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Abstract An SIR infectious disease propagation model is considered that incorpo-
rates mobility of individuals between a large urban centre and smaller satellite cities.
Because of the difference in population sizes, the urban centre has standard incidence
and satellite cities have mass action incidence. It is shown that the general basic repro-
duction number R0 acts as a threshold between global asymptotic stability of the
disease free equilibrium and disease persistence. The case of Winnipeg (MB, Canada)
and some neighbouring satellite communities is then considered numerically to com-
plement the mathematical analysis, highlighting the importance of taking into account
not onlyR0 but also other measures of disease severity. It is found that the large urban
centre governs most of the behaviour of the general system and control of the spread is
better achieved by targeting it rather than reducing movement between the units. Also,
the capacity of a satellite city to affect the general system depends on its population
size and its connectivity to the main urban centre.

Keywords Metapopulation · Mobility · Urbanism · Incidence functions ·
Reproduction number · Attack rate
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1 Introduction

With progress in technology, mobility, defined here very generally as consisting of
all processes through which individuals change their location, has become more and
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more prevalent and easy. Among the consequences of this acceleration and general-
ization of mobility is a great speeding up and easing of the spatio-temporal spread
of infectious diseases, as evidenced notably by the 2003 SARS epidemic or the 2009
H1N1 pandemic (Khan et al. 2009).

Studying the effect of mobility on the spread of an infectious disease can be accom-
plished in many ways, illustrating that the term mobility encompasses a wide variety
of processes taking place on vastly different timescales. One of these methods are so-
calledmetapopulationmodels, which consider distinct spatial locations called patches.
In each patch, an epidemic model describes the spread of an infectious disease among
members of the local population. The locations are then coupled in a graph, with the
patches as vertices and arcs representing the possibility for individuals in the various
epidemiological states to travel between locations.

Many aspects have been investigated inmetapopulationmodels; see, e.g., the review
by Arino (2009). One aspect that has not been the object of much attention is the effect
of the interconnection of patches with very different population sizes on the dynamics
of disease propagation in the coupled system.Wang and Zhao (2008) consider a model
for two patches with periodic coefficients of infection and movement rates. Fromont
et al. (2003) consider Feline Leukemia Virus in a metapopulation of cats living either
in farms or in villages. In these papers, the authors consider coupled patches with
some having mass action incidence and others with standard incidence.

In the same spirit, a metapopulationmodel for the spread of infectionwithin cities is
used here to study the movement of people between an urban centre and neighbouring
satellite cities and the effect this has on the spatial and temporal spread of the disease.
Large cities are indeed often associated to smaller cities of two main types. Suburban
areas are most of the time very close to the major city. They can have distinct adminis-
trative structures, but a large fraction of their inhabitants commute to the large city (or
to other suburban areas) during the work week, if not every day. They also often offer
some of the amenities of the large city, such as shopping centres or recreational areas,
so inhabitants of the latter also visit them regularly. They are difficult to distinguish
from the large city and from a modelling perspective, the large city and its suburbs
can generally be considered as a single unit. The other type of structures peripheral
to a large urban area are so-called satellite cities. These are generally cities in their
own right, located further away from the main city than are suburban areas. However,
they are connected to the main city in many ways. For instance, while they generally
have hospitals, these facilities are often able to deal only with general cases, with
severe cases having to be treated in the large city’s facilities. Although not as closely
integrated as a major city and suburban cities, individuals make regular movements
between the locations.

An SIR-type metapopulation model is formulated, with standard incidence in the
large urban centre and mass action incidence in the satellite cities, to tackle the fol-
lowing questions:

1. From Arino (2009) and other work on the subject, it appears that most of the time,
the linear autonomous coupling of a collection of patches that are identical, save
perhaps for parameter values, does not lead to behaviours that are more complex
than those observed for the models in isolation. On the other hand, a change of
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incidence function within a single population can lead to complicated dynamics;
see, e.g., Arino andMcCluskey (2010). Does the coupling of patches with different
incidence functions affect the dynamics of a metapopulation disease transmission
model?

2. From a more practical point of view, urban centre and satellite cities systems
abound. In such configurations, what drives disease propagation in the entire sys-
tem?Can satellite cities “infect” the urban centre, can they protect themselves from
infection by the urban centre?Does the size of a city play a role in its vulnerability to
invasion by an infectious disease or its role in facilitating the spread of this disease?

Some mathematical analysis is conducted. Then the model is specialized numeri-
cally to several cities in the province of Manitoba (Canada): Winnipeg, the capital and
largest urban centre with about 700,000 inhabitants, and satellite cities located some
distance from Winnipeg.

2 Modelling

2.1 Assumptions

In each city, the population is divided between susceptible (S), infectious (I) and
recovered (R) individuals, depending on their epidemiological status. The simple SIR
formalism allows to capture the main characteristics of disease propagation without
the burden of additional equations and parameters. Further, this allows to focus on the
effect of size, since the behaviour of a classical SIR metapopulation model without
size effects is well understood.

The large city is labelled with the numerical application to Winnipeg in mind: it
is identified with the index W . There are a fixed small number n of satellite cities,
labelled 1, . . . , n. It is assumed that there is no movement between the smaller cities.
This is, to a large extent, a reasonable assumption in the application considered; see
Sect. 4. The mathematical analysis is not any more complicated if movement between
the satellite cities is added to the model, it is omitted here for simplicity and because
of the application considered. All individuals move at the same rate regardless of their
epidemiological status. This simplification stems from the short distances involved.

The specificity of the model lies in the assumption that, depending on the size of
the population in patches, different types of incidence functions are present (Fig. 1).
There is a lot of debate about the nature of incidence functions (McCallum et al. 2001)
and the interpretation that follows is by no means the only one possible. Here, as in
the work of Arino and McCluskey (2010), it is assumed that mass action incidence is
appropriate for smaller populations, while standard (or proportional) incidence better
fits larger communities. Since the communities aremuch smaller than the urban centre,
the nature of contacts is different. In the smaller communities, it is quite conceivable
that an inhabitant can meet any other inhabitant, which is well described by a mass
action incidence function. On the other hand, a large urban centre has several major
shopping areas, numerous neighbourhoods, etc. Many inhabitants spend their days
in a small number of neighbourhoods, rarely if ever visiting others. This situation is
better reproduced by a proportional incidence function.
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Fig. 1 Flow diagram of the system. Represented here are the urban centre and one satellite city

2.2 The model and its parameters

The model consists of 3(n + 1) differential equations. Those for the urban centre are
given by

S′
W = bW−βW

SW IW
NW

−dSW +
n∑

i=1

mWi Si−SW

n∑

i=1

miW (1a)

I ′
W = βW

SW IW
NW

−γ IW−d IW +
n∑

i=1

mWi Ii−IW

n∑

i=1

miW (1b)

R′
W = γ IW−dRW +

n∑

i=1

mWi Ri−RW

n∑

i=1

miW , (1c)

while equations for the satellite cities take the form, for i = 1, . . . , n,

S′
i = bi−βi Si Ii−dSi + miW SW−mWi Si (1d)

I ′
i = βi Si Ii−γ Ii−d Ii + miW IW−mWi Ii (1e)

R′
i = γ Ii−dRi + miW RW−mWi Ri . (1f)

Here and throughout the remainder of the text, the index x ∈ {W, 1, . . . , n} is used
to alleviate notation; when referring to a city, “city x” refers to any of the urban centre
or the smaller cities.

The parameter βx is the transmission coefficient in city x ; it has units per unit time
and per unit time per individual in W and i = 1, . . . , n and represents the rate of
infection and the rate of infection per individual, respectively. The parameter γ is the
per capita rate of recovery, i.e., 1/γ is the mean of the exponentially distributed time
of sojourn of individuals in the infectious class. The constant bx is the birth rate in
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city x and d is the per capita death rate. The rates of recovery and death are equal
in all cities because sanitary conditions are comparable in the cities considered. The
birth rate is allowed to differ between locations as it is used to set the equilibrium
value of the population in the locations (see below). The parameter mWi is the rate of
movement from satellite city i = 1, . . . , n to the urban centre, while miW is the rate
of movement from the urban centre to satellite city i = 1, . . . , n. Unless otherwise
indicated, the rates of movement are positive. All other parameters are positive.

The total population in city x is Nx = Sx + Ix + Rx . This number is assumed to be
large compared to the number n of cities considered, so that an ordinary differential
equations approach is justified. System (1) is considered with nonnegative initial con-
ditions such that N (0) = NW (0) + ∑n

i=1 Ni (0) > 0. To avoid dealing with a trivial
case, it is also generally assumed that IW (0) + ∑n

i=1 Ii (0) > 0.

3 Mathematical analysis

3.1 Preliminaries

Summing all equations in (1) and denoting N = ∑
x Nx and b = ∑

x bx , the total
population in the system is governed by

N ′ = b−dN ,

so the total population in the system tends to b/d as t → ∞. It is easy to verify that
the positive orthant R3(n+1) is invariant under the flow of (1), so all state variables are
nonnegative and bounded.

Some notation will be useful for the remainder of the analysis. If k is a vector, the
notation k ≥ 0 indicates that k has all its entries nonnegative, k > 0 means that k ≥ 0
with at least one positive entry; finally, k � 0 means that k is entry-wise positive. The
same notation is used for matrices. The analysis will also make use of the movement
matrix, which is defined as

M =

⎛

⎜⎜⎜⎜⎜⎝

− ∑n
i=1 miW mW1 mW2 · · · mWn

m1W −mW1 0 · · · 0
m2W 0 −mW2 0

. . .
. . .

mnW 0 0 −mWn

⎞

⎟⎟⎟⎟⎟⎠
. (2)

Some properties of M will be used later on and are summarized in the following
result.

Lemma 1 Let c ∈ R+\{0}. ThematrixM defined by (2) has the following properties.

(i). −M is a singular M-matrix and has all its eigenvalues with nonpositive real
parts.

(ii). −(M−cI) is a nonsingular M-matrix.
(iii). −(M−c I)−1 > 0.
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(iv). M − cI has all its eigenvalues with real parts less than or equal to −c.
(v). If mWi > 0 and miW > 0 for all i = 1, . . . , n, then M,−M,M−cI and

−(M−cI) are irreducible and −(M−c I)−1 � 0.

Proof (1) follows from Theorem 2 in the paper by Arino (2009). Since −M is
an M-matrix, Lemma 6.4.1 in the book by Berman and Plemmons (1994) implies
that, for c > 0,−M+ cI is a nonsingular M-matrix, proving (2). Since −(M− cI) is
a nonsingular M-matrix, Theorem 6.2.3.N38 in Berman and Plemmons (1994) gives
(3). (4) Follows from Exercise 1.2.P8 in the book by Horn and Johnson (2013). Irre-
ducibility of M in (5) comes from considering the directed graph (digraph) G(M)

associated to M, where G(M) has an arc from vertex i ∈ {W, 1, . . . , n} to ver-
tex j ∈ {W, 1, . . . , n} if m ji �= 0. Irreducibility of M is equivalent to strong
connectedness of G(M), which is clear here since mWi > 0 and miW > 0 for
all i = 1, . . . , n(G(M) is a star-shaped digraph centered on W ). Further, for
c > 0,G(M) = G(M−cI), so the irreducibility of M−cI also follows. Clearly,
there also holds that G(M) = G(−M) = G(−(M−cI)), so −(M−cI) and −M are
also irreducible. As−(M−cI) is an irreducible nonsingularM-matrix, Theorem 6.2.7
in the book by Berman and Plemmons (1994) implies that −(M−c I)−1 � 0. 	


3.2 The uncoupled system

Consider first the uncoupled system, i.e., take M = 0. The analysis of the system in
this case is well-known and summarized here for the reader’s convenience; see, e.g.,
the papers by Korobeinikov and Wake (2002) and Vargas-De-León (2011).

In all cities, whether large or small, i.e., independent of the nature of the incidence
function, the total population converges to N∗∗

x = bx/d and the disease free equilib-
rium (DFE), obtained by solving for (Sx , Rx ) after setting Ix = 0, takes the value
S̄x = N∗∗

x and R̄x = 0. [The notation N∗∗
x is used to avoid confusion with N∗

x in the
general coupled model as given by (5), which includes mobility.]

Now compute the basic reproduction number Rx
0 in city x using next generation

matrix method of van den Driessche and Watmough (2002). In the urban centre,

RW
0 = βW

d + γ
, (3)

while for the satellite cities i = 1, . . . , n,

Ri
0 = βi

d + γ
N∗∗
i . (4)

Supposing that Ix > 0 gives the endemic equilibria (EEP)

(S∗
W , I ∗

W , R∗
W ) =

(
N∗∗
W

RW
0

,
b

βW

(
RW

0 −1
)

,
γ

βW

(
RW

0 −1
)
N∗∗
W

)
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in the large urban centre and

(S∗
i , I ∗

i , R∗
i ) =

(
N∗∗
i

Ri
0

,
biβi − d(γ + d)

β(γ + d)
,
γ (biβi − d(γ + d))

βd(γ + d)

)

in the satellite cities.
It is then known that if Rx

0 < 1, then the DFE is globally asymptotically stable in
patch x , while if Rx

0 > 1, then the endemic equilibrium is globally asymptotically
stable in patch x .

3.3 Behaviour of the total population in cities

Consider now the coupled system with M �= 0. In the remainder of Sect. 3, it is
assumed that movement rates from the urban centre to all satellite cities and from all
satellite cities to the urban centre are positive. From Lemma 1(v), it follows that M
is irreducible.

Let N = (NW , N1, . . . , Nn)
T , b = (bW , b1, . . . , bn)T and I be the (n + 1) ×

(n + 1) identity matrix.

Proposition 1 The total population in cities converges to

N∗ = (N∗
W , N∗

1 , . . . , N∗
n )T = − (M−d I)−1 b � 0. (5)

Proof We have
N′ = b − d N + MN = b + (M − d I)N (6)

FromLemma1(ii),−(M−dI) is nonsingular and fromLemma1(v),−(M−d I)−1 �
0. It follows that N∗ is unique and N∗ � 0. Also, by Lemma 1(iv), M−dI has all
its eigenvalues with real parts less than or equal to −d, so solutions N of the linear
system (6) converge to N∗. 	


The proof of Theorem 1, later on, will proceed as in the paper of Li and Shuai
(2009) and requires, in particular, the use of the positive invariance of the set

Γ =
{
(SW , IW , S1, I1, . . . , Sn, In) ∈ R

2n+2+ ; SW + IW +
n∑

i=1

(Si + Ii ) ≤ b

d

SW ≤ N∗
W , S1 ≤ N∗

1 , . . . , Sn ≤ N∗
n

}
,

which is easily shown as a consequence of Proposition 1.

3.4 Behaviour of the epidemic model

Let S = (SW , S1, . . . , Sn)T , I = (IW , I1, . . . , In)T and R = (RW , R1, . . . , Rn)
T . A

disease free equilibrium has I = 0. The following result holds true.
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Proposition 2 System (1) has the unique DFE

(S, I, R) =
(
−(M − d I)−1b, 0, 0

)
= (

N∗, 0, 0
)
. (7)

Proof The DFE is solution of

bW − dSW +
n∑

i=1

mWi Si −
n∑

i=1

miW SW = 0

bi − dSi + miW SW − mWi Si = 0, i = 1, . . . , n

−dRW +
n∑

i=1

mWi Ri −
n∑

i=1

miW RW = 0

dRi + miW RW − mWi Ri = 0, i = 1, . . . , n,

which is easier to handle in vector form:
(

b
0

)
+

(M − d I 0
0 M − d I

) (
S
R

)
=

(
0
0

)
.

As previously, the matrixM − d I is invertible. Therefore,

(
S∗
R∗

)
=

(
(M − d I)−1 0

0 (M − d I)−1

) (−b
0

)
.

It follows that R∗ = 0 and S∗ = N∗. 	

The stability of the disease free equilibrium is now considered, using the general basic
reproduction number R0, i.e., the basic reproduction number for the whole system.
Using the method of van den Driessche and Watmough (2002), let

F =

⎛

⎜⎜⎜⎝

βW
SW IW
NW

β1S1 I1
...

βn Sn In

⎞

⎟⎟⎟⎠

and

V =

⎛

⎜⎜⎜⎝

(γ + d)IW − ∑n
i=1 mWi Ii + ∑n

i=1 miW IW
(γ + d)I1 − m1W IW + mW1 I1

...

(γ + d)In − mnW IW + mWn In

⎞

⎟⎟⎟⎠

be, respectively, the vectors of new infections and all other flows within the infected
classes. Taking partial derivatives of F and V with respect to IW , I1, . . . , In and
evaluating at the DFE gives
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F = diag

(
βW

S∗
W

N∗
W

, β1S
∗
1 , . . . , βn S

∗
n

)
= diag

(
βW , β1N

∗
1 , . . . , βnN

∗
n

)
(8)

and

V =

⎛

⎜⎜⎜⎝

γ + d + ∑n
i=1 miW −mW1 · · · −mWn

−m1W γ + d + mW1 · · · 0
...

. . .

−mnW 0 γ + d + mWn

⎞

⎟⎟⎟⎠

= (γ + d)I − M. (9)

Let ρ(A) be the spectral radius of a given matrix A.

Theorem 1 Let

R0 = ρ
(
FV−1

)
. (10)

The DFE (7) of system (1) is globally asymptotically stable in Γ if R0 ≤ 1 and
unstable ifR0 > 1.

The proof below is an extended outline showing in particular that the analysis can
proceed as did Li and Shuai (2009); see that paper for details.

Proof The expression of R0, the local asymptotic stability and instability results are
a direct application of Theorem 2 of van den Driessche and Watmough (2002) with
the matrices F and V given by (8) and (9).

To prove the global asymptotic stability, proceed as in the proof of Theorem 3.1 in
the paper of Li and Shuai (2009) with slight modifications. The matrices FV−1 and
V−1F share the same spectrum (Exercise 1.2.P17 in Horn and Johnson 2013) and
thus R0 = ρ(FV−1) = ρ(V−1F). F is a nonnegative matrix. V is, by construction,
an M-matrix. Further, by Lemma 1. (v), V is irreducible. Thus, by Theorem 6.2.7 in
the book by Berman and Plemmons (1994), V−1 � 0. As a consequence, V−1F � 0
is primitive. Therefore, the Perron Theorem implies that V−1F has a (unique) left
eigenvector (wW , w1, . . . , wn) � 0 corresponding to the Perron root R0 of V−1F
[see, e.g., Theorems 1 and 2 in the paper by Berman and Shaked-Monderer (2012)].
Thus,

(wW , w1, . . . , wn)V
−1F = R0(wW , w1, . . . , wn)

⇔ 1

R0
(wW , w1, . . . , wn) = (wW , w1, . . . , wn)F

−1V (11)

Now define the function L = cW IW + ∑n
i=1 ci Ii , with cW = wW /βW and ci =

wi/(βi N∗
i ), i = 1, . . . , n. Differentiating L along solutions of (1) gives
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L ′ = cW

(
βW

SW IW
NW

−
(

γ + d +
n∑

i=1

miW

)
IW +

n∑

i=1

mWi Ii

)

+
n∑

x=1

cx (βx Sx Ix − (γ + d + mWx )Ix + mxW IW )

≤ cW

(
βW IW −

(
γ + d +

n∑

i=1

miW

)
IW +

n∑

i=1

mWi Ii

)

+
n∑

x=1

cx
(
βx N

∗
x Ix − (γ + d + mWx )Ix + mxW IW

)

= (cW , c1, . . . , cn)(F − V )I

=
(

wW

βW
,

w1

β1N∗
1
, . . . ,

w1

βnN∗
n

)
(F − V )I. (12)

However, since F is diagonal,

(
wW

βW
,

w1

β1N∗
1
, . . . ,

w1

βnN∗
n

)
= (wW , w1, . . . , wn)F

−1.

Substituting this into (12) and using (11), it follows that

L ′ ≤ (wW , w1, . . . , wn)F
−1(F − V )I

= (wW , w1, . . . , wn)(I − F−1V )I

= (wW , w1, . . . , wn)I − (wW , w1, . . . , wn)F
−1V I

= (wW , w1, . . . , wn)

(
1 − 1

R0

)
I.

Thus L ′ ≤ 0 when R0 ≤ 1, so L is a Lyapunov function for (1). Because of the
invariance of Γ mentioned earlier, the remainder of the proof of Theorem 3.1 in the
paper of Li and Shuai (2009) can be applied, giving the result. 	


Theorem 2 Suppose that R0 > 1. Then the system (1) is uniformly persistent and
there exists an endemic equilibrium.

Proof Consider system (1) as a nonautonomous system where N(t) is the nonau-
tonomous component, i.e., “forget”, for now, that N(t) = S(t) + I(t) + R(t). From
Proposition 1, N(t) → N∗, so (1) considered as a nonautonomous system is asymp-
totically autonomous with limit system the one where N(t) has been replaced by N∗.
Let β̃W = βW /N∗

W , β̃1 = β1, . . . , β̃n = βn . Substituting this into (1) gives, for all
cities x ∈ {W, 1, . . . , n},
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S′
x = bx − β̃x Sx Ix − dSx +

∑

p∈{W,1,...,n}
p �=x

mxpSp −
∑

p∈{W,1,...,n}
p �=x

m px Sx (13a)

I ′
x = β̃x Sx Ix − γ Ix − d Ix +

∑

p∈{W,1,...,n}
p �=x

mxp Ip −
∑

p∈{W,1,...,n}
p �=x

m px Ix (13b)

R′
x = γ Ix − dRx +

∑

p∈{W,1,...,n}
p �=x

mxp Rp −
∑

p∈{W,1,...,n}
p �=x

m px Rx . (13c)

Note that mpx and mxp are positive if and only if x = 1, . . . , n and p = W or x = W
and p = 1, . . . , n, implying that (1d)–(1f) can indeed be written in the form (13).

Once this step is accomplished, Proposition 3.2 of Li and Shuai (2009) holds.
Indeed, (13) is a simpler version of (1.1) in the paper of Li and Shuai (2009): here,
movement and death rates are equal irrespective of an individual’s disease status.
Also, the movement matrix M is irreducible. Proposition 3.2 in the paper of Li and
Shuai (2009) implies that (13) is uniformly persistent and has an endemic equilibrium
(S∗, I∗) in the interior of Γ –the dynamics of R is omitted at this stage as it does not
influence S and I and can be deduced from N∗, S and I.

The result then extends to system (1) by using the theory of asymptotically
autonomous systems (Thieme 2000). 	


Note that the last theorem in the paper of Li and Shuai (2009), which establishes
the global asymptotic stability of a unique endemic equilibrium, is not applicable
here. Indeed, one of the major differences between the model of Li and Shuai (2009)
and model (1) here is that movement rates depend on the epidemiological status of
individuals in the work of Li and Shuai (2009).

Finally, remark that because of the nature of F and V , the following result is
obtained, which allows under conditions to localize R0 when the individual Rx

0 are
known.

Proposition 3 Suppose that for all i = 1, . . . , n, N∗
i = N∗∗

i . Then the general basic
reproduction number R0 satisfies the following inclusion

R0 ∈
[
min

{
RW

0 ,R1
0, . . . ,Rn

0

}
,max

{
RW

0 ,R1
0, . . . ,Rn

0

}]
. (14)

In particular, if min{RW
0 ,R1

0, . . . ,Rn
0} > 1, then the DFE is unstable and

(1) is uniformly persistent, whereas the DFE is globally asymptotically stable if
max{RW

0 ,R1
0, . . . ,Rn

0} ≤ 1.

Proof V has all column sums equal to γ + d, i.e., 1T V = (γ + d)1T , with 1T =
(1, . . . , 1). From the latter form, it is clear that 1T V−1 = 1/(γ + d)1T . The matrices
FV−1 and V−1F share the same spectrum (Exercise 1.2.P17 Horn and Johnson 2013)
and so R0 = ρ(FV−1) = ρ(V−1F). Right multiplication of V−1 by the diagonal
matrix F amounts to multiplying each column of V−1 by the successive diagonal
entries in F and so
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1T V−1F =
(

βW

γ + d
,

β1

γ + d
N∗
1 , . . . ,

βn

γ + d
N∗
n

)

=
(
RW

0 ,R1
0, . . . ,Rn

0

)
,

from the hypothesis that N∗
i = N∗∗

i for all i = 1, . . . , n. The matrix FV−1 is non-
negative by construction (van den Driessche and Watmough 2002), so it follows from
Theorem 8.1.22 in the book by Horn and Johnson (2013) that (14) holds true. The
remainder of the result is then a straightforward consequence of (14). 	


The assumption that N∗
i = N∗∗

i , i = 1, . . . , n, is restrictive. However, from a
modelling perspective, it is justified as mobility here represents short term two-way
movement rather thanmigration. The population in the various cities can be interpreted
as representing the carrying capacity of these cities. In an unconnected collection of
cities, in order to reach this carrying capacity, the birth rate would be b̃i such that
N∗
i = N∗∗

i . This hypothesis is often used in numerics (and will be used in Sect. 4).

4 Numerical investigations

Winnipeg, the capital of the Canadian province of Manitoba, is the urban centre under
consideration, while several satellite cities close to Winnipeg are the smaller satellite
cities: Portage la Prairie, Selkirk and Steinbach. The situation of Manitoba is ideal for
this study: population density is low outside ofWinnipeg; the road network connecting
Winnipeg to nearby cities is simple and well studied.

4.1 Disease related parameters

Most parameters take the same value in all patches: the cities are geographically close
and there is no discernible difference between health systems for the disease under
consideration.

Disease related parameters are taken to loosely represent influenza. The mean dura-
tion of the infectious period is 4.1 days, which is consistent with parameters used in
the influenza literature (Arino et al. 2006). The disease transmission coefficient βx is
allowed to vary in order to obtain different values ofR0 in different locations.

4.2 Estimation of movement and birth rates

Population counts used come from the 2011Canadian census and are those of the cities
themselves, not their metropolitan areas. See Table 1 for a list of the cities considered,
their population, distance fromWinnipeg and an estimation of the average daily num-
ber of individuals travelling between Winnipeg and these cities. Transportation data
originates from the University of Manitoba Transport Information Group (UMTIG)
and gives the average daily number of vehicles at several counting stations along
major axes between these cities. Estimation of the average daily number of travellers
is explained in Appendix 1.
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Table 1 Population of several communities inManitoba (2011 Canadian census), distance from downtown
Winnipeg and average daily number of individuals travelling in each direction between Winnipeg and the
satellite communities

City Pop. Dist. (km) Avg. daily travellers

Winnipeg (W) 663, 617 – –

Portage la Prairie (1) 12, 996 88 4,115

Selkirk (2) 9, 834 34 7,983

Steinbach (3) 13, 524 66 7,505

The indices used in simulations are shown next to the city names

As a consequence, there remains to find values for the birth and movement rates.
This is done in two steps: first, the movement rates are computed to reflect the actual
movement of individuals between locations estimated from the transportation data.
Then the birth rates are computed so that, in simulations, the system remains at an
equilibrium with population in all cities equal to their values in the census.

To estimate the movement rates, consider city x and its population Nx . Assume that
the rate at which individuals leave city x to go to city y is myx . Thus, ceteris paribus,
N ′
x = −myx Nx , which implies that Nx (t) = Nx (0)e−myx t . Therefore, after one day,

Nx (1) = Nx (0)e−myx , that is,

myx = − ln

(
Nx (1)

Nx (0)

)
.

Now, Nx (1) = Nx (0) − Tyx , where Tyx is the number of individuals going from x to
y each day. It follows that

myx = − ln

(
1 − Tyx

Nx (0)

)
.

This is computed for all pairs (W, i) and (i,W ) of cities considered.
Given knowledge of the movement rates and population numbers in the different

cities, b is then set so that the latter are conserved given the former. From (5), it follows
that

b = −(M − d I)N∗.

Substituting this value of b into

N′ = b + (M − d I)N

gives

N′ = −(M − d I)N∗ + (M − d I)N = (M − d I)(N − N∗).

As a consequence, startingwithN(0) = N∗ allows to conduct numerical simulations at
the population equilibrium so that the only effects visible are those due to the disease.
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Note that this method can lead to some entries in b taking negative values: to keep
the population constant in a community that sees a large movement-induced inflow
of individuals and a lower outflow rate, the birth rate might end up negative. This, in
turn, could lead to the corresponding Sx (t) becoming negative for some t , since the
right hand sides of equations (1a) or (1d) would be negative when Sx = 0. This is only
a potential issue when R0 > 1, since if R0 < 1, then the Sx are known to converge
to N∗

x (Theorem 1). In any case, this method is only used in numerical simulations in
situations where the total population in patches is at equilibrium.

4.3 Sensitivity of R0 toRx
0

Figure 2 shows the sensitivity of the general R0 to changes in the value of RW
0 and

Ri
0, i = 1, 2, 3. In each case, “with disease” means thatRx

0 = 1.5, “without disease”
means thatRx

0 = 0.5. TheRx
0 that is made to vary varies from 0.5 to 3. The cases with

“disease in Winnipeg” have RW
0 = 1.5, two of the satellite cities with Ri

0 = 0.5 and
the remaining small city’s Ri

0 varying; the variation of RW
0 is not considered in this

case. The case with “disease in satellites” has RW
0 = 0.5 and two of = 1, 2, 3 with

Ri
0 = 1.5, with the third one varying. For instance, the first three results (Winnipeg)

show the sensitivity of the general R0 to variations of RW
0 between 0.5 and 3, when

the three small cities have Ri
0 = 1.5 (first and last boxes) or R0 = 0.5 (middle bar).

Each box and corresponding whiskers are the result of 10,000 simulations.
In Fig. 2, it can be seen that, with the parameters used, most of the variation ofR0

is driven by Winnipeg; the small cities have little influence, albeit varying: Portage
la Prairie can trigger a bifurcation even when RW

0 < 1, while Steinbach has a more
limited influence and variations of R2

0 in Selkirk have almost no effect on the value
of the general R0.

R
0

0.
5

All with disease

None with disease

Disease in Winnipeg

Disease in satellites

Winnipeg Portage la Prairie Selkirk Steinbach

1.
0

1.
5

2.
0

2.
5

3.
0

Fig. 2 Sensitivity of the general R0 to variations of Rx
0 between 0.5 and 3, where x is the city indicated

on the x axis. The box shows the extent of results between the 25th and 75th percentile, while the whiskers
extend to the most extreme values. The bar in the box is the median. The sensitivity to changes in RW

0
when the disease is in Winnipeg is irrelevant and is not represented
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4.4 Influence of connectivity

Understanding the roles of the satellite cities requires to consider not only their size, but
the rates of movement that connect them to Winnipeg. From Table 1, daily travellers
to and from Winnipeg represent approximately 32, 81 and 55% of the respective
populations of Portage la Prairie, Selkirk and Steinbach and these percentages are
reflected in the actual movement rates.

4.4.1 High connectivity implies indistinguishibility

As remarked in Fig. 2, variations of R2
0 in Selkirk have almost no impact on vari-

ations of the general R0, regardless of the scenario considered for Rx
0 in the other

cities. Selkirk is the closest satellite to Winnipeg and has the highest ratio of trips
to inhabitants and thus, the highest movement rates. The average time an individual
spends in Selkirk (their residence time there) is small. In a sense, this community is
barely distinguishable from Winnipeg and additional sensitivity analysis (not shown)
indicates that it does not really matter whether one considers it as part of Winnipeg or
separated.

4.4.2 Lower connectivity can drive R0

Portage la Prairie and Steinbach have comparable populations. However, with the
parameters under consideration and with reasonable values of the Rx

0 , it can be seen
in Fig. 2 that only the former can cause the general R0 to take values larger than 1
when RW

0 < 1. Intuition indicates that this must be due to the movement rate. If all
movement rates were zero, then R0 would be given by

R0 = max{RW
0 ,R1

0,R2
0,R3

0},

since the matrix FV−1 is diagonal when M = 0. As movement rates to and from
Portage la Prairie are lower, the situation is closer to the uncoupled case and the value
of R1

0 has more impact on the general R0.
This is confirmedbyFig. 3a,which shows the joint effect of a reductionofmovement

between Winnipeg and Portage la Prairie and of the value ofR1
0 in Portage la Prairie,

when RW
0 = R2,3

0 = 0.5. On this figure, R0 < 1 is located above the green curve.
When Portage la Prairie is completely isolated from Winnipeg (bottom of the figure),
the value of R1

0 governs the value of the general R0. This effect decreases as the
movement rates increase.

4.4.3 Lower connectivity has little effect on severity

Although Portage la Prairie can drive the value of the general R0, its effect on other
aspects of disease dynamics is not as important as that of Winnipeg. Figure 3b shows
the attack rate in Winnipeg as a function of the same parameters as those in Fig. 3a.
Attack rates are a fundamental concept in epidemiology that are used to quantify the
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Fig. 3 Plots as functions ofR1
0 in Portage la Prairie and the reduction of movement betweenWinnipeg and

Portage la Prairie. a General R0; the green and red curves show the locations of R0 = 1 and R0 = 1.5,
respectively. b Attack rate in Winnipeg; the green and red curves show the locations ofR0 = 1 and a 10%
attack rate, respectively

burden of an epidemic over its time course. The term “rate” is a misnomer, as most of
the time, attack rates refer to the percentage of individuals in a population that have
borne the pathogen during the epidemic; however, this is the most commonly used
term to describe this concept and it is therefore used here.

In order to obtain attack rates as in Fig. 3b, the following approximation method is
used. Numerical solutions to the ODE are computed over a time period. The number
of infection-days for a given community x is then obtained by trapezoidal integration
of Ix (t). This is converted in turn to a number of infections by dividing by the average
duration of the infectious period (4.1 days). Finally, this is related to the population
N∗
x and converted to percentage. In order to obtain comparable results, all attack rates

graphs are produced here using simulations for 1 year.
Considering Fig. 3b, one sees that in most cases, even in situations whereR1

0 causes
the whole system to go to an endemic equilibrium (below the green curve), the attack
rate remains low inWinnipeg. To obtain attack rates over 10% in a “normal”movement
context, R1

0 must be quite high, well over 2 (red curve). To put things in perspective,
most influenza epidemics, whether annual or pandemic, have estimated R0 values
around 1.5. Pandemic planning scenarios prior to the 2009 H1N1 pandemic made
assumptions placing the attack rate between 15 and 35% for mild and severe scenarii,
respectively; see Sect. Two in Public Health Agency of Canada (2006). Interestingly,
the higher values of R0 are obtained in regions of parameter space where the attack
rate in Winnipeg is small (lower right corner).

4.4.4 Connectivity acts differently onR0 and the attack rate

Figure 3a, b also illustrate another interesting property of the system:whileR0 appears
to depend linearly onR1

0,m1W and mW1 (green curve in both figures), the attack rate
is more complex (red curve in Fig. 3b). Suppose for instance that R1

0 were a little
larger than 2.5, placing the system in a region where R0 > 1 but with an attack rate
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Fig. 4 Plots as functions of RW
0 (Winnipeg) and R1

0 (Portage la Prairie). a Value of the general R0; the
green and red curves show the location of R0 = 1 and 1.5, respectively. b Overall attack rate; the green
and red curves are 5 and 30%, respectively

less than 10% in Winnipeg. Then reducing the rate of movement between Winnipeg
and Portage la Prairie to 50% of its usual value would result in a marked increase of
the attack rate. It is only by bringing movement to less than 10% of its default value
that the attack rate in Winnipeg would be made smaller.

4.5 The urban centre drives R0 and disease severity

Continuing on the relative roles of the urban centre, Winnipeg, and its least connected
satellite, Portage la Prairie, it can be seen in Fig. 4 that the effect of raising the value
of R1

0 is much less than the effect of raising the value of RW
0 , both in terms of effect

on the generalR0 (Fig. 4a) or in terms of the overall attack rate (Fig. 4b). If only one
ofRW

0 orR1
0 is allowed to vary (moving horizontally or vertically in the figure), then

a reduction of the attack rate from 30 to 5% requires little change to RW
0 (provided

R1
0 is not too large), whereas a lot more reduction ofR1

0 is needed to achieve the same
effect. Similarly, reducing the value of the general R0 to a value less than 1 is only
achievable by acting on R1

0 ifRW
0 is already less than 1.

Note that the situation is similar if Ri
0, i = 1, 2, 3, is made to vary instead of just

R1
0 (not shown).

4.6 Curtailing an epidemic

The question of “control” is now considered. In this model, there are two separate
mechanisms that can be used to control the epidemic: the value ofRx

0 can be lowered
or mobility can be restrained. In order to evaluate the relative value of such measures,
the following experiments are conducted.

4.6.1 Protection of satellite cities from disease in Winnipeg

In Fig. 5,Ri
0 = 0.5, i = 1, 2, 3,RW

0 ∈ [0.5, 3] and the rate of movement to and from
Winnipeg varies from 0 to 100% of its standard value. Changing the value of Ri

0 to,

123



1260 J. Arino, S. Portet

Fig. 5 General R0 (a) and attack rate in the satellite cities (b) as a function of RW
0 in Winnipeg and

the reduction in movement rate between Winnipeg and the satellite cities. The satellite cities have Ri
0 =

0.5, i = 1, 2, 3

say, 0.9 (not shown), does not change the situation: the effect of a reduction of the
movement rate is almost null, control of the general R0 is only achievable through
control of RW

0 , as can be seen in Fig. 5a. On the other hand, as shown in Fig. 5b,
reducing the rate of movement between Winnipeg and the satellite cities to a very low
value can help lower the disease attack rate in the satellite cities when RW

0 is large.

4.6.2 Protection of Winnipeg from disease in satellite cities

In Fig. 6, Ri
0 ∈ [0.5, 3], i = 1, 2, 3 and the rate of movement to and from Winnipeg

varies from 0 to 100% of its standard value. Comparing Fig. 6a, whereRW
0 = 0.5 and

Fig. 6b, where RW
0 = 0.9, one sees that when the reproduction number in Winnipeg

is larger, the amount of effort required to bring the general R0 to a value less than 1
increases, as the value of Ri

0 at which R0 = 1 is smaller in Fig. 6b.
Here again, as in the case with only Portage la Prairie andWinnipeg, decreasing the

movement rates results in an increase of R0. However, as seen in Fig. 6c, a decrease
of the rates of movement has a much more complicated effect on the attack rate in
Winnipeg.While a moderate decrease would be detrimental to the attack rate, a radical
decrease of movement rates would lower the attack rate.

5 Discussion

An SIR metapopulation model for the spread of an infectious disease between a large
urban centre and smaller neighbouring satellite cities was considered. Because of the
widely different population sizes, different incidence functions were used in the urban
centre (standard incidence) and the satellite cities (mass action incidence).

Note that in the present work, death and recovery rates were taken equal in all
locations. This is appropriate for the application toWinnipeg andneighbouring satellite
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Fig. 6 Plots as functions ofRi
0, i = 1, 2, 3 taken equal and the percentage of the regular movement rates

between Winnipeg and the satellite cities. a Case where RW
0 = 0.5. b Case where RW

0 = 0.9. c Attack

rate in Winnipeg, in %, whenRW
0 = 0.5

cities. However, several communities in Northern Manitoba are in a configuration that
closely resembles that of satellite communities: they are accessible only by air or
(during the winter) using ice roads. Per capita air travel rates from these communities
to and from Winnipeg is much higher than the average travel rate between larger
sized Canadian cities. For instance, using the method of computation of travel rates
explained earlier and air transportation data from the BioDiaspora Project (see, e.g.,
Arino and Khan 2014), it is found that, in 2012, the per capita rate of air travel
from Churchill (Manitoba) to Winnipeg was almost 450 times that from Toronto to
Winnipeg and still more than 50 times the total rate out of Toronto to all 1,600 final
destinations reached from there in 2012. Statistics Canada data (http://www.statcan.
gc.ca/health-sante/index-eng.htm) shows that in 2013, for the Burntwood/Churchill
Health Region that comprises all of Northern Manitoba, the average life expectancy
at birth was 71.0 years (compared to Canada’s 81.1 years or Winnipeg’s 80.1 years).
Several of these communities have no resident doctor. In this context, the rates of
recovery and death could be assumed to differ.
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The first objective of this work was to study mathematically the effect of coupling
together cities with different functional forms for incidence. The total population in
each patch was shown to converge to a positive value. An expression for the general
basic reproduction number R0 was derived. The global asymptotic stability of the
unique disease free equilibrium when R0 ≤ 1 was established. The proof followed
that in the paper of Li and Shuai (2009). Interestingly, the Lyapunov function used
by Li and Shuai (2009) for a system with all incidence functions of the same type
can be adapted easily to the present heterogeneous case. The uniform persistence of
the system as well as the existence of an endemic equilibrium were shown by setting
other results by Li and Shuai (2009) in an asymptotically autonomous setting. It is
suspected that whenR0 > 1, there is a unique globally asymptotically stable endemic
equilibrium. However, here the method of proof used by Li and Shuai (2009) was not
applicable because of restrictions on the movement matrices there and more work
will be needed to prove this. It was finally shown that under some conditions, the
generalR0 is bounded below and above by the minimum and maximum values of the
individual Rx

0 in the cities.
The second objective of this work was to investigate a real life situation. For this,

Winnipeg and its three main satellite cities were used with parameters appropriate for
influenza. One possible mechanism for deriving rates of movement between cities was
discussed, using estimates of the average daily number of car trips between Winnipeg
and the three smaller cities that were obtained in Appendix 1. It was observed that the
large city, Winnipeg, governed for the most part the behaviour of the system. Only
Portage la Prairie, which has the smallest rate of movement to and from Winnipeg,
was able to trigger an epidemic if all other cities (includingWinnipeg) had a low value
ofRx

0 = 0.5. It was observed that, as far as the satellite cities are concerned, reducing
the value ofRW

0 was much more important than isolating from Winnipeg, since only
almost perfect isolation was able to curb the overall attack rate of the disease in the
case that RW

0 > 1.
These numerical results provide a glimpse into the dynamics of infectious diseases

in a satellite-central hub setting and highlight the major role played by the main
urban centre on the course of an epidemic in such a system. They also emphasize the
fact that not all satellite cities play equal roles, with the three cities considered here
having different capacities to influence the dynamics of infection in the overall system,
depending on the nature of their connection to the main urban centre.

Note that when it holds, the bounds given by Proposition 3 allow, for system (1),
to answer in the negative an often difficult question in metapopulation models: can
movement “make it worse”, in the sense that the generalR0 would take values larger
than any the individualRx

0? Numerical simulations were conducted in a context where
this proposition does hold, highlighting one issue with numerics: because the total
population is asymptotically constant in each patch and that simulations are conducted
at that equilibrium, the effect of having different functional forms for incidence is very
small. Numerical simulations (not shown) were conducted which show that, with the
parameters used, one obtains virtually the same plots as in Fig. 4 if mass action or
proportional incidence are used in all cities.

123



Epidemiological implications of mobility 1263

Finally, note that Figs. 3, 5 and 6 tell a cautionary tale: R0 is, in the context
of mathematical models such as the one here, a bifurcation parameter that allows to
distinguish between two dynamical regimes. However, R0 does not give the whole
story. Take for instance Fig. 3 and supposeR1

0 = 2.5 and the movement rate is at 30%
of standard, i.e., a point slightly below the red curve in Fig. 3a. Suppose that the only
controlmeasure available is to act on themovement rates. If one only considers Fig. 3a,
then the obvious solution is to encourage more travel. However, Fig. 3b suggests that
decreasing the movement rate further would be a much better strategy.

In view of the remarks above, it is clear that the ordinary differential equations
framework used here is somewhat limiting and that further work should consider a
stochastic approach such as the one used byArino et al. (2011); Arino andKhan (2014)
or Lindholm and Britton (2007). The latter considers a different framework, with
an implicit description of movement, but shows that a derivation of some important
quantities such as the mean time to extinction of the infection is probably possible in
the stochastic equivalent of the model considered here.
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Appendix: Estimating daily trips

Contrary to data on air (Arino and Khan 2014) or train transportation, UMTIG trans-
portation data is not usable directly in the model as it provides flows through points,
not trips between locations. Among the vehicles counted at a given counting station, it
is not possible to distinguish the ones making a trip between the cities of concern from
the ones making either a longer or a shorter trip. Therefore, the numbers obtained here
are an approximation.

Observe that the volume ofmovement on a given route between two locations can be
no larger than theminimum of the values obtained at the counting stations on that route
between the two locations. So the volume obtained is a loose upper bound. Canadian
Vehicle Survey data for 2009 shows that the average vehicle occupancy in Manitoba
was 1.65 persons per light vehicle; see Fig. 12 in the report by the Office of Energy
Efficiency (2009). Numbers could be further adjusted to take into account this fact.
However, due to the already present uncertainty, the raw estimated number of vehicles
is used. Lastly, it is assumed that individuals usually try to optimize the length of
their trips (whether in distance or in time) and thus avoid complicated alternate routes.
Therefore, only the most direct routes between locations are considered.

Only the estimation of the volumebetweenWinnipeg andPortage la Prairie is shown
here. The other two proceed similarly. In practice, the traffic inbound from Winnipeg
is captured by stations 368 and 2077 (see Fig. 7). The last available date for station
368 is 1993. In order to get a more recent estimate, note that traffic through stations
48 and 369 increased an average 31.5% in the eastbound direction and 37.5% in the
westbound direction, from 1993 to 2011. Adjusting the 1993 estimates for station
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Fig. 7 Schematization of the location of the vehicle counters used to estimate traffic between Winnipeg
(WPG) and Portage la Prairie (PLP). The numbers in disks refer to UMTIG counting stations, those in
diamonds are road numbers

368 similarly gives 3,840 vehicles eastbound and 4,015 westbound. Station 2077 has
a 2011 estimate of 5,430 vehicles. This is the total of northbound and southbound
traffic. Because no further information is available, assume that traffic is split evenly
between northbound and southbound vehicles, thus there are 2,715 vehicles travelling
in each direction daily. Consider northbound vehicles. They may come from Highway
1 from both directions, or from further south on Highway 240. The latter are captured
by station 366, which shows an undirected daily average traffic of 4,680 vehicles, i.e.,
2,340 in each direction. Thus, the daily northbound flux of “nonresidents” is estimated
to be 375 vehicles. Again, this is split evenly between traffic incoming from Highway
1 westbound and eastbound, giving a total of 188 vehicles coming from Winnipeg.
The same volume is estimated to go to Winnipeg each day. Adding the volumes gives
a total number of travellers toWinnipeg of 4,028, while there are 4,203 travellers from
Winnipeg. To simplify a little further given the already present uncertainty, the average
(rounded below) of these two values is used in both directions, giving the number in
Table 1.
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