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5.1 INTRODUCTION

Because of the relationship between the movement of populations and the spread of

infectious diseases, it is important to understand and model mobility. Note that we

focus here on the mobility of human populations; consideration of the movement

of animal or vector populations is also critical but is beyond the scope of this work.

Populations are increasingly mobile. Simplifying the situation to the extreme,

mobility takes two major forms: migration and travel. Migration is mobility in the

long term, where an individual changes their place of residence. Travel is a shorter

term mobility, where an individual usually keeps the same place of residence. An

intermediate form of consequence to public health is the case of migrant workers,

both within and between countries.

The main fluxes of immigration form a gradient from poorer to richer countries.

For example, from 2002 to 2011, four countries each contributed more than 100,000

new permanent residents to Canada: China, India, Pakistan and the Philippines,
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making up 37% of the almost 2.5 million new Canadian permanent residents in that

period (Research and Evaluation Branch CIC 2011). Because health care systems

vary considerably, migrants present specific challenges to public health systems in

their destination countries, for instance, because of different immunization schedules

or practices, prevalence of diseases such as tuberculosis.

However, migration fluxes have become secondary in volume to travel fluxes. For

instance, in 2010, Canada saw 115,271 temporary residents (work visas, students,

etc.) make their initial entry into the country and had 280,691 new permanent res-

idents. The same year, 19,360,480 airline trips originated in the rest of the world

and terminated in Canada. These trips include not only those of new immigrants,

whether temporary or permanent, but also trips of residents of Canada abroad and

tourist or business visits to Canada. Note in particular that because travel has become

easier and cheaper, there is a good amount of post-migration flux, with immigrants

returning for visits to their country of origin much more frequently than used to be

the case.

Therefore, public health issues related to mobility cannot be considered any longer

as a problem that a country has to deal with only at the time of first entry of a migrant.

Also, the continual flowof individuals between countries should be taken into account.

This is true in particular concerning emerging and reemerging diseases.

Indeed, perhaps the most important teaching of the 2003 SARS epidemic con-

cerns the potentially disastrous consequences of the globalization and acceleration

of travel on global public health security. SARS was exemplary of the ability of an

emerging disease to spread very fast over large distances. SARS also illustrated the

ever increasing role of commercial aviation in the spread of emerging and reemerging

infections: of the documented 137 SARS cases that are known to have crossed state

boundaries, 129 traveled by plane.

Further confirmation of the role of travel came in 2009, with the H1N1 influenza

pandemic (pH1N1). In Khan et al. (2009), the relationship between the number

of passengers inbound from Mexico in a two month period and the likelihood of

importation of cases of pH1N1 was studied. It was found that cities connected to

an airport that had received more than 1,400 passengers from Mexico in March and

April 2008 (used as a proxy for the 2009 travel data, which was not available at the

time) were at a greatly elevated risk of importing the disease.

Because of the increasingly interconnected nature of public health issues, tra-

ditional surveillance has been complemented in recent years by internet trawling

surveillance systems such as Global Public Health Intelligence Network (GPHIN)

or HealthMap. These systems continuously monitor internet news sources in a

variety of languages to generate alerts concerning public health threats. How-

ever, these systems have the drawback that they generate a very high number

of alerts.

We discuss here a method for prioritizing these alerts in terms of the risk they rep-

resent to a given public health entity, using mathematical modeling and information

about the global air transportation network. This is work carried out in the context of

the BioDiaspora Project and follows ideas proposed in Khan et al. (2012).
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5.2 THE NETWORK

The BioDiaspora Project focuses on air travel, although it also documents “ground

conditions” in order to assess risk. See Arino et al. (2011); Khan et al. (2009) for more

detail about the air transportation data. Here, we only mention that the data used is

from IATA (the International Air Transport Association) and details most trips taken

worldwide from 2005 to 2012, including up to 5 intermediate stops.

The data has a resolution of one month. As a consequence, it is important to take

time into account since travel volumes vary widely depending on the period of the

year. So, in all considerations that follow, it should be understood that graphs evolve

with time.

Connections between airports are represented by an N × N matrix of volumes

detailing, for any pair i, j = 1,… ,N, the volume vji of travel from airport i to airport
j. We denote 

I as this matrix. Corresponding to this matrix, I(t) is the graph

obtained from the IATA data.

5.3 AIRPORT CATCHMENT AREAS

For the model, it is necessary to have an estimate of the population situated within

the so-called catchment area of this airport, that is, that uses this airport for its

international transportation needs. Because of the nature of the transport data, we use

airport catchment areas (ACAs) as the units of the analysis.

Since airports are located throughout the world, it is unrealistic to gather infor-

mation about ACAs manually, in particular, concerning their population. In order to

gather this information automatically, we use a weighted Dirichlet tessellation of the
plane. This proceeds as follows (see, e.g., Ash and Bolker (1986)). Let  be a finite

set of points on a sphere, the sources. For each pair of points P,Q ∈  , define

HPQ =
{
X :

|X − P|
𝜎(P)

≤
|X − Q|
𝜎(Q)

}

where 𝜎(P) > 0, and

KPQ := HPQ ∩ HQP =
{
X :

|X − P|
𝜎(P)

= |X − Q|
𝜎(Q)

}
.

For eachP ∈  , letRp =
⋂

Q≠P HPQ andR = {RP,P ∈ }. ThenR() is theDirichlet

(or weighted Voronoi) tessellation of the sphere. If the weight function 𝜎(P) = 1 for

all P, then in the plane, the regions are polygons and the result is often called a

Voronoi diagram (Thiessen polygons in the geographical literature).

Limitations of the classic weight function 𝜎(P) = 1 are that the importance of the

airports under consideration is not taken into account. Using weights equal to the
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volume of trips out of airports overemphasizes major airports, so we use a Holling

type 2 function of the form

𝜎(vi) = vmax(t)
vi(t)

vi(t) + vmed(t)
,

where vmax(t), vmed(t) and vi(t) are the volume out of the busiest airport, median

volume, and volume out of the airport i under consideration, respectively, from the

IATA database. The tessellation is computed for every month in the database, since

the relative importance of airports varies monthly.

Note that the results obtained using this method are not meant to represent the

exact location where people using the airports live but rather, provide an estimation

of the population relying on a given airport for long distance travel.

5.4 MODELING

Because of the nature of the travel data, we consider airports and their catchment areas

as the units of analysis. We describe the model in three steps: (1) the epidemiology in

airport catchment areas; (2) the description of transport; and (3) the integration of both.

5.4.1 The Model in Airport Catchment Areas

The model in each ACA i = 1,… ,N is an SLIAR model, which has individuals in

one of the epidemiological states susceptible, latent, symptomatically and asymp-

tomatically infectious and recovered, with numbers at time t in airport catchment

area i denoted Si(t), Li(t), Ii(t), Ai(t), and Ri(t), respectively. When this does not

lead to ambiguities, the dependence of state variables and those parameters that are

time-dependent on t is not indicated.
We describe briefly the model here; see Arino et al. (2006) for details about the

deterministic system. The model used is an epidemic model, in that it considers one

epidemic event in a population and neglects birth and death. Indeed, simulations are

performed for a short time frame of one to several weeks, and variations of the total

population during this duration are negligible compared with variations in the number

of individuals in the different epidemiological compartments. The flow of individuals

between the different compartments is assumed to happen as illustrated in Figure 5.1.

Susceptible individuals are potentially affected by the disease, if subject to an

infecting contact. Such contacts occur at the rate SiIi between susceptible and symp-

tomatically infectious individuals and SiAi between susceptible and asymptomatically

infectious individuals. These contacts result in new infections at the rates 𝛽iSiIi and
𝜂i𝛽iSiAi for contacts with symptomatically and asymptomatically infectious individ-

uals, respectively. 𝛽i is the disease transmission coefficient in ACA i and 𝜂i ∈ [0, 1]

is the reduction of transmission due to asymptomatic infection (i.e., we assume that

asymptomatic infectious individuals are potentially less infectious than symptomatic
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Figure 5.1 Flow diagram of the model in each ACA. Indices of variables and parameters
are omitted

ones). This type of incidence is called mass action incidence. The disease transmis-
sion coefficient represents the probability that infection occurs, given contact. We
allow it and all other parameters to vary from location to location, since factors such
as hygiene, health care equipment and social distancing play a role in the transmission
of the disease and vary widely from place to place.
Latent individuals are susceptibles who have become latently infected because of

an infecting contact with an infectious individual. In the case of SARS, estimates of
the median of the incubation period (the length of time between infection and the
onset of symptoms) were of 4.0 days (95% CI 3.6–4.4) (Lessler et al. 2009), meaning
that the inclusion of a class of exposed individuals is necessary. Other diseases have
a much shorter incubation period (e.g., the same authors found medians of 1.4 and
0.6 days for influenza A and B, respectively) and might not require the inclusion of
a latent period. However, as the system is designed for any emerging or reemerging
disease, we always allow the possibility of latency (setting a very small value for the
time spent incubating if need be). It is assumed that patients in the latent state do
not transmit the disease. The time spent incubating is exponentially distributed with
mean 1∕𝜀i time units.

After incubating, individuals progress either to a symptomatic or an asymp-
tomatic infectious stage, with a proportion pi becoming symptomatically infectious.
Both infectious stages have individuals spreading infection, although it is generally
believed that asymptomatically infectious individuals are less infectious to others
than symptomatic ones, prompting the use of the attenuation coefficient 𝜂i.
Infectious individuals (both symptomatic and asymptomatic) actively spread the

infection through contacts with susceptible individuals. Symptomatic and asymp-
tomatic infectious individuals remain infectious for an average 1∕(𝛾 Ii + 𝛿Ii ) and
1∕(𝛾Ai + 𝛿Ai ) time units, respectively, with the sojourn time in the infectious classes
exponentially distributed. Thus individuals are removed from the I and A classes
either by recovery (at rates 𝛾 Ii and 𝛾Ai , respectively) or by disease-induced death
(at rates 𝛿Ii and 𝛿Ai , respectively). Note that we distinguish between recoveries and
disease-induced death in order to be able to compare with data.

Finally, removed individuals are individuals who have ceased to be infectious.
Hence, we interpret this class as in Kermack and McKendrick (1927). Individuals in
the recovered class play no role in the short-term transmission of the disease, and
thus we neglect this class from now on.
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5.4.2 Movement Rates

To compute movement rates, we reason using ordinary differential equations (since

they are readily converted to their continuous Markov chain equivalents). There are

many ways to obtain the movement rates; we show here a method that is extremely

simple yet provides a good description of the actual number of trips taken in a short

period of time.

Consider twoACAs, say, those ofWinnipeg (Manitoba, Canada, IATAcodeYWG)

and Toronto (Ontario, Canada, aggregate IATA code YTO). We want to describe the

actual number of trips between the two ACAs. For a short time interval of, say,

1 day, we can neglect other sources of variation of the population in the origin ACA

as well as other flows due to travel to and from other ACAs. Thus, the variation of

the population in Winnipeg because of trips to Toronto is given by

N′
YWG

(t) = −mYTO,YWG(t)NYWG(t),

wheremYTO,YWG(t) is the rate of movement of individuals fromWinnipeg to Toronto
at time t. Because IATA data is given per month, the rates are computed for each
month (but with time units of 1 day). Thus, after 1 day, the population in Winnipeg

has changed according to

NYWG(1) = e−mYTO,YWGNYWG(0).

NYWG(1) − NYWG(0) is the loss of population in Winnipeg from trips to Toronto in
1 day. In September 2012, for instance, this was an average of 844 people. Thus,

solving for mYTO,YWG, we find

mYTO,YWG = − ln
(
1 − 844

NYWG(0)

)
,

where NYWG(0) is the population of Winnipeg obtained from the catchment area

computation of Section 5.3.

More generally, trips from X to Y occur at the rate

mYX = − ln
(
1 −

ΔYX

NX(0)

)
,

where ΔYX is the number of trips per day originating in X and terminating in Y and
NX(0) is the population of X obtained using the catchment area computation. Using
the population information, travel data and setting diagonal terms so thatN has all

column sums zero gives the rates of movement between all pairs of ACAs.

Note thatwe could also have reasoned, for instance, using the volume of passengers

received by the Toronto catchment area in a day or the proportion of trips to Toronto

in the trips outbound from Winnipeg together with the rate of travel outbound from

Winnipeg.
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5.4.3 General Model of Infection-Transport

For simulations of the full model, we use continuous time Markov chains. These

are indeed readily derived from the deterministic model and have the advantage of

allowing discrete (integer) population numbers and incorporating stochasticity. The

stochastic process of infection-transport can be derived in several ways, in particular,

using infinitesimal probabilities. However, we show here only the most useful one

for our purpose: the derivation in terms of times to transitions, since numerical simu-

lations are run using the Gillespie algorithm (Gillespie 1977). Recall that we neglect

the dynamics of removed individuals. Suppose that the system is, at time t, in the state

(s, l, i, a) = (s1,𝓁1, i1, a1,… , sN ,𝓁N , iN , aN).

Then compute the weight of possible events

𝜉t =
N∑

j=1

(
𝛽jsj(ij + 𝜂jaj) + 𝜀j𝓁j +

(
𝛾 Ij + 𝛿Ij

)
ij +

(
𝛾Aj + 𝛿Aj

)
aj
)

+
N∑

j,k=1

(
mS
jksj + mL

jk𝓁j + mI
jkij + mA

jkaj
)
.

(5.1)

The next event occurs at time t + 𝜏t, where 𝜏t is one realization of an expo-

nentially distributed random variable with parameter 𝜉t. At time t + 𝜏t, the transition

(s,𝓁, i, a) → (s′,𝓁′, i′, a′) occurs, where the new state (s′,𝓁′, i′, a′) corresponds to the
following events. For simplicity, only the variables that are modified are indicated.

1. A susceptible is infected in ACA j, that is, (… , s′j ,𝓁
′
j ,…) = (… , sj − 1,𝓁j +

1,…). This occurs with probability

ℙ(s,𝓁,i,a)→(s′,𝓁′,i′,a′) = 𝛽jsj(ij + 𝜂jaj)∕𝜉t.

Note that the model further allows to identify the origin (symptomatic or

asymptomatic infectious individual) of the infection, if needed, by breaking the

above probability down in terms of 𝛽jsjij∕𝜉t and 𝛽j𝜂jsjaj∕𝜉t.
2. A latently infected individual in ACA j develops the symptomatic form of

the disease, that is, (… ,𝓁′
j , i

′
j ,…) = (… ,𝓁j − 1, ij + 1,…). This occurs with

probability

ℙ(s,𝓁,i,a)→(s′,𝓁′,i′,a′) = pj𝜀j𝓁j∕𝜉t.

3. A latently infected individual in ACA j develops the asymptomatic form of

the disease, that is, (… ,𝓁′
j , a

′
j ,…) = (… ,𝓁j − 1, aj + 1,…). This occurs with

probability

ℙ(s,𝓁,i,a)→(s′,𝓁′,i′,a′) = (1 − pj)𝜀j𝓁j∕𝜉t.
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4. An individual with the symptomatic form of the disease is removed in ACA j,
that is, (… , i′j ,…) = (… , ij − 1,…). Such an event occurs with probability

ℙ(s,𝓁,i,a)→(s′,𝓁′,i′,a′) =
(
𝛾 Ij + 𝛿Ij

)
ij
/
𝜉t.

As for new infections, this event can be further broken down in terms of the

number of recoveries and disease-induced deaths by considering two separate

events with, respective, probabilities 𝛾 Ij ij∕𝜉t and 𝛿Ij ij∕𝜉t.
5. An individual with the asymptomatic form of the disease is removed in ACA j,

that is, (… , a′j ,…) = (… , aj − 1,…). Such an event occurs with probability

ℙ(s,𝓁,i,a)→(s′,𝓁′,i′,a′) =
(
𝛾Aj + 𝛿Aj

)
aj
/
𝜉t,

with the event potentially broken down into recoveries and disease-induced

deaths if needed, as explained for removal from the I class.

6. An individual currently in the susceptible class travels from ACA j to ACA k
(with k ≠ j), that is, (… , s′j , s

′
k,…) = (… , sj − 1, sk + 1,…), with probability

ℙ(s,𝓁,i,a)→(s′,𝓁′,i′,a′) = mSkjsj
/
𝜉t.

7. An individual currently in the latent class travels from ACA j to ACA k (with
k ≠ j), that is, (… ,𝓁′

j ,𝓁
′
k,…) = (… ,𝓁j − 1,𝓁k + 1,…), with probability

ℙ(s,𝓁,i,a)→(s′,𝓁′,i′,a′) = mLkj𝓁j
/
𝜉t.

8. An individual currently with a symptomatic infection travels from ACA j to
ACA k (with k ≠ j), that is, (… , i′j , i

′
k,…) = (… , ij − 1, ik + 1,…), with prob-

ability

ℙ(s,𝓁,i,a)→(s′,𝓁′,i′,a′) = mIkjij
/
𝜉t.

9. An individual currently with an asymptomatic infection travels from ACA j
to ACA k (with k ≠ j), that is, (… , a′j , a

′
k,…) = (… , aj − 1, ak + 1,…), with

probability

ℙ(s,𝓁,i,a)→(s′,𝓁′,i′,a′) = mAkjaj
/
𝜉t.

5.4.4 Initial Conditions

Setting initial conditions for the model involves several phases. In a first phase, the

susceptible population in each ACA is set at the value obtained from the catchment

area analysis of Section 5.3.
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The second phase considers what is known about the disease of interest; a certain

fraction of this susceptible populationmay indeed be assigned to the recovered classR
because of preexisting immunity in the population. For instance, the WHO estimates

(World Health Organization 2013) that the prevalence of immunity to measles varies,

depending on countries, from 44% to 99% of the population (from the combined

effect of vaccination and immunity acquired from infection), so that if measles were

considered, the susceptible population in ACAs would be reduced by the amount

corresponding to the prevalence of immunity to measles in the country that the

airport belongs to.

The third phase involves setting initial conditions of the number of latently, symp-

tomatically and asymptomatically infected individuals in the places where infection

is known to occur. This is the phase in which the simulation system is tied in with

the surveillance system.

5.4.5 Parameter Estimation

To choose parameter values, the durations of stages are known from the literature for

many diseases. In the case of an outbreak of a disease for which specific parameters

are not known, extensive simulations are carried out using parameters in typical

ranges.

Because of the short time frame within which it operates, timing is essential in the

present model. As a consequence, it is important to be careful when choosing values

for the parameters that represent the mean duration of stages. For instance, recall that

in Lessler et al. (2009), the median incubation period for SARS was estimated to be

4.0 days. Inherent to the formulation of the model is that the time spent in the latent

class Li for a given individual is an exponentially distributed random variable with

mean 1∕𝜀i and median ln 2∕𝜀i. Considering ln 2∕𝜀i = 4 days (𝜀i ≃ 0.17, i.e., a mean

incubation period of 5.77 days) implies that in a cohort of individuals infected on a

given day, 25% are still incubating 8 days later and more than 5% are still incubating

after 15 days. So we also consider the converse problem: given the data on incubation

periods, we determine a 95% “confidence interval” of time spent incubating. Say

that, for example, 95% of individuals have become infective after 10 days. Then

we find 𝜀i, the mean of the exponential distribution, by solving for 𝜀 the equation

∫
10

0
𝜀ie

−𝜀is ds = 0.95, giving 𝜀i ≃ 0.3 (i.e., a much shorter mean incubation time of

3.33 days). We typically perform simulations with parameters in the range given by

these two methods.

Estimating 𝛽 is probably one of the hardest tasks in epidemiological modeling. We

use different approaches. Firstly, by running simulations repeatedly and setting values

of 𝛽 leading to realistic spread times. Secondly, during the early stages of an epidemic,

a lot of work is conducted to estimate the value of 0 using various methods.

Using this value, the values estimated for the rates of movement and epidemiological

parameters, one can estimate values of 𝛽 from the expression for0 deduced from the

analysis of the deterministic model. Although the values of 0 for the deterministic

and stochastic models do not usually exactly coincide, the deterministic0 provides
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a first approximation that is acceptable given the general uncertainty in which the

model operates.

5.5 NUMERICAL SIMULATIONS

Simulations are performed using the C programming language, which allows easy

implementation of parallel routines and execution in high performance computing

(HPC) environments. A large number of independent simulations are performed and

a number of characteristics of these simulations are computed: number of realizations

where the disease becomes extinct, number of realizationswhere a givenACA is “hit,”

that is, imports an infected case, number of realizations with successful invasion, that

is, where an imported case infects a local individual, etc.

Alerts can then be ranked by a given public health entity in terms of the proportion

of simulations that activate it under one of the criteria above.

5.6 CONCLUSIONS

By incorporating information about how individuals travel on the global air trans-

portation network and using initial conditions emanating from internet surveillance

systems, the mathematical model will allow us to classify alerts generated anywhere

in the world in terms of the risk they represent to a given public health entity.

The system is currently under development, with one aspect in particular being the

object of a lot of work: the speeding up of computations. Indeed, because the time to

the next event in the stochastic simulation is exponentially distributed with parameter

the total weight of events, the time steps usually take an unreasonably small size.

The first method used to circumvent this problem is the so-called 𝜏-leap method (Cao

et al. 2006), which allows us to consider “packets of events.”
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