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Abstract

We develop a deterministic model describing the dynamics of infected
cells wearing n epitopes recognizable by n CTL clones, in which mutation
can lead to the epitopes becoming unrecognizable by their cognate CTL
clone. Some mathematical and computational analyses of the resulting
large scale system of 2n+n equations are conducted. The model is used to
examine the ability of CTL response to suppress infection in the presence
of mutations and conditions are established that lead to CTL escape. We
show in particular that escape happens in the case where the growth rate
of the mutant with no recognizable epitopes is large enough, regardless of
other conditions.

1 Introduction

Pathogens evolve by substitutions of amino acids at specific locations in DNA
or RNA sequences. This process is called mutation and takes place during the
replication phase of the pathogens. Depending on what substitution takes place
and/or the location of the substitution, mutations may have different conse-
quences [6]. They can be associated with an increase of survival or reproduction
rates, or with a catastrophic cost to viral fitness that can lead to extinction of
the strain [18]. Mutations can occur in epitopes, potentially leading to a de-
crease of the binding affinity of Cytotoxic T lymphocytes (CTL) receptors or
preventing the recognition by the cognate CTL clone. Hence, specific muta-
tions in epitopes can abrogate their CTL recognition and allow infected cells
to escape CTL action (Figure 1). Because of the absence of proof-reading dur-
ing virus replication, RNA viruses such as influenza and HIV exhibit higher
mutation-inducing error rates are exhibited [15, 17].
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Figure 1: Mechanism of CTL escape with v = 6 epitopes (arrows at the cell
membrane), of which n = 3 are recognized by CTL clones (shown here by CTLs
and epitopes of the same colour); unrecognized epitopes are shown as black
arrows. In the centre case, the pink epitope has mutated (indicated by a white
arrow), but there are still two recognized epitopes and the cell is killed. In the
case on the right, all recognizable epitopes have mutated and the infected cell
escapes detection by CTLs.

For any infection in which CTLs play a role in virus elimination, CTL escape
is an important mechanism to be investigated (see, e.g., [7, 16] for Hepatitis B,
[14, 19] for Influenza and [11] for HIV). For instance, influenza and HIV/SIV
are highly sensitive to mutations in epitopes [20]. Understanding the complex
mechanisms of immune escape has major implications for drug and CTL-based
vaccine design [8].

Mathematical models of viral infections including mutations abound, in par-
ticular in the context of HIV/AIDS and, to a lesser extent, influenza. Of rele-
vance here, the model of [2] considers a population of mutants but does not track
successive mutations. Similarly, the model of [1] explicitly describes host cell
populations, viral density and uses a stochastic description of mutation events.
Note also that from a modelling perspective, the problem is similar to that of
drug resistance in cancer; see, e.g., [10].

To investigate the conditions of CTL escape, we propose a model describing
the dynamics of infected cells wearing v epitopes recognized by n ≤ v CTL
clones and the interactions between these populations. The dynamics of viruses
is described implicitly in the generation of infected cells. Some mutations result
in the mutation of an epitope inducing the non-recognition of this epitope by
the cognate CTL clone. Backward mutations of epitopes are not considered.
Contrary to the models discussed above, we track explicitly the densities of
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cells infected by viruses showing specific mutations. On the other hand, our
description of mutations is deterministic.

2 The mathematical model

2.1 Modelling strategy

One of the consequences of the infection of a cell by a virus is that the infected
cell exhibits specific epitopes on its membrane. Assume there are v such epi-
topes; of these, n ≤ v are recognized by CTLs, i.e., there are n relevant CTL
clones each recognizing a specific expressed epitope (Figure 2). An error occur-
ring during virus replication results in the mutation of an epitope, which can
induce the non-recognition of this epitope by the cognate CTL clone, leading
to the latter’s inability to kill infected cells expressing this epitope (Figure 1).
Here, we only consider those mutations that do lead to the non-recognition of
a previously recognized epitope. It is assumed that mutation in an epitope re-
sults from an error during the replication of its base pairs. Mutations can come
at a cost or be beneficial for the fitness of virions; whether it is the former or
the latter is described through the growth rate of the infected cell population.
Backward mutations of epitopes are not considered.

For sake of simplicity, neither the virus nor host cell dynamics are explicitly
described; virus replication in the infected cells, virus release as well as invasion
of new host cells by the virus are implicit (Figure 3) and only the dynamics
of the infected cell populations is modelled (Figure 4). Because of this, the
model implicitly assumes an infinite number of target cells, which leads in some
cases to unbounded solutions (see later). However, it is felt that the trade-off is
acceptable because of the reduction of model complexity that results from this
hypothesis.

2.2 Populations of interest

Two types of cell populations are considered: specialized killer cells (or CTLs)
and virus-infected cells (Figure 2). Note that here and below, we use state
variables to represent the number of cells of a certain type that are present, but
also as the name of cells of that type.

• Ke is the number of copies of the specialized CTL clone recognizing an
epitope of type e, with e ∈ {1, . . . , n}. We also call Ke “CTLs of type e”
or “Ke clones”.

• For A ⊆ {1, . . . , n}, TA is the number of infected cells with the set A of
mutated epitopes.

The population of infected cells is more specifically subdivided as follows:

• T (A = ∅) is the number of infected cells expressing all recognizable epi-
topes (types 1 to n). The population T is recognized by any CTL clone;
it is also called the wild type-infected population, or wild type for short.
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Figure 2: Populations of CTL clones, infected cells and possible mutations in the
case with v = 6 epitopes expressed on the cell membrane and n = 5 recognizable
epitopes. See Figure 1 for the meaning of symbols used.

• Ti is the number of infected cells in which the epitope of type i has mu-
tated; Ti cells are recognized by all CTL clones except Ki clones.

• Tij is the number of infected cells in which epitopes of types i and j have
mutated; Tij cells are recognized by all CTL clones except Ki and Kj . By
convention, in Tij , i < j.

• Tij` is the number of infected cells in which epitopes of type i, j and `
have mutated; cells of type Tij` are recognized by all CTL clones except
Ki, Kj and K`. By convention, in Tij`, i < j < `.

...

• T1...n (A = {1, . . . , n}) is the number of infected cells expressing no recog-
nizable epitopes, i.e., having all n epitopes mutated. None of the special-
ized CTLs recognize infected cells T1...n.
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Figure 3: Dynamics of infected cell populations with v = 6 epitopes, of which
n = 5 are recognized. Only the dynamics of the infected cell populations is
explicitly modelled (in black). For sake of simplicity, neither the dynamics of
viruses nor host cells are explicitly described; virus replication in the host cell
(the infected cell), virus release, as well as invasion of new host cells by the virus
are implicit (in light blue). It is assumed that during virus replication, an error
can occur resulting in an epitope mutation, with u the number of base pairs
constituting an epitope and η the probability of error in the copy of a base pair.
The parameter g is the growth rate of infected wild type cells.
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Figure 4: Dynamics of infected cells. The case shown has v = 6 epitopes and
n = 5 recognizable epitopes. Parameters gA, A ⊆ {1, . . . , n}, are the growth
rates of virus-infected cells, d is the death rate of infected cells, u is the number
of base pairs constituting an epitope and η is the probability of error in base
pair copy.
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Finally, variable T6e is the total number of infected cells expressing a non-mutated
epitope of type e:

T6e = T +

n∑
i=1
i6=e

Ti +

n∑
j=i
j 6=e,i

Tij +

n∑
l=j

l 6=e,i,j

Tijl +

n∑
m=l

m 6=e,i,j,l

· · ·





=
∑
e 6∈A

A⊆{1,...,n}

TA. (1)

Any infected cell counted in T6e is recognized by CTLs of type e, Ke.
There is one population of infected cells, T , expressing all recognizable epi-

topes; there are (n1 ) = n populations of infected cells with 1 mutated epitope

(Ti), (n2 ) = (n−1)n
2! populations of infected cells with 2 mutated epitopes (Tij),

etc. and finally, (nn) = 1 population of infected cells with n mutated epitopes
(T1...n). Hence, the model considers n CTL populations and 1 +

∑n
i=1 (ni ) =∑n

i=0 (ni ) = 2n populations of infected cells.

2.3 Model assumptions

In the absence of CTLs, the dynamics of infected cells is governed by the birth
(generation) and death of infected cells (Figure 4). Death of infected cells oc-
curs at the per capita rate d, implicitly combining natural death of host cells,
virus-induced death and death resulting from action of the innate system (NK-
induced death). Generation of new infected cells by a virus is proportional to
the population of cells currently infected by this virus. The proportionality
incorporates the “rate of growth” gA, A ⊆ {1, . . . , n}, of the infected cells TA
expressing the A mutated epitopes and the probability of mutations in epitopes.
The parameter gA, called the rate of growth of infected cells of type TA, com-
bines basic steps of viral infection dynamics (see, e.g., Figure 1 in [12]). Thus,
gA is a combination of level of uninfected cells, viral load at quasi-equilibrium
(including the rate of virus production and clearance, which is related to virus
fitness) as well as the rate of infection of host cells by virus. It is assumed that
mutations considered here can affect the rate of infection by virus and/or virus
fitness; both parameters are implicitly included in gA. Hence, in the present
model, the rate of growth gA of the different types of infected cells TA can
vary in response to mutation. However, it is assumed that the rate of death of
infected cells is not affected by mutation and is the same for all infected cell
populations.

An epitope comprises u base pairs. The probability of error in the copy of
a base pair is η. For an epitope to mutate, at least one error in its base pairs is
needed. It is assumed that the number of mutated epitopes follows a binomial
law with parameters n and ε; the probability ε = uη of a mutation in an epitope
is derived in Appendix A.1.

A Ke CTL clone is able to bind the non-mutated epitope of type e; interac-
tions between Ke CTLs and infected cells expressing epitope e induce the death
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of infected cells at the per capita rate κe. In turn, encounters between CTL
clones of type e and infected cells expressing non-mutated epitopes of type e
induce the proliferation of Ke. This infection-induced proliferation of CTLs of
type e is described by a saturating function f(·) of the number T6e of infected
cells expressing the non-mutated epitope of type e:

f(T6e) = s
Tm6e

hme + Tm6e
, (2)

where s is the maximum rate of infection-induced proliferation of CTLs (com-
mon to all CTL clones), he is the number of infected cells expressing epitope
e necessary to obtain the half-saturation s/2. The parameter he describes T
Cell Receptor (TCR) affinity; different CTL clones may proliferate at different
rates depending on TCR affinity (ability to bind epitopes). A higher affinity is
described by a smaller value of he: fewer infected cells are needed to induce a
given CTL proliferation rate. For m = 1, f(·) is a Michaelis-Menten function;
for m > 1, it is a Hill function. Finally, in the absence of infection, CTLs are
formed at the constant rate ae and die at the per capita rate ce.

2.4 Governing equations

Under the modelling assumptions listed above, the model takes the following
form:

dT

dt
= ((1− ε)ng − d)T − T

n∑
e=1

κeKe, (3a)

dTi
dt

=
(
(1− ε)n−1gi − d

)
Ti + (1− ε)n−1εgT − Ti

n∑
e=1
e 6=i

κeKe, (3b)

where i = 1, . . . , n,

dTij
dt

=
(
(1− ε)n−2gij − d

)
Tij + (1− ε)n−2

[
ε(giTi + gjTj) + ε2gT

]
− Tij

n∑
e=1
e 6=i,j

κeKe, (3c)

where i, j = 1, . . . , n and i < j,

...

dT1...n
dt

= (g1···n − d)T1...n +
∑

B({1,...,n}

gBε
n−|B|TB , (3d)

dKe

dt
= ae − ceKe + f(T6e)Ke, e ∈ {1, · · · , n}. (3e)
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Parameter Interpretation
n Number of CTL clones recognizing specific epitopes
ae Rate of formation of CTLs
ce Rate of death of CTLs
s Maximal rate of proliferation of CTLs induced by infection
he Number of infected cells expressing epitope e necessary to ob-

tain the half-saturation s/2 (“affinity”)
m Type of growth dynamics of CTLs (m = 1: Michaelis-Menten;

m > 1: Hill)
d Rate of death of infected cells (natural death of cells+virus-

induced death+innate immune system-induced death)
gA Intrinsic rate of growth of infected cells (replication of virions

+ transmission)
η Probability of error in base pair copy
u Number of base pairs per epitope
ε Probability of mutation in epitopes (= uη)
κe Per capita rate of death induced by the cognate CTL clone of

type e

Table 1: Parameters used in system (3). When present, the index e ∈ {1, . . . , n}
refers to CTL clones recognizing epitopes of type e, while the index A refers to
the set of mutated epitopes A ⊆ {1, . . . , n} (possibly ∅).

System (3) is a (2n + n)−dimensional system; it is considered with nonnegative
initial conditions such that T (0) > 0, TA(0) = 0 with A ⊆ {1, . . . , n} and A 6= ∅.
Parameters are listed in Table 1; all parameter values are positive.

Note that equations (3a)–(3d) can be written for A ⊆ {1, . . . , n} as

dTA
dt

=

(1− ε)n−|A|gA − d−
∑
e 6∈A

κeKe

TA+(1−ε)n−|A|
∑
B(A

gBε
|A|−|B|TB . (4)

3 Behaviour of a few submodels

It is easy to show that initial value problems composed of system (3) with
nonnegative initial conditions have uniquely defined solutions. Also, the non-
negative orthant R2n+n

+ is positively invariant under the flow of (3). Further-
more, solutions with T (0) > 0 are such that TA(t) > 0 for all t > 0 and all
A ⊆ {1, . . . , n} (see Appendix A.2).

To understand the effect of each population on the dynamics of the whole
system (3), we consider here a few submodels derived from (3).
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3.1 Dynamics of CTLs in the absence of infection

The first result concerns the dynamics of CTLs without stimulation by infection,
i.e., (3e) for e ∈ {1, . . . , n} when TA ≡ 0 for all A ⊆ {1, . . . , n}.

Theorem 3.1 The dynamics of the CTLs in the absence of infection is given
for e ∈ {1, . . . , n} by

dKe

dt
= ae − ceKe. (5)

System (5) has the unique positive (globally) asymptotically stable equilibrium
(a1/c1, . . . , an/cn).

The proof of Theorem 3.1 is straightforward from the uncoupled linear nature
of (5). Thus, in the absence of infection (or after infection), CTL clones of
type e are maintained at the constant level ae/ce, which is interpreted as the
maintenance of memory cells.

3.2 Dynamics of infected cells in the absence of CTLs

The dynamics of infected cells in absence of CTLs is now studied. To do so,
the infection-only subsystem is considered, consisting of equations (3a)-(3d) in
which Ke ≡ 0, ∀e ∈ {1, . . . , n}. Hereafter, equilibrium values are indicated with
∗.

Theorem 3.2 The infection-free equilibrium

T ∗ = T ∗i = T ∗ij = · · · = T ∗1...n = 0

of the infection-only subsystem (3a)-(3d) is (globally) asymptotically stable if
the following condition is satisfied:

∀A ⊆ {1, . . . , n}, (1− ε)n−|A|gA < d. (6)

The proof of Theorem 3.2 is given in Appendix A.3. Condition (6) in Theo-
rem 3.2 leads to the eradication of the infection in absence of CTL interven-
tion. For the infection-free equilibrium of the infection-only subsystem (3a)-
(3d) to be stable, cells with no mutated epitope should have a growth rate
(1 − ε)ng < d; those with 1 mutated epitope should have (1 − ε)n−1gi < d.
Continuing, infected cells with j mutated epitopes should have a growth rate
satisfying (1− ε)n−jgi1···ij < d and, ultimately, cells with all mutated epitopes
should grow at a rate g1···n < d.

Condition (6) plays a role that is similar to the reproductive fitness of the
virus, which is proportional to the number of offspring it can produce during the
lifetime of the cell it infects [3]. To state Theorem 3.2 in terms of reproductive
fitness, the infection-free equilibrium is (globally) asymptotically stable if

max
A⊆{1,...,n}

(1− ε)n−|A|

d
< 1.
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3.3 Dynamics in the absence of mutations

Next, the interactions between infected cells and CTLs are considered in the
absence of mutations. System (3) with no mutation simplifies to the following
system:

dT

dt
= (g − d)T − T

n∑
e=1

κeKe, (7a)

dKe

dt
= ae − ceKe +

sTm

hme + Tm
Ke, e ∈ {1, . . . , n}. (7b)

The next result (proved in Appendix A.4) defines the condition for the eradi-
cation of infection by CTL clones in the absence of mutations.

Theorem 3.3 System (7) has an infection-free equilibrium (0, a1/c1, . . . , an/cn)
that is locally asymptotically stable if

g < d+

n∑
e=1

κeae
ce

(8)

and unstable if the reverse inequality holds.

Thus, in the absence of mutations, infection occurs whenever the reverse in-
equality to (8) holds.

4 Complete model

4.1 Preliminary considerations

The following result (proved in Appendix A.5) provides information on the
existence of equilibria of the complete system (3) with mutation.

Theorem 4.1 i) A necessary condition for existence of an interior infection
equilibrium (with all types of infected cells present) for system (3) is

(1− ε)ng > d. (9)

ii) If T ∗A = 0 for some A ⊆ {1, . . . , n}, then T ∗B = 0 for all B ⊆ A.

iii) Suppose that T (0) > 0. A sufficient condition for solutions of system (3)
to become unbounded is

g1...n > d. (10)

In ii), we say that if an infected cell equilibrium component is equal to zero,
then equilibrium components of all possible infected cell ancestors are also equal
to zero. The notion of infected cell ancestors is illustrated for n = 2 in Figure
5 in which all possible equilibria of the system are listed.

Condition (10) in iii) provides a sufficient condition for CTL escape, since
in this case, at least the infected cell population T1...n persists.
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Figure 5: Infection components of possible equilibria with n = 2 epitopes. A
“+” near an arrow head indicates that the variable at the origin of the arrow is a
positive component of the equilibrium, “0” indicates that the equilibrium value
for that variable is zero. In black, the possible equilibria; in gray, equilibria
ruled out using ii) in Theorem 4.1.
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4.2 Case of n = 1 epitope

The complete model is first considered with one recognizable epitope, i.e., system
(3) is studied with n = 1; the state variables are T , T1 and K1. The following
result, proved in Appendix A.6, lists all possible equilibria of (3) and their local
asymptotic stability in this case.

Theorem 4.2 The infection-free equilibrium,(
0, 0,

a1
c1

)
,

always exists and is locally asymptotically stable if the following conditions are
satisfied:

• (1− ε)g < d+
a1κ1
c1

, [control of wild type]

• g1 < d. [control of mutant]

The (unique) infection equilibrium,

EIE =

(
T ∗,

εg

d− g1
T ∗,

(1− ε)g − d
κ1

)
,

where T ∗ = h1

(
a1κ1−c1((1−ε)g−d)

(c1−s)((1−ε)g−d)−a1κ1

)1/m
, exists whenever

g1 < d (11a)

and additionally, if c1 < s, there holds that

d+
a1κ1
c1

< (1− ε)g, (11b)

while if c1 > s, there holds that

d+
a1κ1
c1

< (1− ε)g < d+
a1κ1
c1 − s

. (11c)

When it exists, the infection equilibrium is locally asymptotically stable.

Note that (11a) relates to Theorem 4.1: d < (1− ε)g is the necessary condi-
tion in i) and g1 < d is the contrapositive of the sufficient condition in iii) when
n = 1. Also, if c1 < s, then the condition for existence (and local asymptotic
stability) of the infection equilibrium is that the infection-free equilibrium loses
stability because the control of the wild type fails. For c1 > s but very close to
s, (11c) is roughly equivalent to (11b). Then, as the difference between c1 and
s increases, condition (11c) becomes harder and harder to satisfy.

Note now that the dynamics of T1 does not influence that of the other vari-
ables; see System (21) in the proof (Appendix A.6). So one can consider the
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subsystem consisting of the equations for T and K1, (21a) and (21c), respec-
tively. From the proof, it is clear that in that subsystem, if the condition for
control of the wild type in Theorem 4.2 holds, then the infection free equilib-
rium (T ∗,K∗1 ) = (0, a1/c1) is locally asymptotically stable. Conditions for the
existence of the infection equilibrium (T ∗, ((1 − ε)g − d)/κ1), with T ∗ as in
Theorem 4.2, remain as in the theorem, (11b) if c1 < s and (11c) if c1 > s.
Thus, if the condition for the control of the mutant is broken, i.e., if g1 > d,
then T1 becomes unbounded; see the equation for the dynamics of T1, (21b),
in the proof. However, while local asymptotic stability of the equilibria for the
three variables T , T1 and K1 is lost because of the unboundedness of T1, that of
the subsystem with only the wild type and CTL populations is governed by the
condition on control of the wild type: if (1−ε)g < d+κ1a1/c1, the infection-free
equilibrium is locally asymptotically stable, while if (1−ε)g > d+κ1a1/c1 (and
(1 − ε)g not too large in the case where c1 > s), the infection equilibrium is
locally asymptotically stable.

The unbounded situation is unrealistic and is a consequence of the absence of
target cell populations in the model, which, in effect, is equivalent to assuming
that the target cell population is infinite. However, in practice, the situation
where T1 → ∞, which is written T ∗1 = ∞, corresponds to one of escape and
a particularly interesting case is that where (T ∗,K∗1 , T

∗
1 ) = (0,+,∞), with

the wild type absent but the mutant present because of the selection pressure
exerted by CTL killing.

Numerically, it is observed that in the case where conditions (11b) or (11c)
fail to hold, there are instances where T becomes unbounded. However, we have
been so far unable to ascertain mathematically the dynamics in this case.

Special case of growth-neutral mutations. Suppose that mutations have
neither beneficial nor detrimental effects on the growth rate of infected cells,
i.e., g = g1. Then all conditions of Theorem 4.2 reduce to g < d. In this case,
there is a unique equilibrium, the infection-free equilibrium, which is locally
asymptotically stable when g < d; the infection equilibrium does not exist.
When g > d, there is escape, solutions become unbounded (case iii) in Theorem
4.1).

4.3 Case of n = 2 epitopes

System (3) is now considered with n = 2 epitopes. The following theorem
establishes the existence of equilibria and is proved in Appendix A.7.

Theorem 4.3 Consider system (3) with n = 2. There exist

• an infection-free equilibrium
(

0, 0, 0, 0, a1c1 ,
a2
c2

)
, which always exists;

• a boundary infection equilibrium of type 1, (0, T ∗1 , T
∗
2 , T

∗
12,K

∗
1 ,K

∗
2 ), with

T ∗1 = h2

(
a2κ2 − c2 ((1− ε)g1 − d)

(c2 − s) ((1− ε)g1 − d)− a2κ2

)1/m

,
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T ∗2 = h1

(
a1κ1 − c1 ((1− ε)g2 − d)

(c1 − s) ((1− ε)g2 − d)− a1κ1

)1/m

,

T ∗12 =
ε

d− g12
(g1T

∗
1 + g2T

∗
2 ) ,

K∗1 =
(1− ε)g2 − d

κ1
, K∗2 =

(1− ε)g1 − d
κ2

;

• a boundary infection equilibrium of type 2, (0, 0, T ∗2 , T
∗
12,K

∗
1 ,K

∗
2 ), with

T ∗1 = 0, T ∗2 = h1

(
a1κ1 − c1 ((1− ε)g2 − d)

−a1κ1 + (c1 − s) ((1− ε)g2 − d)

)1/m

,

T ∗12 =
ε

d− g12
g2T

∗
2 , K∗1 =

(1− ε)g2 − d
κ1

, K∗2 =
a2
c2

;

• a boundary infection equilibrium of type 3, (0, T ∗1 , 0, T
∗
12,K

∗
1 ,K

∗
2 ), with

T ∗1 = h2

(
a2κ2 − c2 ((1− ε)g1 − d)

−a2κ2 + (c2 − s) ((1− ε)g1 − d)

)1/m

, T ∗2 = 0,

T ∗12 =
ε

d− g12
g1T

∗
1 , K∗1 =

a1
c1
, K∗2 =

(1− ε)g1 − d
κ2

;

Boundary infection-equilibria of type k, with k ∈ {1, 2, 3}, exist under the fol-
lowing conditions:

• g12 < d,

• For T ∗i 6= 0 with i ∈ {1, 2},

– if cj > s (j 6= i), d+
ajκj

cj
< (1− ε)gi < d+

ajκj

cj−s ,

– if cj < s (j 6= i), d+
ajκj

cj
< (1− ε)gi.

For illustration, possible equilibria of system (3) with n = 2 epitopes are
listed in Figure 5. Note that an interior infection equilibrium of the form
(T ∗, T ∗1 , T

∗
2 , T

∗
12,K

∗
1 ,K

∗
2 ) could exist if the necessary condition (1− ε)2g > d >

g12 were to hold. However, we have not been able to prove that such an equi-
librium does indeed exist.

The next result (proved in Appendix A.8) concerns the infection-free equi-
librium.

Theorem 4.4 The infection-free equilibrium (0, 0, 0, 0, a1c1 ,
a2
c2

) is locally asymp-
totically stable if

• Wild type condition: (1− ε)2g < d+ κ1
a1
c1

+ κ2
a2
c2

,

• Mutant condition 1: (1− ε)g1 < d+ κ2
a2
c2

,
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• Mutant condition 2: (1− ε)g2 < d+ κ1
a1
c1

,

• Mutant condition 3: g12 < d.

Note that conditions for the existence of the boundary equilibrium of type 1
are the contrapositives of “Mutant condition 1” and “Mutant condition 2” in
Theorem 4.4. The following result (with proof in Appendix A.9) gives the
conditions for the local asymptotic stability of the boundary infection-equilibria
of type 1 to 3.

Theorem 4.5 When it exists, the boundary infection equilibrium of type 1,
(0, T ∗1 , T

∗
2 , T

∗
12,K

∗
1 ,K

∗
2 ), is locally asymptotically stable if

(1− ε)2g + d < (1− ε)(g1 + g2).

When it exists, the boundary infection equilibrium of type 2, (0, 0, T ∗2 , T
∗
12,K

∗
1 ,K

∗
2 ),

is locally asymptotically stable if

(1− ε)2g < (1− ε)g2 + κ2
a2
c2
.

When it exists, the boundary infection equilibrium of type 3, (0, T ∗1 , 0, T
∗
12,K

∗
1 ,K

∗
2 ),

is locally asymptotically stable if

(1− ε)2g < (1− ε)g1 + κ1
a1
c1
.

At the boundary-infection equilibria, wild type-infected cells are eradicated
by the immune response; however, infected cells with mutated epitopes escape
from CTL control. The local asymptotic stability of boundary equilibria of
types 1 to 3 thus presents a new situation where escape occurs, namely, one
where the wild type is eradicated while some mutants persist. Thus, Theorem
4.5 states additional conditions for escape in the case of n = 2 epitopes (recall
that it suffices that g12 > d for the infected cell population with all mutated
epitotes to become unbounded, another situation with escape).

Special case of growth-neutral mutations. Suppose that mutations have
neither beneficial nor detrimental effects on the growth rate of infected cells,
i.e., ∀A ⊆ {1, 2}, gA = g. Then the necessary condition for the existence of an
interior infection equilibrium is (1− ε)2g > d > g, which never holds. Similarly,
conditions in Theorem 4.3 for existence of boundary infection-equilibria (of types
1, 2 and 3) are not satisfied. There are no infection equilibria. In this case,
there is a unique equilibrium, the infection-free equilibrium, which is locally
asymptotically stable when g < d (all conditions of Theorem 4.4 reduce to the
unique condition g < d). Otherwise, if g > d, all infected cell populations are
unbounded. The condition of eradication of infection does not depend on CTLs
(similarly to Theorem 3.2) and only depends on the growth rate of the wild
type.
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4.4 General case of n epitopes

The following result is proved in Appendix A.10 and generalizes Theorems 4.2
and 4.4 to the case of n epitopes.

Theorem 4.6 The infection-free equilibrium,(
02n ,

a1
c1
, . . . ,

an
cn

)
,

is locally asymptotically stable if the following condition is satisfied:

∀A ⊆ {1, 2, . . . , n}, (1− ε)n−|A|gA < d+
∑
e6∈A

κe
ae
ce
. (12)

Condition (12) can be interpreted in terms of the maximal rate of growth
of infected cells of different types. More precisely, for the of infection-free equi-
librium to be locally asymptotically stable, the growth rate of cells with no
mutated epitopes (wild type) must satisfy

(1− ε)ng < d+

n∑
e=1

κe
ae
ce
.

Those with 1 mutated epitope must satisfy

(1− ε)n−1gi < d+

n∑
e=1
e6=i

κe
ae
ce
.

Continuing, cells with j mutated epitopes should satisfy

(1− ε)n−jgi1···ij < d+

n∑
e=1

e 6=i1,...,ij

κe
ae
ce
.

Finally, cells with all epitopes mutated need a growth rate g1···n < d.

Special case of growth-neutral mutations. Similarly to the case of n = 1
and n = 2, if mutations do not lead to any change in the rate of growth of
infected cells, g = gA for ∀A ⊆ {1, . . . , n}, the condition for infection control
reduces to d > g.

5 Numerical considerations

The simulations presented here are carried out with n = 5 epitopes composed
of u = 30 base pairs. The growth rate is randomly chosen such that gA ∈
(0, 10] (day−1) and g1...n = d/5 day−1, where the death rate of infected cells is
d = 0.9 day−1. The probability η of error in base pair copy is taken between
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Figure 6: No escape scenario. Parameter values satisfy the no-escape conditions
of Theorem 4.6 for n = 5. Left: total number of infected cells. Right: Number
of infected cells of different types.

10−8 and 10−3 [4, 5]. For CTLs, rates of growth (resp. death) are randomly
chosen such that ae ∈ [1, 10] (cell·day−1) (resp. ce ∈ [10−1, 10−3] day−1). For
CTL proliferation induced by infected cells, Michaelis Menten functions are
used (m=1), the maximal rate of proliferation is s = 1 day−1, the “affinity”
is randomly chosen such that he ∈ [104, 106] (cell). The per capita rates of
death of infected cells induced by CTLs of type e are randomly chosen such
that κe ∈ [101, 103] (cell−1·day−1).

In the numerical simulations, it is assumed that “eradication” happens when
the total number of infected cells becomes less than 10−6.

5.1 No escape scenario

In Figure 6, the time evolution of the total number of infected cells (left) and
of the different infected cells (right) is shown, in conditions where Theorem 4.6
rules out escape. While infection is eradicated in 35 days, after about 8 days
the only remaining cells are those expressing 4 and 5 mutated epitopes. The
effect of mutations under the conditions with no escape are then investigated
(Figure 7): the probability of error in base pair copy is made to vary from 10−6

to 9× 10−3 (so the probability of mutation in epitopes ε ∈ [30× 10−6, 30× 9×
10−3]), other parameter values are taken as in Figure 6. Even in the no escape
scenario, mutations increase the time to infection eradication and the “virus
load” (Figure 7). When the probability of mutation ε is less than 30×8×10−6,
eradication of infection takes place within the first day. Otherwise, eradication
of infection takes between 40 to 50 days. The higher the probability of mutation,
the faster the disappearance of wild type virus-infected cells; in all cases, the
wild type is extinct within the first day. Furthermore, the higher the probability
of mutation, the faster the appearance of cells bearing 5 mutations.

5.2 Escape scenario

In Figure 8, the time evolution of the total number of infected cells (top) and
of the different infected cells (bottom left) is shown in conditions where The-
orem 4.6 fails. Even if the number of infected cells (total or bearing specific
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Figure 7: Effect of the probability η of error in base pair copy, giving a proba-
bility of mutation ε = 30×η, under the conditions of no escape of Theorem 4.6.
“Eradication” happens when the total number of infected cells becomes less
than 10−6. Top left: Time to eradication. Top right: Maximum number of
infected cells with mutations. Bottom left: Time evolution of the fraction of
mutants. Bottom right: Fraction of cells with 5 mutations amongst the total
population of infected cells with mutations.
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Figure 8: Escape scenario. Parameter values fail conditions of no escape of
Theorem 4.6 for n = 5. Top row: temporal evolution of the total number of
infected cells (note the log time scale on top right, used to emphasize initial
transients). Bottom row: temporal evolution (in log scale) of the number (left)
and distribution (right) of cells infected with the various mutants.

epitopes) goes down dramatically, infection persists; only cells expressing 4 and
5 mutated epitopes persist. Note that the time evolution of the total number
of infected cells in this scenario is reminiscent of qualitative observations of the
viral load made in the case of HIV: a high peak of the viral load is followed by
drastic drop down and finally an re-increase of the viral load.

In Figure 9, the effect of the probability of mutation is illustrated. The lower
the mutation probability, the lower the trough in the number of infected cells
and equilibrium values of infected cells. Mutations increase the viral load.

6 Discussion

Cytotoxic T lymphocytes constitute an important component of the antiviral
immune response. By recognizing virus-encoded epitopes clasped in the groove
of MHC molecules on the cell surface, CTLs target and kill infected cells and
thereby play an essential role in suppressing viral infections. Specific mutations
in these epitopes can abrogate their CTL recognition and allow an infected cell
to escape CTL action. A number of viral pathogens, especially those with RNA
genome, exhibit high rates of mutation and thus rapidly produce immune-escape
or drug-resistant mutants that have been attributed as barriers to antiviral vac-
cine or drug design, respectively. However, infection with some of the rapidly
mutating viruses can be effectively controlled by CTLs in vivo. This suggests
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Figure 9: Effect of the probability η of error during base pair copy, under
conditions of escape. Conditions of Theorem 4.6 are not satisfied. Top left:
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equilibrium as a function of η.

21



that a true relationship between viral mutations and the ability of oligoclonal
CTLs to suppress an infection is not fully understood. Owing to its importance
in pathogenesis, vaccine or drug design and viral control, we developed a de-
terministic model consisting of oligoclonal CTLs and infected cells bearing one
or more types of CTL-escape epitopes to define conditions necessary for CTL-
escape and persistence of infection. The model is used to examine the ability of
CTL response of varying oligoclonality to suppress infection in the presence of
mutations. For the sake of simplicity, the dynamics of target cell populations
and their infection by pathogens are not considered here.

In this work, CTL escape can happen in two situations: either there is
an equilibrium with a positive number of infected cells (of any type) or one
at least of the infected cell populations goes unbounded. Unboundness is an
unrealistic situation which results from ignoring the dynamics of target cells.
The conditions for absence of CTL escape are fully determined and given in the
general case of n recognizable epitopes in Theorem 4.6. Different situations with
CTL escape exist; each possible escape scenario necessitates the negation of at
least one of the conditions necessary to prevent escape. Moreover, when the
infection persists in a situation with no unbounded solutions, the TCR affinities
he determine the level of infection; see the expressions for the infection equilibria
in Theorems 4.2 and 4.3. Furthermore, even in a situation without CTL escape,
the presence of mutations slows down the eradication of infection: the larger
the probability of mutation, the slower the eradication. In a situation with CTL
escape, mutations increase the level of infection: the larger the probability of
mutation, the larger the level of infection.

Because of the structure of the model, it is not possible (case ii in Theo-
rem 4.1) to observe a situation where the presence of mutations would lead the
wild type cells to escape elimination by CTLs because the latter are mobilized
to successfully eliminate all cells infected by mutated viruses. However, consid-
ering the case of n = 2 epitopes, we find boundary equilibria that can be locally
asymptotically stable and at which the infection persists for some mutated cells
and is eradicated by CTLs for others (Theorems 4.3 and 4.5). This suggests
that from the virus perspective, there could exist a cooperative mechanism for
escape: mutations, by “diluting” the effect of the cognate CTL clone, lower the
efficiency of the latter and therefore give the opportunity to a higher fitness
strain to establish itself. Further work will be needed in order to establish if
such behaviour is observable in the more general case of n epitopes and whether
the number of recognizable epitopes is important.

Comparing the situation where there are no mutations (Theorem 3.3) and
the growth-neutral cases of Theorems 4.2, 4.4 and 4.6, it is possible to character-
ize the effect of mutations on the conditions required for infection eradication.
When mutations are neither beneficial nor detrimental, infection is eradicated
if g < d (Theorems 4.2, 4.4 and 4.6), i.e., the kill rate of cognate CTL clones
becomes irrelevant and the persistence of infection is governed solely by the
population dynamics of infected cells. Furthermore, the occurrence of muta-
tions induces a stronger condition for the control of the infection than in the
case of no mutations (Theorem 3.3), d+

∑n
e=1 κeae/ce > d > g. Thus, in pres-
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ence of mutations, eradication of the infection is more difficult and only depends
on the growth rate of the wild type.

The model introduced here is quite complex and of high dimensionality and
more work is needed in order to better understand its dynamics. Also, in some
cases, the cell populations go to very low numbers before returning to higher
values; see, for instance, Figure 9. This implies that the problem should also be
investigated using a stochastic approach, since escape could be a consequence
of the reappearance of infected cells following a phase where the infection has
almost been eradicated; see, e.g., [13].
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A Appendix – Details and proofs

A.1 Probability of mutation

An epitope is composed of u base pairs. Let η be the probability of error
in the copy of a base pair (substitution); we assume that the copy of base
pairs are independent events. We make the assumption that the approximation
(1 − η)u ≈ 1 − uη can be made. This implies that (1 − η)un ≈ (1 − uη)n. In
order to simplify notation, we let uη = ε.

For an epitope to mutate, at least one error in its base pairs is needed.
Considering n epitopes, the probability that the copy happens without an error,
i.e., the probability of no mutation, is

P[no error] = (1− η)un

≈ (1− ε)n (13)

and the probability of at least one mutation is

P[at least an error] = 1− P[no error]

= 1− (1− η)un

≈ 1− (1− ε)n. (14)

The probability of exactly 1 mutated epitope among n epitopes is

P[error in exactly 1 epitope] = (n1 )(1− (1− η)u)(1− η)u(n−1)

≈ (n1 )ε(1− ε)(n−1). (15)
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and the probability of a mutation in epitope j only is:

P[error in epitope j only] = (1− (1− η)u)(1− η)u(n−1)

≈ ε(1− ε)(n−1). (16)

The probability of exactly j mutated epitopes among n epitopes present on cells
is

P[error in exactly j epitopes] = (nj )(1− (1− η)u)j(1− η)u(n−j)

≈ (nj )εj(1− ε)(n−j). (17)

The probability of mutation in the epitope j and the epitope i only is:

P[error in the epitopes j and i only] = (1− (1− η)u)2(1− η)u(n−2)

≈ ε2(1− ε)(n−2). (18)

Finally, the probability of exactly v mutated epitopes among the n−j previously
non-mutated epitopes is (n−jv )(1− (1− η)u)v(1− η)u(n−j−v), i.e.,

P[error in exactly v of the n− j previously non-mutated epitopes]

≈ (n−jv )εv(1− ε)(n−j−v).
(19)

A.2 Positive invariance under the flow

Proposition A.1 Suppose that initial conditions of (3) are nonnegative and
such that TA(0) > 0 for all A ⊆ {1, . . . , n}. Then TA(t) > 0 for all t ≥ 0 and
A ⊆ {1, . . . , n}.

Proof Assume that TA(0) > 0 for all A ⊆ {1, . . . , n}. We proceed by induction
on A.

First, consider (3a) and write it as T ′ = f(t, T ), where the time dependence
indicates the role of the Ke’s. As f ∈ C∞, solutions to this scalar equation
exist and are unique for all t. Now note that f(t, 0) = 0 for all t, implying that
T (t) = 0 for all t is (an equilibrium) solution to the equation. Existence of a
solution such that T (0) > 0 and T (t1) = 0 for some t1 > 0 would then violate
uniqueness of solutions. Thus, T (t) > 0 for all t > 0 if T (0) > 0.

Now consider (3b). Assume that there exists t1 > 0 such that for some
i ∈ {1, . . . , n}, Ti(t1) = 0 and that t1 is the first such time. Then

dTi
dt

(t1) = (1− ε)n−1εgT (t1) > 0,

since T (t) > 0 for all t ≥ 0. However, since Ti(0) > 0 and t1 is the first time
such that Ti(t1) = 0, it follows that Ti is decreasing left of t1 and nonincreasing
at t1, a contradiction. Therefore Ti(t) > 0 for all t ≥ 0. And the same reasoning
holds for all i ∈ {1, . . . , n}.

Continuing the argument for Tij , . . . , Ti...n gives the result.
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From the proof, we see that the following more general result actually holds.

Corollary A.2 Suppose that initial conditions are nonnegative and such that
T (0) > 0. Then TA(t) > 0 for all t > 0 and A ⊆ {1, . . . , n}.

A.3 Proof of Theorem 3.2

The infection-only subsystem (3a)-(3d) is a linear system

d

dt
T =AT, (20)

where T is the vector of all infected cell populations,

T = [T, T1, . . . , Tn, T12, . . . , T1...n]T .

The coefficient matrix A is a 2n×2n−lower triangular matrix. System (20) has
a unique equilibrium, the infection-free equilibrium

T ∗ = T ∗i = T ∗ij = · · · = T ∗1...n = 0,

if and only if A is invertible, that is, if and only if

det(A) = ((1− ε)ng − d)
(
(1− ε)n−1g1 − d

)
· · · (g1···n − d) 6= 0.

Therefore, the conditions of existence of the infection-free equilibrium are

(1− ε)ng 6= d

(1− ε)n−1gi 6= d

...

g1···n 6= d.

The infection-free equilibrium is (globally) asymptotically stable if <(λi) < 0
for i ∈ {1, . . . , 2n}, with λi the eigenvalues of A. As A is a triangular matrix,
the λi are the diagonal entries of A, or also factors of det(A). Therefore, the
conditions to have <(λi) < 0 for i ∈ {1, . . . , 2n} give (6).

A.4 Proof of Theorem 3.3

The infection-free equilibrium satisfies T ∗ = 0. From (7b),

K∗e =
ae
ce
, ∀e ∈ {1, . . . , n}.

The Jacobian matrix of system (7) at the infection-free equilibrium takes the
form

J = diag

(
g − d−

n∑
e=1

κeKe,−c1,−c2, . . . ,−cn

)
.

Thus, the infection-free equilibrium is locally asymptotically stable if (8) holds.
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A.5 Proof of Theorem 4.1

Suppose that (3) is at an equilibrium. Then, from (3a), we find that T ∗ > 0
requires (1− ε)ng/d > 1. This proves assertion i).

To prove ii), suppose again that system (3) is at an equilibrium and use (4).
Assume that T ∗A = 0 for some A ⊆ {1, . . . , n}. It follows that

(1− ε)n−|A|
∑
B(A

gBε
|A|−|B|T ∗B = 0,

for all proper subsets B of A. As all parameters are positive, this implies that
for all B ( A, T ∗B = 0.

Finally, to prove assertion iii) consider (3d) and assume that g1...n − d >
0. As T (0) > 0, it follows from Corollary A.2 that T1...n > 0 for all t > 0.
Since g1...n − d > 0, it follows that dT1...n/dt > 0 and therefore, T1...n grows
unbounded.

A.6 Proof of Theorem 4.2

System (3) with n = 1 takes the form

dT

dt
=((1− ε)g − d)T − κ1K1T, (21a)

dT1
dt

=(g1 − d)T1 + εgT, (21b)

dK1

dt
=a1 − c1K1 +

sTm

hm1 + Tm
K1. (21c)

The infection-free equilibrium is the solution with T ∗ ≡ 0 and T ∗1 ≡ 0, leading
to K∗1 = a1/c1 using (21c). The Jacobian matrix of system (21) at an arbitrary
point is

J =


(1− ε)g − d− κ1K1 0 −κ1T

εg g1 − d 0
smhm1 T

m−1K1

(hm1 + Tm)2
0

sTm

hm1 + Tm
− c1

 . (22)

Evaluating (22) at the infection-free equilibrium (0, 0, a1c1 ) gives a lower-triangular
matrix with diagonal entries (1−ε)g−d− a1κ1

c1
, g1−d and −c1. The conditions

for the local asymptotic stability of the infection-free equilibrium follow.

Now consider the infection equilibrium. Setting
dT∗

1

dt = 0 in (21b), it follows
that

T ∗1 =
εg

d− g1
T ∗, (23)

which implies that there must hold that g1 < d for T ∗1 > 0. From (21a),

K∗1 =
(1− ε)g − d

κ1
, (24)
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from which it follows that there must hold that d < (1− ε)g. Putting these two
conditions together yields the constraint

g1 < d < (1− ε)g. (25)

Now, setting
dK∗

1

dt = 0 in (21c) and using (24), we thus seek T ∗ > 0 solution of

− (a1 − c1K∗1 + sK∗1 )T ∗
m

= hm1 (a1 − c1K∗1 ). (26)

Let M(T ∗) and Z(T ∗) be the left and right hand sides of (26), respectively.
M(T ∗) is a monomial passing through the origin and the graph of Z(T ∗) is a
horizontal line. As we are concerned here with solutions T ∗ > 0 to (26), we
consider the restriction of Z(T ∗) and M(T ∗) to quadrants I and IV. There are
three cases.

1. If a1 − c1K∗1 > 0, Z(T ∗) lies in quadrant I and −(a1 − c1K∗1 + sK∗1 ) < 0,
so M(T ∗) is a decreasing function and lies in quadrant IV. There is no
intersection.

2. If a1 − c1K∗1 < 0, Z(T ∗) lies in quadrant IV. Then,

(2.a) if −(a1 − c1K∗1 + sK∗1 ) > 0, M(T ∗) is a increasing function and lies
in quadrant I and there is no intersection;

(2.b) if − (a1 − c1K∗1 + sK∗1 ) < 0, M(T ∗) is a decreasing function and lies
in quadrant IV and there is a unique intersection.

Consequently, conditions leading to a (unique) intersection are{ a1κ1

c1
< (1− ε)g − d < a1κ1

c1−s , for c1 > s,
a1κ1

c1
< (1− ε)g − d, for c1 < s.

(27)

Combining (25) and (27), one finds the conditions (11) for the existence of a
(unique) infection equilibrium in the theorem.

From (23), (24) and (26), the infection equilibrium is EIE = (T ∗, εg
d−g1T

∗,K∗),
with

T ∗ = h1

(
a1κ1 − c1 ((1− ε)g − d)

(c1 − s) ((1− ε)g − d)− a1κ1

)1/m

.

The Jacobian (22) evaluated at the infection equilibrium takes the form

JEIE
=


0 0 −κ1T ∗
εg g1 − d 0

smhm1 T
∗m−1

K∗1
(hm1 + T ∗m)2

0 −c1 +
sT ∗

m

hm1 + T ∗m

 , (28)

which has characteristic polynomial

P (λ) = (g1 − d− λ)

(
λ2 +

(
c1 −

sT ∗
m

hm1 + T ∗m

)
λ+

smκ1h
m
1 T
∗mK∗1

(hm1 + T ∗m)2

)
.

It follows that, in order for <(λi) < 0, ∀i ∈ {1, 2, 3}, the following conditions
must hold:
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• g1 − d < 0. This is true when the infection equilibrium exists.

• From the Routh-Hurwitz criterion, c1− sT∗m

hm
1 +T∗m > 0 and

smκ1h
m
1 T

∗mK∗
1

(hm
1 +T∗m )2

>

0. The latter is always true. The former leads to

−a1κ1 + c1((1− ε)g − d)

(1− ε)g − d
< c1 ⇔ −a1κ1 < 0,

which is always true.

Therefore, when the infection equilibrium EIE exists, it is locally asymptotically
stable.

A.7 Proof of Theorem 4.3

System (3) with n = 2 takes the form

dT

dt
= ((1− ε)2g − d)T − (κ1K1 + κ2K2)T, (29a)

dT1
dt

= ((1− ε)g1 − d)T1 + (1− ε)εgT − κ2K2T1, (29b)

dT2
dt

= ((1− ε)g2 − d)T2 + (1− ε)εgT − κ1K1T2, (29c)

dT12
dt

= (g12 − d)T12 + εg1T1 + εg2T2 + ε2gT, (29d)

dK1

dt
= a1 − c1K1 +

s(T + T2)m

hm1 + (T + T2)m
K1, (29e)

dK2

dt
= a2 − c2K2 +

s(T + T1)m

hm2 + (T + T1)m
K2. (29f)

The infection-free equilibrium corresponds to the equilibrium solution with
T ∗A ≡ 0 for all A ⊆ {1, 2}, which, from (29e) and (29f), gives K∗1 = a1/c1 and
K∗2 = a2/c2.

To find boundary equilibrium points, we assume T ∗ = 0 and seek equilibria
with positive components for TA populations with A ⊆ {1, 2}, A 6= ∅. First,
note that T ∗12 = 0 needs to be excluded (case ii) in Theorem 4.1) as it would
result in all T ∗A = 0 for A ⊆ {1, 2}. So, we consider the system

((1− ε)g1 − d− κ2K∗2 )T ∗1 = 0, (30a)

((1− ε)g2 − d− κ1K∗1 )T ∗2 = 0, (30b)

εg1T
∗
1 + εg2T

∗
2 + (g12 − d)T ∗12 = 0, (30c)

a1 +

(
sT ∗

m

2

hm1 + T ∗
m

2

− c1
)
K∗1 = 0, (30d)

a2 +

(
sT ∗

m

1

hm2 + T ∗
m

1

− c2
)
K∗2 = 0. (30e)
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Note that if T ∗1 = T ∗2 = 0, then from (30c), T ∗12 = 0 if g12 6= d, so we exclude
this case as well. From (30a) and (30b), T ∗i = 0 or K∗j = ((1− ε)gi − d)/κj , for
i, j = 1, 2, i 6= j.

Consider the boundary equilibrium of type 3, i.e., T ∗1 > 0, T ∗2 = 0. From
(30a), K∗2 = ((1−ε)g1−d)/κ2, from which it follows that for the equilibrium to
exist, there must hold that (1 − ε)g1 > d. From (30c), T ∗12 = εg1T

∗
1 /(g12 − d).

It follows that for T ∗12 to be positive, there must hold that g12 > d. Then, using
(30d) with T ∗2 = 0 gives K∗1 = a1/c1 and (30e) gives

T ∗1 = h2

(
a2κ2 − c2((1− ε)g1 − d)

(cj − s)((1− ε)g1 − d)− a2κ2

)1/m

.

To investigate the biological relevance of the latter, notice that there are two
cases. If c2 > s, then T ∗1 > 0 if

d+
a2κ2
c2

< (1− ε)g1 < d+
a2κ2
c2 − s

,

whereas if c2 < s, then T ∗1 > 0 requires

d+
a2κ2
c2

< (1− ε)g1.

The case of the boundary equilibrium of type 2 with T ∗1 = 0 and T ∗2 > 0 is
similar, with the role of 1 and 2 reversed.

Now we consider the case where T ∗1 > 0 and T ∗2 > 0, i.e., the type 1 boundary
equilibrium. From (30a) and (30b), K∗j = ((1 − ε)gi − d)/κj , for i, j = 1, 2,
i 6= j. These equilibria are relevant if (1− ε)gi > d, i = 1, 2. Substituting these
equilibria into (30d) and (30e) gives the values of T ∗i in the result. The same
condition must hold as in the case of type 2 and type 3 equilibria for T ∗1 and
T ∗2 to be positive, i.e., for i, j = 1, 2, i 6= j, if ci > s, then T ∗j > 0 if

d+
aiκi
ci

< (1− ε)gj < d+
aiκi
ci − s

,

whereas if ci < s, then T ∗j > 0 requires

d+
ajκj
cj

< (1− ε)gi.

In turn, substituting the values of T ∗1 and T ∗2 into (30c) gives the value of T ∗12,
which exists under the condition g12 < d.
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A.8 Proof of Theorem 4.4

The Jacobian of system (3) with n = 2 evaluated at (0, 0, 0, 0, a1c1 ,
a2
c2

) is

(1− ε)2g − d
−κ1 a1c1 − κ2

a2
c2

0 0 0 0 0

ε(1− ε)g (1− ε)g1 − d
−κ2 a2c2

0 0 0 0

ε(1− ε)g 0
(1− ε)g2 − d
−κ1 a1c1

0 0 0

ε2 εg1 εg2 g12 − d 0 0
0 0 0 0 −c1 0
0 0 0 0 0 −c2


,

giving the conditions given in Theorem 4.4.

A.9 Proof of Theorem 4.5

Stability of the boundary infection equilibrium of type 1. The Jaco-
bian evaluated at (0, T ∗1 , T

∗
2 , T

∗
12,K

∗
1 ,K

∗
2 ) has eigenvalues

λ1 = (1− ε)2g + d− (1− ε)g1 − (1− ε)g2, λ2 = g12 − d,

λ3,4 =
A±
√
A2 +B

2
and λ5,6 =

C ±
√
C2 +D

2
,

with
A = − a1κ1

(1− ε)g2 − d
,

B = 4m
[a1κ1 − c1((1− ε)g2 − d)][a1κ1 − (c1 − s)((1− ε)g2 − d)]

s((1− ε)g2 − d)
,

C = − a2κ2
(1− ε)g1 − d

and

D = 4m
[a2κ2 − c2((1− ε)g1 − d)][a2κ2 − (c2 − s)((1− ε)g1 − d)]

s((1− ε)g1 − d)
.

Under conditions for existence of boundary infection-equilibria, g12 − d < 0.
Under conditions for existence of the boundary infection equilibrium of type
1, A,B,C,D < 0. Therefore, if A2 + B < 0, λ3,4 ∈ C with <(λ3,4) < 0. If
A2 + B > 0, both λ3,4 are real and negative. Also, if C2 + D < 0, λ5,6 ∈ C
with <(λ5,6) < 0. If C2 + D > 0, both λ5,6 are real and negative. Therefore,
the local asymptotic stability of the boundary infection equilibrium of type 1
depends only on the sign of λ1, giving the condition

(1− ε)2g < d+ (1− ε)(g1 + g2).
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Stability of the boundary infection equilibrium of type 2. The Jaco-
bian evaluated at (0, 0, T ∗2 , T

∗
12,K

∗
1 ,K

∗
2 ) has eigenvalues

λ1 = (1− ε)2g − (1− ε)g2 − κ2
a2
c2
, λ2 = (1− ε)g1 − d− κ2

a2
c2

< 0,

λ3 = g12 − d < 0 (existence condition), λ4 = −c2 < 0,

and

λ5,6 =
A±
√
A2 +B

2
,

with A and B defined as above. We have λ2 < 0 since T ∗1 = 0 (existence
condition in Theorem 4.3). Under the existence conditions of the boundary
infection equilibrium of type 2, A < 0 and B < 0. Therefore, if A2 + B < 0,
λ5,6 ∈ C with <(λ5,6) < 0. If A2 + B > 0, both λ5,6 are real and negative.
Therefore, the conditions for the local asymptotic stability of the boundary
infection equilibrium of type 2, (0, 0, T ∗2 , T

∗
12,K

∗
1 ,K

∗
2 ), is (1− ε)2g < (1− ε)g2 +

κ2
a2
c2

.

Stability of the boundary infection equilibrium of type 3. The Jaco-
bian evaluated at (0, T ∗1 , 0, T

∗
12,K

∗
1 ,K

∗
2 ) has eigenvalues

λ1 = (1− ε)2g − (1− ε)g1 − κ1
a1
c1
, λ2 = (1− ε)g2 − d− κ1

a1
c1

< 0,

λ3 = g12 − d < 0 (existence condition), λ4 = −c1 < 0,

and

λ5,6 =
C ±

√
C2 +D

2
,

with C and D defined as above. We have λ2 < 0 since T ∗2 = 0 (existence
condition in Theorem 4.3). Under the existence conditions of the boundary
infection equilibrium of type 3, C < 0 and D < 0. Therefore, if C2 + D < 0,
λ5,6 ∈ C with <(λ5,6) < 0. If C2 + D > 0, both λ5,6 are real and negative.
Therefore, the conditions for the local asymptotic stability of the boundary
infection equilibrium of type 3, (0, T ∗1 , 0, T

∗
12,K

∗
1 ,K

∗
2 ), are (1 − ε)2g < (1 −

ε)g1 + κ1
a1
c1

.

A.10 Proof of Theorem 4.6

System (3) is considered in the general case with n epitopes. The infection-free
equilibrium is defined as T ∗ = T ∗i = T ∗ij = · · · = T ∗1···n = 0, giving K∗e = ae

ce
, ∀e,

to satisfy dX∗

dt = 0, where X∗ is the (2n + n)-vector,

X∗ = [T ∗, T ∗1 , . . . , T
∗
n , T

∗
12, . . . , T

∗
1···n,K

∗
1 , . . . ,K

∗
n]T .
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The Jacobian evaluated at the infection-free equilibrium is a lower triangular
matrix; its eigenvalues λi, i = 1, · · · , 2n + n are:

λ1 = (1− ε)ng − d−
n∑
e=1

κe
ae
ce

λ2 = (1− ε)n−1g1 − d−
n∑
e=2

κe
ae
ce

λ3 = (1− ε)n−1g2 − d−
n∑
e=1
e 6=2

κe
ae
ce

...

λ· = (1− ε)n−jgi1···ij − d−
n∑
e=1

e 6=i1,··· ,ij

κe
ae
ce

...

λ2n = g1···n − d
λ2n+1 = −c1
λ2n+2 = −c2

...

λ2n+n = −cn.

If <(λi) < 0, ∀i, we obtain the conditions in Theorem 4.6.
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