive to aim a control at all 2n host types within the n patches. (Note that here,
we use the term host to express the fact that both humans and mosquitoes are hosts
of the plasmodium.) It is much more efficient to target specific (sub-) populations
and/or patches. In order to identify those targets where the control would be the
most effective, we use a method introduced in Heesterbeek and Roberts (2007) and
Roberts and Heesterbeek (2003). We present the theory of type reproduction numbers
and extend it to the case Rc < 1, then propose a methodology to identify the different
reservoirs of infection and conclude this section by some applications.

5.1 Type reproduction numbers

Consider the following problem: Let J be a subset of the set {H1, V1, . . . , Hn, Vn}
of host types; can malaria be eradicated by targeting this subset J of host types with
some control measure? The technique described in Heesterbeek and Roberts (2007)
and Roberts and Heesterbeek (2003) can be used to try to address this problem. We
adapt it here to the metapopulation case.

5.1.1 Case where Rc = 1

Consider the threshold quantity TJ , spectral radius of the operator MJ defined by

MJ = E
T
J K̃ (I2n − (I2n − PJ )K̃ )−1

EJ (15)

where EJ and PJ , respectively, (2n)×cardinal(J ) and (2n)×(2n) projection matrices
satisfying (EJ ) j j = (PJ ) j j = 1 for j ∈ J and (EJ ) j j = (PJ ) j j = 0 otherwise. (The
index j here denotes the position of the elements of J in the set {H1, V1, . . . , Hn, Vn}.)

It is claimed in Heesterbeek and Roberts (2007) and Roberts and Heesterbeek (2003)
that TJ = ρ(MJ ) is well defined if the other host types {H1, V1, . . . , Hn, Vn} \ J
cannot by themselves support an epidemic. This means that TJ is well defined if

ρ((I2n − PJ )K̃ ) < 1, i.e., if the series
∑∞

j=0

(
(I2n − PJ )K̃

) j
converges (Roberts

and Heesterbeek 2003). Therefore, reducing TJ below 1 is sufficient to reduce R0
below 1 and is achieved by only targeting the subset J of host types. This assump-
tion is valid when the disease free equilibrium is globally asymptotically stable when
R0 < 1.

Let X be a host on a given patch i , i.e., X = Hi or X = Vi . If J = {X} ⊂
{H1, V1, . . . , Hn, Vn} then TX is the type reproduction number specific to host X and
is interpreted as the expected number of cases in individuals of type X , caused either
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directly or indirectly by one infected individual of type X in a completely susceptible
population (Heesterbeek and Roberts 2007).

For a fixed host type X ∈ {H1, V1, . . . , Hn, Vn}, assume that TX is well defined,
i.e., ρ((I2n −PX )K̃ ) < 1. Consider a malaria control program that aims to reduce the
number of susceptible individuals of host type X and assume that this control strategy
acts linearly upon kY X , with Y ∈ {H1, V1, . . . , Hn, Vn}. Then one can linearly reduce
the number of susceptible host type X individuals and a proportion sX > 1−1/TX of
susceptible host type X individuals needs to be protected (by the control) to eliminate
malaria in the 2n populations.

5.1.2 Case where Rc < 1

Suppose there is a backward bifurcation in the model, i.e., there exists Rc such that
there is no endemic equilibrium when R0 < Rc < 1 and two endemic equilibria when
Rc < R0 < 1. Then redefine MJ as a function of Rc. Note that R−1

c R0 < 1. Since
R0 = ρ(K̃ ), one has the equivalence R−1

c ρ(K̃ ) < 1 ⇔ ρ(R−1
c K̃ ) < 1. Consider a

new next generation operator denoted R−1
c K̃ . The elements of R−1

c K̃ are interpreted
in the same way as those of K̃ . Redefine TJ by using R−1

c K̃ . Thus, replace K̃ by R−1
c K̃

in the expression of MJ given by Eq. (15). Thus, the series
∑∞

j=0

(
(I2n − PJ )R−1

c K̃
) j

converges if ρ((I2n − PJ )R−1
c K̃ ) < 1, i.e., ρ((I2n − PJ )R−1

c K̃ ) < Rc < 1 and

MJ (Rc) = ET
J (R−1

c K̃ )
[
I2n − (I2n − PJ )(R−1

c K̃ )
]−1

EJ . (16)

5.2 Reservoirs of infection

In order to simplify computations, assume that Rc = 1. Similar results can be obtained
for Rc < 1.

5.2.1 Malaria control targeting only the human or mosquito populations

Assume that we want to control malaria by targeting a control only to the human popu-
lation, so define Jh = {H1, H2 . . . , Hn}. Straightforward computations show that MJh

is given by

MJh = [kHi Vj kVj Hj ]1≤i, j≤n . (17)

To simplify notation, set

RHi Hj = kHi Vj kVj Hj . (18)

Note that ρ((I2n − PJh )K̃ ) = 0 < 1. Thus TJh < 1 ⇔ R0 < 1. Consequently TJh

can be used as a threshold quantity for the complete system.
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Each RHi Hj can be interpreted as the expected number of secondary infected
humans in patch j that would arise from a single infected human case in patch i ,
in a situation where all the patches contain a completely susceptible population.

Let us now consider a control targeting the mosquito population. The same argu-
ments can be used. Let us consider Jv = {V1, V2, . . . , Vn}, so that MJv is given by

MJv = [kVi Hi kHi Vj ]1≤i, j≤n . (19)

To simplify notation, set

RVi Vj = kVi Hi kHi Vj (20)

and ρ((I2n − PJv )K̃ ) = 0 < 1. Again, TJv < 1⇔ R0 < 1.

5.2.2 Sufficient condition for a patch to be a reservoir of infection

Observe that the matrices MJh and MJv have the same diagonal elements. In addi-
tion, one can check that MJh and MJv have the same eigenvalues. Thus we obtain that
TJh=TJv . Note now that MJh is a nonnegative matrix. If we set D = diag(RH� H�

), � =
1, . . . , n, then D ≤ MJh . It follows that ρ(D) ≤ ρ(MJh ). Then the following inequality
holds:

max
1≤�≤n

RH� H�
≤ TJh . (21)

Thus, if TJh < 1, then max1≤�≤n RH� H�
< 1. It follows that if min1≤�≤n RH� H�

≥ 1,
then TJh ≥ 1. Therefore, if there exists some patch � in the subset {1, 2, . . . , n} such
that RH� H�

≥ 1, then patch � is an infection reservoir.

5.2.3 Case of isolated patches

When the patches are disconnected,

THi = TVi = RVi Vi = RHi Hi = R2
0i . (22)

R2
0i gives the expected number of humans infected by a single infected human during

their entire infectious period (Anderson and May 1991; Ducrot et al. 2009; Ngwa
and Shu 2000). This is the definition of the reproduction number originally used for
malaria. Moreover R0i gives the number of humans or mosquitoes infected by a single
human or mosquito during their entire infectious period, in a population of humans
and mosquitoes that is entirely susceptible.

5.3 Applications

Here, we study two applications of our model; again, we simplify the computations
by assuming that Rc = 1.
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5.3.1 Movement from endemic to non-endemic or malaria areas

Malaria transmission due to the colonization of new territories (unpopulated or sparsely
populated areas) or intercontinental travel can be studied using a two patch model. In
this situation, we have

MH1,H2 =
[

kH1V1 kV1 H1 kH1V2 kV2 H2

kH2V1kV1 H1 kH2V2 kV2 H2

]

=
[RH1 H1 RH1 H2

RH2 H1 RH2 H2

]

.

Straightforward computations show that

TH1,H2 =
1

2

(

RH1 H1 +RH2 H2 +
√

(RH1 H1 −RH2 H2)
2 + 4RH2 H1RH1 H2

)

= R2
0,

TH1 = RH1 H1 +
RH2 H1RH1 H2

1−RH2 H2

and ρ((I4 − P2)K̃ ) = RH2 H2 ,

TH2 = RH2 H2 +
RH2 H1RH1 H2

1−RH1 H1

and ρ((I4 − P4)K̃ ) = RH1 H1,

Let us assume for instance that patch 1 is the non endemic area, i.e., RH1 H1 < 1. It
follows that TH2 is well defined and a proportion sH2 > 1 − 1/TH2 of susceptible
individuals in patch 2 need to be protected to eradicate malaria in the two patches.

5.3.2 Movement from rural to urban areas

Rapid urbanization plays a key role in human migrations, particularly from rural to
urban regions. It is estimated, for example, that urbanization concerns nearly 40% of
Africans. An important feature of this type of human movement is also that it is often
temporary: individuals from rural areas work in cities, but usually come back to their
home villages from time to time.

Consider three patches, with patch 1 a city and patches 2 and 3 villages. We only
consider here malaria control targeting the human population, i.e., Jh = {H1, H2, H3}.
The possible combinations of host types to find a subset J ⊂ Jh such that ρ((I2n −
PJ )K̃ ) < 1 are J ⊂ {H1, H2, H3, {H1, H2}, {H1, H3}, {H2, H3}, {H1, H2, H3}}.

To determine what possible actions can be undertaken to control malaria, we begin
by evaluating TH1 , TH2 and TH3 . If none of these quantities is well defined, we evaluate
T{H1,H2}, T{H1,H3} and T{H2,H3}. If in turn none of these quantities is well defined, we
evaluate T{H1,H2,H3} = ρ

(
M{H1,H2,H3}

)
, which is always well defined (see Sect. 5.2.1).

From (17),

M{H1,H2,H3} =
⎡

⎣
RH1 H1 RH1 H2 RH1 H3

RH2 H1 RH2 H2 RH2 H3

RH3 H1 RH3 H2 RH3 H3

⎤

⎦ .

Suppose we want to control malaria by acting on the human population living in patches
2 and 3 and the impact of their immigration into patch 1. We must then evaluate the
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type reproduction numbers TH2 and TH3 . Computations show that

TH2 = RH2 H2 +
RH2 H1

(RH1 H2 +RH1 H3RH3 H2 −RH1 H2RH3 H3

)

(1−RH1 H1)(1−RH3 H3)−RH3 H1RH1 H3

+RH2 H3

(RH3 H2 +RH3 H1RH1 H2 −RH3 H2RH1 H1

)

(1−RH1 H1)(1−RH3 H3)−RH3 H1RH1 H3

and the infection reservoir other than host 4 is

ρ((I6−PH2)K̃ )= 1

2

(

RH1 H1 +RH3 H3+
√

(RH1 H1 −RH3 H3)
2 + 4RH3 H1RH1 H3

)

.

If ρ((I6 − PH2)K̃ ) < 1, then it suffices to protect a proportion sH2 > 1 − TH2 of
humans in patch 2 to eliminate malaria.

Similarly,

TH3 = RH3 H3 +
RH3 H1

(RH1 H3 +RH1 H2RH2 H3 −RH1 H3RH2 H2

)

(1−RH1 H1)(1−RH2 H2)−RH2 H1RH1 H2

+RH3 H2

(RH2 H3 +RH2 H1RH1 H3 −RH2 H3RH1 H1

)

(1−RH1 H1)(1−RH2 H2)−RH2 H1RH1 H2

and the infection reservoir other than host H3 is

ρ((I6−PH3)K̃ )= 1

2

(

RH1 H1 +RH2 H2+
√

(RH1 H1 −RH2 H2)
2 + 4RH2 H1RH1 H2

)

.

Then one needs to protect a proportion sH3 > 1−TH3 of humans in patch 3 to eliminate
malaria over time, provided of course that ρ((I3 − PH3)K̃ ) < 1.

Now, if min{ρ((I6 − PH3)K̃ ), ρ((I6 − PH2)K̃ )} ≥ 1, then TH2 and TH3 are not
well defined and we cannot control malaria by acting one and one only of patches 2
and 3. A control can then be applied simultaneously in patches 2 and 3. We evaluate
M{H2,H3}:

M{H2,H3} =

⎡

⎢
⎢
⎢
⎢
⎣

RH2 H1RH1 H2

1−RH1 H1

+RH2 H2

RH2 H1RH1 H3

1−RH1 H1

+RH2 H3

RH3 H1RH1 H2

1−RH1 H1

+RH3 H2

RH3 H1RH1 H3

1−RH1 H1

+RH3 H3

⎤

⎥
⎥
⎥
⎥
⎦

.

It follows that T{H2,H3} = ρ(M{H2,H3}), and the infection reservoir other than humans
hosts on patches 2 and 3 is

ρ
(
(I6 − P{H2,H3})K̃

)
= RH1 H1 .
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In cities, the human population is generally protected by many control strategies such as
insecticide-treated bed nets or intermittent prophylactic treatment, and this can reduce
RH1 H1 to a value below 1. Consequently TH2 H3 can be used as a threshold quantity
to control malaria in the three patches, implying that control must act simultaneously
on the two villages.

We now turn to a brief numerical exploration of the behaviour of model (4) in the
particular case of movement between rural and urban areas. We take parameter values
compatible with malaria and use in particular γH,1 = 9.0 × 10−5, and use the force
of infection F2. Take

M R =

⎡

⎢
⎢
⎣

0 m R
12 m R

13

m R
21 0 m R

23

m R
31 m R

32 0

⎤

⎥
⎥
⎦ =

⎡

⎣
0 0.07 0.08

0.02 0 0.000001
0.01 0.000001 0

⎤

⎦

so that the flux of population from the villages to the city is large. In areas where
malaria is endemic, the semi-immune class comprises humans over 5 years of age
(Gatton and Cheng 2004; Kalipeni 1993; Paul et al. 2007; Smith et al. 2001; Taylor-
Robinson 2002). Migration, on the other hand, concerns in majority humans over 15
years of age. Therefore, the migration of susceptible individuals is very low, and we
take M S = (1/100)M R . Since most infected individuals are incapacitated by the
symptoms of malaria and cannot travel, we take M I = (1/100)M R . With the param-
eter values used, we find R0 = 3.864 and the system with migration approaches an
endemic equilibrium.

We find

M{H1 H2 H3} =
⎡

⎣
0.949 3.513× 10−5 2.673× 10−5

16.498× 10−5 3.864 4.390× 10−7

15.022× 10−5 5.254× 10−7 8.395

⎤

⎦

and RH1 H1 = 0.949 < 1. It follows that MH2 H3 is well defined, with

M{H2 H3} =
[

3.864 5.268× 10−7

6.305× 10−7 8.395

]

,

so T{H2 H3} can be used as a threshold quantity. With the parameters used, we find
T{H2 H3} = T{H1 H2 H3} = 8.395.

6 Conclusion

We formulated a metapopulation model for the spatial spread of malaria. We subdi-
vided space into n patches wherein we modelled malaria transmission between human
host and mosquito vector by dividing the human population into three subclasses: sus-
ceptible, infectious and semi-immune while the mosquito population is divided in
two subclasses: susceptible and infectious. We modeled the spatial spread of malaria
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between these n patches via the migration of humans. We showed that there exists
a unique disease free equilibrium (DFE). The local stability of the DFE is governed
by the basic reproduction number R0, but the global dynamics of the model is not
governed by the latter quantity. Indeed, there can exist a backward bifurcation at
R0 = 1 when the disease induced death rate is large enough, leading to bi-stability
when Rc < R0 < 1. Note that from the implicit function theorem, the backward
bifurcation can be triggered in other patches if it is present in only one patch when
there is no travel, at least when migration is initially increases. Bi-stability implies in
particular that a control strategy for malaria epidemics may require R0 to be reduced
to below Rc < 1 to eradicate the disease.

The potential presence of a backward bifurcation in a one-patch setting is related to
the increase of the number of bites per habitant. As explained in Sect. 4, the occurrence
of such a phenomenon is sensitive to a decrease of the total number of humans and
to an increase of the total density of vectors. As a consequence, villages are locations
that are good candidate for exhibiting bistability dynamics; such dynamics might spill
over into urban areas because of human movements. Finally, note that the rate at which
individuals acquire immunity has a stabilizing effect on the dynamics of malaria trans-
mission, since it increases the out-flux of infected human. The faster the immunity is
reached, the smaller the bistability region.

We then showed how type reproduction numbers could be used in a metapopulation
framework and proposed a methodology to identify the different reservoirs of infec-
tion. A reservoir of infection is a subpopulation to which applying a (linear) control
strategy suffices to eradicate the disease in the whole system. To identify these spatial
infection reservoirs, we formulated the type reproduction number specific to each host
type in each patch. This was numerically applied with realistic parameters to study
the impact of the movement of human population on malaria transmission in different
realistic situations: from rural into urban areas and colonization of heretofore unused
territories.

Future work will consider the combined effects of transmission blocking immunity
and of direct reinfection of the partially immune individuals.

Appendix A: Proof of Theorem 3

The proof of the result uses the algebraic properties of some sets of matrix. We begin
by defining the subsets J and H of M3(R) by

J =
⎧
⎨

⎩
J (a, b, c, d) =

⎡

⎣
a 0 0
b c 0
0 0 d

⎤

⎦ , (a, b, c, d) ∈ R
4

⎫
⎬

⎭

and

H =
⎧
⎨

⎩
H(a, b, c) =

⎡

⎣
a 0 0
b c 0
0 0 0

⎤

⎦ , (a, b, c) ∈ R
3

⎫
⎬

⎭
,
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respectively. The sets J and H satisfy the following properties:

(i) I3 = J (1, 0, 1, 1) ∈ J .
(ii) J and H are closed under addition and multiplication.

(iii) For all (J, H) ∈ J ×H, J · H = H · J ∈ H, J + H ∈ J .

Properties (ii)–(iii) are obtained by straightforward computations. Now, introduce

G = {G ∈M3n(R) : G�s ∈ H for all � �= s and G�� ∈ J } , (23a)

U (G) = G ∩ GL3n(R). (23b)

The following result holds:

Lemma 1 The set G forms a subalgebra of the algebra M3n(R). Moreover the sub-
set U (G) of the invertible elements of G forms a subgroup of the group of invertible
matrices GL3n(R).

Proof From property (i), we have that I3n ∈ G, and from properties (ii)–(iii), G is
closed under linear combination. So it remains to check that the product of two ele-
ments of G is itself an element of G. Let A = (A�s)1≤�,s≤n and B = (B�s)1≤�,s≤n

be two given elements of G, i.e., A�s, B�s ∈ H for all � �= s and A��, B�� ∈ J . Let
C = (C�s)1≤�,s≤n be the product of A and B. Let us verify that the matrix C belongs
to G.

First we show that for all � = 1, . . . , n, C�� ∈ K. By definition, for all �, s, C�s =∑n
k=1 A�k Bks . It follows that C�� =∑n

k=1,k �=� A�k Bk�+A�� B��. It is clear that for k �=
�, A�k, Bk� ∈ H. Moreover, from property (ii), A�k Bk� ∈ H and

∑n
k=1,k �=� A�k Bk� ∈

H. Similarly, A��, B�� ∈ J , then A�� B�� ∈ J . Consequently C�� ∈ J from prop-
erty (iii).

Now, for all � �= s, we show that C�s =∑n
k=1 A�k Bks ∈ H. If k = �, (resp. k = s),

then A�� B�s ∈ H (resp. A�s Bss ∈ H) from property (iii). If k �= s and k �= �, then
A�k Bks ∈ H from property (ii). It follows C�s ∈ H for all � �= s.

The second assertion directly follows from the first one.

We now return to the next generation operator K = FV−1. The matrix V belongs
to the set U (G). It follows from Lemma 1 that its inverse V−1 remains in the set U (G).
We conclude the proof of Theorem 3 by straightforward computations of the product
FV−1.

Appendix B: Bifurcation analysis for one patch

The aim of this appendix is to study the existence of endemic steady states for the
system
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d SH
dt = ΛH + βH RH + ρH IH − ã1σV H IV SH

SH+RH+IH
− μH SH

d IH
dt = ã1σV H IV SH

SH+RH+IH
− εH IH

d RH
dt = αH IH − δH RH

d SV
dt = ΛV − μV SV − ã1(σH V IH+σ̂H V RH )SV

SH+RH+IH

d IV
dt = ã1(σH V IH+σ̂H V RH )SV

SH+RH+IH
− μV IV ,

(24)

the epidemic model under consideration for one patch with force of infection F1.
(Note that we have dropped the patch index for convenience.) Before stating our main
result, let us recall that for the model under consideration, R0 is given by the following
expression

R0 =
√

ã2
1σV H

(

σH V + σ̂H V
αH

δH

)
ΛV μH

εH ΛH μ2
V

, (25)

and let us set

A2 = εH I ∗H γH

ΛH

(
μV γH

μH
−�

)

,

A1 = �
ΛV ã1σV H

μV
− εH I ∗H

(
2μV γH

μH
−�

)

,

A0 = ΛH μV εH I ∗H
μH

(
1−R2

0

)
,

wherein

� = ã1

(

σH V + σ̂H V
αH

δH

)

and I ∗H =
ΛH

μH + γH + αH μH
δH

.

Our main result is summarized in the following theorem, where R0 refers to (25).

Theorem 4 System (24) may have up to three biologically plausible equilibria.

(i) The disease free equilibrium is always a boundary equilibrium.
(ii) When R0 > 1 the system has a unique positive equilibrium.

(iii) When R0 < 1 then
– If A2 ≤ 0 there is no positive equilibrium.
– If A2 > 0 system (24) has two positive equilibria if and only if

− A1

2A2
< I ∗H and A2

1 − 4A2 A0 ≥ 0,

with the two equilibria coalescing when A2
1 − 4A2 A0 = 0.
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Proof The nontrivial stationary states of system (24) are the positive solutions of the
system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

V = ΛV
μV

, RH = αH
δH

IH

ΛH +
(

βH αH
δH
+ ρH

)
IH − ã1σV H IV SH

SH+(1+ αH
δH

)IH
− μH SH = 0

ã1σV H IV SH

SH+
(

1+ αH
δH

)
IH
− εH IH = 0

ã1

(
σH V+σ̂H V

αH
δH

)
IH

(
ΛV
μV
−IV

)

SH+(1+ αH
δH

)IH
− μV IV = 0.

. (26)

Adding the second and the third equation leads to

SH =
ΛH −

(
μH + γH + αH μH

δH

)
IH

μH
. (27)

Setting

I ∗H =
ΛH

μH + γH + αH μH
δH

,

we obtain that IH ∈ [0, I ∗H ) and plugging (27) into (26) we obtain that IH is an
intersection point for the curves

IV = �1(IH ) = �
ΛV
μV

IH

ΛH
μV
μH
+
(
� − μV γH

μH

)
IH

,

and

IV = �2(IH ) = ΛH

ã1σV H I ∗H
(ΛH − γH IH )IH

I ∗H − IH
,

where we have set

� = ã1

(

σH V + σ̂H V
αH

δH

)

.

On the one hand, if (SH , IH , RH , SV , IV ) is a positive steady states of system (24)
then IH ∈ [0, I ∗H ) and

�1(IH ) = �2(IH ). (28)

On the other, when IH ∈ [0, I ∗H ) is a solution of (28) then straightforward computa-
tions show that it provides a positive solution for the steady state problem.
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Thus it remains to discuss the existence of solutions for (28) together with IH ∈
[0, I ∗H ). The problem is rewritten as follow:

IH

(
A2 I 2

H + A1 IH + A0

)
= 0, (29)

with

A2 = εH I ∗H γH

ΛH

(
μV γH

μH
−�

)

,

A1 = �
ΛV ã1σV H

μV
− εH I ∗H

(
2μV γH

μH
−�

)

.

A0 = ΛH μV εH I ∗H
μH

(
1−R2

0

)
.

Considering (29) for IH ∈ (0, I ∗H ), we obtain the second degree equation

f (IH ) = A2 I 2
H + A1 IH + A0 = 0.

To study this equation, we compute f (I ∗H ). To do so, set ζ = μH + γH + αH μH
δH

,
giving

ζ 2

ΛH
f (I ∗H ) = A2ΛH + A1ζ + μV εH I ∗H

μH

(
1−R2

0

)
ζ 2

= εH
ΛH

ζ
γH

(
μV γH

μH
−�

)

+�
ΛV ã1σV H

μV
ζ − εH ΛH

(
2μV γH

μH
−�

)

+μV εH ΛH ζ

μH
− ζ ã1σV H �

ΛV

μV

= εH ΛH

(
γH

ζ

(
μV γH

μH
−�

)

− 2μV γH

μH
+� + μV ζ

μH

)

= εH ΛH

(
μV

μH

(
γH√

ζ
−√ζ

)2

+�

(

1− γH

ζ

))

> 0.

So, when R0 > 1 then f (0) < 0 and there exists a unique positive equilibrium. When
R0 < 1 then f (0) > 0 and the equation f (IH ) = 0 has no positive solution in the
interval (0, I ∗H ) if A2 ≤ 0. When R0 < 1 and A2 > 0 then the equation f (IH ) = 0
has two different positive roots in (0, I ∗H ) if and only if

− A1

2A2
< I ∗H and A2

1 − 4A2 A0 > 0,

and one root (of multiplicity two) when − A1
2A2

< I ∗H and A2
1 − 4A2 A0 = 0. This

completes the proof of the result.
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