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5.1 INTRODUCTION

Tuberculosis (TB) is a global issue, being the second highest cause of infectious
disease-induced mortality after HIV/AIDS [21]. It is a disease of poverty that strikes
mostly vulnerable populations [24]. If treatment is available and treatment regimens
are followed seriously, most individuals recover. The same is not true of individuals
with active TB who are not treated; in this case, tuberculosis is fatal in up to 50% of
cases [16]. This further accentuates inequalities when facing the disease.

Because of the immense impact it has had on society for hundreds of years, TB has
been the object of a considerable volume of work. The complexity of TB transmission
and the diversity of patient life histories it involves, in particular the potential lifelong
incubation period, mean that TB has been the object of many mathematical modeling
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studies. It is beyond the scope of the present work to review these studies; see, for
example, Refs. [1, 11, 25] and the references therein.

One aspect of TB epidemiology that has recently become very important is
concernsdrug resistance. As often with the use of drugs, selective pressure on
Mycobacterium tuberculosis (the causative agent of TB) due to the use of antituber-
culosis drugs has led to the emergence of antituberculosis drugs-resistant strains [26].
The situation further evolved in recent years, with the detection of mycobacteria in
the 1990s, resistant to more than one of the drugs typically used to combat the infec-
tion. A M. tuberculosis strain is called multidrug resistant (MDR) if it is resistant
at least to isoniazid and rifampicin [9]. The incidence of MDR-TB is not homoge-
neous. In a 2004 study [17], it was noted that the incidence of MDR-TB was generally
low save for a few hot spots in China, Estonia, Latvia, and Russia. In 2010, the sit-
uation remained similar, with more countries reporting imported cases [31]. Further
evolutions in drug resistance were noted in the 2000s, with mycobacteria resistant
to second-line antituberculosis drugs [27]. The definition of extensively drug resis-
tant (XDR) strains was then specified to consist of strains resistant to rifampicin and
isoniazid, any fluoroquinolone, and one of the three injectable drugs, capreomycin,
kanamycin, and amikacin [9]; see in particular the reviews in Refs. [18, 22]. Drug-
resistant TB (M/XDR-TB for short) makes it a considerable challenge to control TB,
since treatment is less efficacious for a patient infected with MDR-TB [18] and can
even be unsuccessful for patients with XDR-TB.

Although several mathematical models have considered multiple strains of TB
(see a review in Ref. [14]), few consider explicitly MDR- and XDR-TB and their
emergence in a population as a consequence of treatment. The model in Ref. [4] uses
a variation on previous models for TB and considers both nosocomial and commu-
nity propagation. The models in Refs. [6, 13] are in the spirit of the model presented
here: they consider multiple strains of TB and the evolution between these strains.
They were, however, the object of little analytical work. The model in Ref. [7] con-
siders a simple mechanism for the emergence of resistance: individuals with active
drug-sensitive TB are treated at the rate φ; of those, a proportion r develops drug-
resistant TB because of treatment failure (the remaining 1− r are removed from the
system).

In the present work, we formulate a model for the spread of drug-resistant (MDR
and XDR) tuberculosis in a population. We assume that drug resistance can emerge
as a consequence of treatment. The model is derived from earlier models given in
Ref. [10]. Conditions are investigated which lead to the existence of a so-called back-
ward bifurcation, where subthreshold endemic equilibria exist. The global stability
of the disease-free equilibrium (DEF) is established when parameter values preclude
the existence of a backward bifurcation.

5.1.1 Model formulation

The population of interest is divided into eight compartments depending on the epi-
demiological status of individuals. The number in each compartment at time t is given
by the following variables.
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1. S(t) is the susceptible population, individuals who have never encoun-
tered TB.

2. Ls(t) are the individuals infected with the drug-sensitive TB strain but who are
in a latent stage, that is, who are neither showing symptoms nor infecting others.

3. Lm(t) individuals are latently infected with MDR-TB.

4. Lx(t) individuals are those who are latently infected with XDR-TB.
Individuals in all three latent stages Ls, Lm, and Lx make up the so-called

latent tuberculosis infections (LTBI). It is assumed that LTBI with a drug-
sensitive strain are treated, while latent infections with multidrug-resistant or
extensively resistant strains are not treated.

5. Is(t) are individuals infected with the drug-sensitive TB strain who are infec-
tious to others (and most likely, showing symptoms as well).

6. Im(t) are those individuals who are infectious with the MDR-TB strain.

7. Ix(t) individuals are infectious with the XDR-TB strain.
Individuals in all three infectious stages Is, Im, and Ix make up the so-called

active TB cases. All active TB cases are offered treatment.

8. R(t) are those individuals for whom treatment was successful.

If this does not lead to ambiguities, we omit the time dependence of state variables.
The total population N is given by

N = S+Ls +Lm +Lx + Is + Im + Ix +R.

We assume that flows between classes take the form indicated in the flow diagram
in Figure 5.1. We formulate the model by reasoning as follows. Rather than stating all
hypotheses at a time, we state them when they are needed. To simplify notation, we
use the generic index r ∈ {s,m,x} in state variables and parameters to refer to strains.

Susceptible population. The evolution of the number of susceptible individuals in
the population is governed by the following equation:

S′ = b−dS−βs
SIs

N
−βm

SIm

N
−βx

SIx

N
, (5.1a)

where b is the rate at which new individuals join the susceptible population (recruit-
ment) and βr are coefficients indicating the rates at which new infections arise given
contacts between susceptible and infectious individuals in the different infectious
classes. Note that incidence is here assumed to be proportional.

When a susceptible individual becomes infected with TB, that person leaves the S
compartment and transitions to the LTBI or active TB compartments corresponding
to the strain harbored by the individual that infected them, that is, to compartment Lr

or Ir, respectively. A proportion λr of new infections by strain r transitions to LTBI
compartment Lr, the remaining 1−λr moves directly to infectious compartment Ir

through so-called fast infections. This first infection with TB is called a primary
infection.
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LxLm
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Is Im Ix

FIGURE 5.1 Simplified flow diagram of the model with drug-sensitive (Ls, Is), MDR
(Lm, Im), and XDR (Lx, Ix) TB strains. Because of notational burden, birth and death are not
shown and rates are not indicated. Diamonds indicate that the given flow is further divided
between the indicated outcomes. Plain thick arrows indicate primary infections. Dash-dotted
thick arrows indicate infections of previously successfully treated patients. Dotted arrows indi-
cate treatment pathways that potentially lead to an increase in the resistance of the myobacteria
in a given patient. Finally, thin plain arrows indicate other flows within the system, including
exogenous reinfection.

Individuals latently infected with the drug-sensitive strain. The number Ls(t) of
drug-sensitive LTBI is increased by primary infections with the drug-sensitive
strain Is at the rate λsβsSIs/N and by natural recovery of individuals in the drug-
sensitive infectious compartment Is at the per capita rate γs. Treatment, natural death,
and natural progression to the infectious stage (due to a weakening immune system)
also decrease the population in the Ls compartment.

Our model also incorporates exogeneous reinfection. Exogeneous reinfection is an
important process in TB transmission; it happens when an individual already bear-
ing the mycobacterium gets infected again [12, 30]. Here, we assume that two types
of individuals can be subject to reinfection: latently infected and treated patients.
Exogeneous reinfection of Ls individuals occurs because of contacts with individuals
carrying the same strain Is or a different strain Im or Ix, following which the reinfected
individual transitions from Ls to the corresponding infectious compartment, leading
to a decrease of Ls at the rate αsrβr. Similarly, a treated individual that comes in con-
tact with an infectious individual can become reinfected. We assume that treatment
reduces the probability of such a reinfection; we take the efficiency of treatment to
be 1−σs ∈ (0,1). Thus, exogeneous reinfection of treated individuals increases Ls at
the rate σsλsβsRIs/N.
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L′
s = λsβs(S+σsR)

Is

N
+γsIs −{d+ εs + t�s}Ls

− (αssβsIs +αsmβmIm +αsxβxIx)
Ls

N
.

(5.1b)

Individuals latently infected with the M/XDR-TB strains. As with the drug-sensitive
case, the number Lm of individuals latently infected with MDR-TB increases when
individuals in the S compartment are infected with MDR-TB. Reinfection of Ls

individuals by an MDR-TB strain occurs at the rate αsmβmLsIm/N, decreasing the
population in Ls at that rate and increasing that in Lm at the rate λmαsmβmLsIm/N,
with the remaining (1−λm)αsmβmLsIm/N making a fast transition to Im.

Individuals also become latently infected with the MDR-TB strain when they
develop resistance to drugs. This occurs to individuals infected with the drug-sensitive
strain at rates (1−p1)t�s and (1−p2)tis for latently infected and infectious individ-
uals, respectively. The number of individuals in Lm decreases because of reinfection
with Ix and exogenous reinfection at the rates αmxβx and αmmβm, respectively. Note
that we assume that Lm individuals, being already infected by an MDR-TB strain,
cannot be exogenously reinfected by an individual carrying a drug sensitive strain, as
this would “downgrade” the strain they are carrying.

We assume that while treatment is offered to drug-sensitive strain carriers both in
the LTBI and active TB stages, it is only offered to MDR-TB and MDR-TB-infected
individuals with active TB, not to those with LTBI. Contrary to other treatment rates,
the rate tix of treatment of active XDR TB infections is the rate of successful treatment,
not just the rate of treatment.

The rate of change of Lm is then given by

L′
m = λmβm(S+σmR)

Im

N
+λmαsmβm

LsIm

N
+γmIm +(1−p1)t�sLs +(1−p2)tisIs

− (αmmβmIm +αmxβxIx)
Lm

N
−{d+ εm}Lm

(5.1c)

and the rate of change of Lx is

L′
x = λxβx(S+σxR)

Ix

N
+λxβx(αsxLs +αmxLm)

Ix

N

+γxIx +(1−p3)timIm −αxxβx
LxIx

N
−{d+ εx}Lx.

(5.1d)

Individuals infectious with drug-sensitive TB. To describe the rate of change of the
number of individuals in infectious compartment Is, we note that natural recovery,
natural death, death due to TB, and failure of treatment that causes resistance to
drugs in Is are the only reasons to leave Is at rates γs, ds, δs, and ts, respectively.
All other flows, that is, exogenous reinfection in Ls, fast infection in S or R, and
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individuals who become infectious in Ls, feed into Is at rate αssβs, (1−λs)βs and εs

respectively.

I′s = (1−λs)βs(S+σsR)
Is

N
+αssβs

LsIs

N
+ εsLs

−{d+ δs + tis +γs} Is.
(5.1e)

Individuals infectious with M/XDR-TB. Exogenous reinfection in Lm, fast infection
or reinfection in S, R or Ls, and individuals who become infectious in Lm feed into
Im at the corresponding rates; see Table 5.1. Natural recovery, natural death, death

TABLE 5.1 Model parameters

Parameter Interpretation

Demography

b Birth/recruitment rate

d per capita natural death rate

Disease dynamics

βr Transmission coefficient for strain r

λr Proportion of newly infected individuals developing LTBI with strain r

1−λr Proportion of newly infected individuals progressing to active TB with strain r
due to fast infection

εr per capita rate of endogenous reactivation of Lr

αr1r2 Proportion of exogenous reinfection of Lr1 due to contact with Ir2

γr per capita rate of natural recovery to the latent stage Lr

δr per capita rate of death due to TB of strain r

Treatment related

t�s per capita rate of treatment for Ls

tir per capita rate of treatment for Ir. Note that tix is the rate of successful treatment
of Ix

1−σr Efficiency of treatment in preventing infection with strain r

p1 Probability of treatment success for Ls

1−p1 Proportion of treated Ls moved to Lm due to incomplete treatment or lack of strict
compliance in the use of drugs

p2 Probability of treatment success for Is

1−p2 Proportion of treated Is moved to Lm due to incomplete treatment or lack of strict
compliance in the use of drugs

p3 Probability of treatment success for Im

1−p3 Proportion of treated Im moved to Lx due to incomplete treatment or lack of strict
compliance in the use of drugs

The notation r, r1, r2 ∈ {s,m,x} is used.
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due to TB, and failure in treatment that causes resistance to drugs in Im lead to the
decrease in Im.

I′m = (1−λm)βm(S+σmR)
Im

N
+αmmβm

LmIm

N
+(1−λm)βmαsm

LsIm

N
+ εmLm −{d+ δm + tim +γm} Im.

(5.1f)

Similarly, the rate of change of Ix is given by

I′x = αxxβx
LxIx

N
+(1−λx)βx

(
SIx

N
+σx

RIx

N
+αsx

LsIx

N
+αmx

LmIx

N

)
+ εxLx −{d+ δx + tix +γx} Ix.

(5.1g)

Treated individuals. Finally the rate of change of R depends positively on the pro-
portion of individuals in Ls, Is, Im, and Ix who successfully got treated and negatively
on reinfection with the sensitive, MDR and XDR strains, and natural death.

R′ = p1t�sLs +p2tisIs +p3timIm + tixIx

− (σsβsIs +σmβmIm +σxβxIx)
R
N
−dR.

(5.1h)

Table 5.1 lists all parameters and their interpretation. Model (5.1) is considered
together with nonnegative initial conditions.

5.1.2 Mathematical Analysis

To simplify notation, defineX := (S,Ls,Lm,Lx, Is, Im, Ix,R)
T . Where needed, we write

xi, i= 1, . . . ,8, the components of X (with the order the same as that in X ). We denote

I := (Ls,Lm,Lx, Is, Im, Ix)
T

the infected variables.

5.1.2.1 Basic properties of solutions

Proposition 5.1 Given nonnegative initial conditions, solutions to (5.1) exist and
are unique for all t ≥ 0. Furthermore, the positive orthant R8

+ is positively invariant
under the flow of (5.1).

Proof : Since the vector field in (5.1) consists of sums of constants and rational
polynomial functions of the state variables and that we show later that the total
population N is positive, it is differentiable. Hence solutions to (5.1) exist and are
unique.

To prove the nonnegativity of solutions, first consider S; setting S = 0 in (5.1a),
we get

S′ = b > 0.
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This implies that for nonnegative initial conditions, S(0) ≥ 0, S(t) is positive for all
t > 0. For all other state variables, the vector field is nonnegative on the boundary
of the orthant. It follows that solutions remain nonnegative for nonnegative initial
conditions. As S(t)> 0 for all t > 0, we have N(t)> 0 for all t > 0.

From now on, we assume that S(0) > 0. Note that it is also easy to show that if
initial conditions are positive, solutions remain positive for all t.

Proposition 5.2 Given nonnegative initial conditions, solutions to (5.1) are
bounded for all t ≥ 0. Furthermore, the closed set

Ω :=

{
X ∈ R

8
+ : S+Ls +Lm +Lx + Is + Im + Ix +R ≤ b

d

}
(5.2)

attracts the flow of (5.1) for any initial condition in R
8
+.

Proof : To establish boundedness, remark that the rate of change of the total
population is given by

N′ = b−dN − δsIs − δmIm − δxIx ≤ b−dN. (5.3)

This implies that N(t) is bounded above by solutions of the differential equation Ψ′ =
b−dΨ, that is, N(t)≤max(Ψ(0),b/d), with, for all sufficiently large t, N(t)≤ b/d.
Whence, since X is nonnegative, X is also bounded. Now consider Ω given by (5.2).
We have that Ω is positively invariant. Moreover, for any solution outside Ω, that is,
N ≥ b/d, by (5.3), N′ < 0. Thus Ω attracts all solutions of (5.1) with initial condition
in R

8
+.

5.1.2.2 Nature of the disease-free equilibrium The system is at an equilibrium if
the time derivatives in (5.1) are zero. An equilibrium is a DFE if I = 0. From (5.1h),
this implies that R = 0. Thus, at a DFE, (5.1) is such that S = N = b/d; the DFE is
unique and given by

EDFE =

(
b
d
,0,0,0,0,0,0,0

)
. (5.4)

5.1.2.3 Local asymptotic stability of the DFE The local asymptotic stability of
the DFE is investigated using the next-generation method [15, 29]. The aim of the
method is to produce a number, the basic reproduction number, usually denoted R0,
that governs the local asymptotic stability of the DFE. To derive a formula for R0

using the next-generation method, we follow Ref. [29] and write the dynamics of the
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infected classes I as I ′ = F −V , where F has the new infections into the infected
classes and here takes the form

F :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λsβs(S+σsR)
Is

N

λmβm(S+σmR)
Im

N

λxβx(S+σxR)
Ix

N

(1−λs)βs(S+σsR)
Is

N

(1−λm)βm(S+σmR)
Im

N

(1−λx)βx(S+σxR)
Ix

N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The vector −V (not shown here) has all other flows within and out of the infected
classes I . The matrix of new infections F and the matrix of transfers between com-
partments V are the Jacobian matrices obtained by taking the Fréchet derivatives of F
and V with respect to the infected variables I and evaluating them at the DFE. They
take the form

F =

(
0 F12

0 F22

)
, V =

(
V11 V12

V21 V22

)
, (5.5)

where

F12 =

⎛
⎜⎝
λsβs 0 0

0 λmβm 0

0 0 λxβx

⎞
⎟⎠ ,

F22 =

⎛
⎜⎝
(1−λs)βs 0 0

0 (1−λm)βm 0

0 0 (1−λx)βx

⎞
⎟⎠ ,

V11 =

⎛
⎜⎝

d+ εs + t�s 0 0

−(1−p1)t�s d+ εm 0

0 0 d+ εx

⎞
⎟⎠ ,

V12 =

⎛
⎜⎝

−γs 0 0

−(1−p2)tis −γm 0

0 −(1−p3)tim −γx

⎞
⎟⎠ ,
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V21 =

⎛
⎜⎝
−εs 0 0

0 −εm 0

0 0 −εx

⎞
⎟⎠ ,

V22 =

⎛
⎜⎝

d+ δs + tis +γs 0 0

0 d+ δm + tim +γm 0

0 0 d+ δx + tix +γx

⎞
⎟⎠ .

Then the basic reproduction number R0 for system (5.1) is the spectral radius of the
next-generation matrix FV−1 and is given by

R0 = ρ(FV−1) = max(R0s,R0m,R0x), (5.6)

where

R0s =
βs(εs +(1−λs)(d+ t�s))

(εs +d+ t�s)(tis + δs +d)+γs(t�s +d)

R0m =
βm (εm +(1−λm)d)

(εm +d)(tim + δm +d)+dγm

and

R0x =
βx (εx +(1−λx)d)

(εx +d)(tix + δx +d)+dγx

are the basic reproduction numbers for the drug-sensitive, MDR and XDR strains,
respectively.

The method in Ref. [29] thus transforms the problem of local asymptotic stability
of the DFE of (5.1) into that of the local asymptotic stability of I = 0 in the reduced
model I ′ = F −V . The linearization of the latter problem at I = 0, with the nonin-
fected variables (S and R here) taking their values at the DFE, then leads to the linear
system I ′ = (F −V)I. It is proved in Ref. [29] that for matrices F and V obtained
with this method, there holds that

max{�(λ),λ ∈ Sp(F−V)}< 0 ⇔max
{
|λ|,λ ∈ Sp(FV−1)

}
< 1,

where Sp(M) is the spectrum of matrix M. Thus the local asymptotic stability of
the DFE is governed by the location inside the complex unit ball of the eigenvalues
of FV−1. This is summarized in the next result.

Lemma 5.1 The DFE (5.4) of (5.1) is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1, where R0 is defined by (5.6).

5.1.2.4 Existence of subthreshold endemic equilibria Lemma 5.1 establishes
conditions under which the DFE is locally asymptotically stable and unstable. This
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does not provide a full picture of the behavior near R0 = 1, though. Indeed, the direc-
tion and stability of the branch of equilibria that bifurcates at R0 = 1 are unknown
without further analysis.

The classic situation is depicted in Figure 5.2, with a negative (and therefore biolog-
ically irrelevant) equilibrium entering the positive orthant at R0 = 1 and exchanging
stability with the DFE through a transcritical bifurcation. The situation depicted in
Figure 5.3 has come to be known as a “backward bifurcation” after the seminal work of
Hadeler and van and Driessche [19]. In this case, asR0 increases from small values, the
system first undergoes a saddle-node bifurcation whenR0 =Rc, whereRc < 1 is some
critical value. Then asR0 continues to increase, the lower unstable branch of equilibria

I*

R0

FIGURE 5.2 Forward bifurcation. The two most common bifurcation scenario at R0 = 1,
where the value of I∗ = ‖I∗‖ is plotted as a function of R0. Thick continuous lines indi-
cate that the equilibrium is locally asymptotically stable and dashed lines indicate an unstable
equilibrium.

I*

R0Rc 1

FIGURE 5.3 Backward bifurcation. The two most common bifurcation scenario at R0 = 1,
where the value of I∗ = ‖I∗‖ is plotted as a function of R0. Thick continuous lines indi-
cate that the equilibrium is locally asymptotically stable and dashed lines indicate an unstable
equilibrium.
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undergoes a transcritical bifurcation and leaves the positive orthant. Castillo-Chavez
and Song [11] and van den Driessche and Watmough [29] have provided methods to
characterize the direction of the bifurcation that takes place at R0 = 1.

The model from which the current system is derived is studied in Ref. [10]. In
that case, it is shown that under certain conditions, the system undergoes a backward
bifurcation. As the present model is a refinement of this model, such behavior can be
expected here.

In the absence of exogeneous reinfection by the XDR-TB strain (αxx = 0) or when
the proportion 1−λx of infected individuals making a fast transition to Ix is large,
there is no backward bifurcation. Otherwise, conditions can be obtained under which
such a bifurcation occurs. This is shown in the following theorem.

Theorem 5.1 If αxx = 0 or

αxx ≤ 1−λx, (5.7)

then (5.1) undergoes a forward bifurcation at R0 = 1. Otherwise, the model has a
backward bifurcation at R0 = 1 if

(αxx +λx −1)(λxβx +γx)d

(
1− εx

(εx +d)2 +
εx

(εx +d)

)

> λx(1−σx)

(
εx

(εx +d)
+ tix

)
+(1−λx)d (5.8)

Proof : The proof uses the center manifold techniques of Refs. [11, 29]. Consider
the model when R0 = 1, and using βx as the bifurcation parameter, then

βx =
d2 +(tix + δx + εx +γx)d+ εx (tix + δx)

(εx +(1−λx)d)
. (5.9)

Checking the eigenvalues of the Jacobian of model (5.1) evaluated at the DFE, E∗,
and βx shows that 0 is a simple eigenvalue and all other eigenvalues have a negative
real parts. Hence we can use Ref. [11, theorem 4.1]. The Jacobian of model (5.1) has
a right eigenvector w (corresponding to the zero eigenvalue) given by

w =

[
−kβx

d
,0,0,

k(λxβx +γx)

d+ εx
,0,0,k > 0,

ktix
d

]T

, (5.10)

and a left eigenvector v given by

v =

[
−kβx

d
,0,0,

k(λxβx +γx)

d+ εx
,0,0,k > 0,

ktix
d

]T

, (5.11)

where k is a positive parameter.
To use Ref. [11, theorem 4.1], it is convenient to write the vector field in (5.1) as

X ′ = (f1, f2, f3, f4, f5, f6, f7, f8)
T
.
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Using this notation, the parameter a used in Ref. [11, theorem 4.1] takes the form

a :=
8∑

i,j,k=1

vkεiεj
∂2fk
∂xi∂xj

(E∗,βx),

=
2v7k2βxd

b

[
−(λxβx +γx)

λx +αxx

(d+ εx)2
− λx

(d+ εx)
− (λxβx +γx)

1−λx −αxx

(d+ εx)

−tixλxβx
1−σx

d(d+ εx)
− (1−λx)− tix(1−λx)

1−σx

d

]
,

which is strictly negative if αxx = 0 or inequality (5.7) holds. The parameter b in
Ref. [11, theorem 4.1] takes the form

b =

8∑
i,k=1

vkεi
∂2fk

∂xi∂βx
(E∗,βx) = v7k

d(1−λx)+εx

d+ εx
> 0.

Therefore, by Ref. [11, theorem 4.1], (5.1) has a forward bifurcation atR0 = 1. If con-
dition (5.7) is broken, then (5.1) undergoes a backward bifurcation if condition (5.8)
holds.

Theorem 5.1 shows that (5.1) undergoes a backward bifurcation only if the XDR
strain itself undergoes a backward bifurcation, regardless of the type of bifurcations
of the other two strains. Indeed, as can be noticed in the model, there is directed
movement of individuals between the strains, starting with drug-sensitive TB and ter-
minating with the XDR strain. Because of that movement, whether or not the first two
strains are in backward bifurcation, the whole model develops a backward bifurcation
only if the terminal strain undergoes a backward bifurcation.

5.1.2.5 Global stability of the DFE when the bifurcation is “forward” We now
investigate the global asymptotic stability of the DFE under conditions that preclude
a backward bifurcation.

Theorem 5.2 Assume that

0 ≤ αxx ≤ 1−λx, (A1)

0 ≤ αmm ≤ 1−λm, (A2)

0 ≤ αss ≤ 1−λs. (A3)

Then the DFE (5.4) of (5.1) is globally asymptotically stable when R0 < 1.

Proof : We prove the global stability of the DFE by showing that if R0 < 1, then
limt→∞X (t) = EDFE. The attractivity of EDFE, together with the local asymptotic
stability of the DFE implied by the fact that R0 < 1, gives the result.
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Since (5.1) is not of type K, a standard comparison theorem is not applicable. Let
τn →∞ be a sequence such that Ls(τn)→ L∞

s := limsupt→∞ Ls(t). Thus, Ls(τn)
′ → 0

using lemma 2.1 in Ref. [28]. Then Equation 5.1b gives

0 = λsβs
S(τn)+σsR(τn)

N(τn)
Is(τn)−αssβs

Ls(τn)

N(τn)
Is(τn)−αsmβm

Im(τn)

N(τn)
Ls(τn)

−αsxβx
Ix(τn)

N(τn)
Ls(τn)−{d+ εs + t�s}L∞

s +γsIs(τn)

≤ λsβs
S(τn)+σsR(τn)

N(τn)
Is(τn)−{d+ εs + t�s}L∞

s +γsIs(τn).

Since S(t)+σsR(t)
N(t) < 1 and Is(t)≤ I∞s at any t, it follows that

L∞
s ≤ λsβs +γs

d+ εs + t�s
I∞s . (5.12)

Now let sn → ∞ be a sequence such that Is(sn) → I∞s ; this again implies that
Is(sn)

′ → 0 [28, lemma 2.1]. Then Equation 5.1e gives

0 = αssβs
Ls(τn)

N(τn)
I∞s +(1−λs)βs

S(τn)+σsR(τn)

N(τn)
I∞s + εsLs(sn)

−{d+ δs + tis +γs} I∞s .

Using Assumption (A3),

0 ≤ (1−λs)βs
S(τn)+σsR(τn)+Ls(τn)

N(τn)
I∞s + εsLs(sn)

−{d+ δs + tis +γs} I∞s .

For simplicity, define a1 := (d+ δs + tis +γs) and a2 := (d+ εs + t�s). The fact that
for all t, S(t)+σsR(t)+Ls(t)

N(t) < 1 and Ls(t) ≤ L∞
s , together with Equation 5.12, implies

that

0 ≤
[
(1−λs)βs −a1 +

λsβsεs +γsεs

a2

]
I∞s

≤ [a2(1−λs)βs −a1a2 +λsβsεs +γsεs]
1
a2

I∞s

≤ R0s −1
a2(a1a2 − εsγs)

I∞s . (5.13)

Since R0 = max{R0s,R0m,R0x}, R0 < 1 implies that R0s < 1. Therefore, (5.13)
implies that I∞s = 0. Hence, limt→∞ Is(t) = 0. Similarly, using Assumptions (A1)
and (A2), we can prove the following inequalities involving Im and Ix:
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0 ≤ R0m −1
a3(a3a4 − εmγm)

I∞m

0 ≤ R0x −1
a5(a5a6 − εxγx)

I∞x ,

(5.14)

where

a3 := d+ εm, a4 := d+ tim + δm +γm, (5.15a)

a5 := d+ εx, a6 := d+ tix + δx +γx. (5.15b)

The inequalities (5.14) imply that I∞m = I∞x = 0 when R0 < 1; therefore,
limt→∞ Im(t) = limt→∞ Ix(t) = 0. As a consequence, using (5.3), the total population
N(t) converges to b/d. To finish the proof, we study system (5.1) after N, Is, Im, and
Ix have converged, thereby reducing (5.1) to the following system

S′ = b−dS (5.16a)

L′
s =−{d+ εs + t�s}Ls (5.16b)

L′
m =−{d+ εm}Lm +(1−p1)t�sLs (5.16c)

L′
x =−{d+ εx}Lx (5.16d)

R′ = p1t�sLs −dR. (5.16e)

System (5.16) is linear and clearly limits to (b/d,0,0,0,0). Finally, when R0 < 1,
the DFE is locally asymptotically stable. As a consequence, the DFE is globally
asymptotically stable when R0 < 1.

In the absence of exogenous reinfection, it was established in Ref. [10] that under
certain conditions, the DFE of a drug-sensitive TB model and of a two-strains TB
model was globally asymptotically stable. With exogenous reinfection, in Ref. [10]
a drug-sensitive TB strain only model was considered; a backward bifurcation phe-
nomenon because of exogenous reinfection was shown to exist. Theorem 5.2 shows
that even with exogenous reinfection occurring, in the case of (5.1), there is a range of
values of the exogenous reinfection parameter for which the model undergoes a for-
ward bifurcation with all solutions going to the DFE. Outside that range, the system
can undergo a backward bifurcation if (5.8) holds, as established in Theorem 5.1.

5.1.2.6 Strain-specific global stability in “forward” bifurcation cases Condi-
tions in Theorem 5.2 mean that while the existence of a backward bifurcation in
system (5.1) depends on the existence of a backward bifurcation in the terminal
XDR strain (Theorem 5.1), the global asymptotic stability of the DFE of model (5.1)
requires the DFE to be globally asymptotically stable for each strain. In view of this,
we now investigate the global asymptotic stability of the DFE in specific strains. We
show only the case of the XDR-TB strain, the drug-resistant and MDR-TB strains
proceed similarly. The submodel for XDR-TB in the absence of the other strains is
easily shown to live on the invariant hyperplane {X ∈ R

8
+;Ls = Lm = Is = Im = 0}
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and takes the following form

S′ = b−dS−βx
SIx

N
, (5.17a)

L′
x = λxβx(S+σxR)

Ix

N
−αxxβx

LxIx

N
−{d+ εx}Lx +γxIx, (5.17b)

I′x = (1−λx)βx(S+σxR)
Ix

N
+αxxβx

LxIx

N
+ εxLx

−{d+ δx + tix +γx} Ix, (5.17c)

R′ = tixIx −σxβx
RIx

N
−dR. (5.17d)

Theorem 5.3 Under assumption (A1), the DFE (b/d,0,0,0) of the XDR-TB sub-
model (5.17) is globally asymptotically stable when R0x < 1.

Proof : Similarly to the proof of Theorem 5.2, we prove the global stability of the
DFE by showing that, if R0 < 1, then

lim
t→∞

S(t) =
b
d
, lim

t→∞
Ix(t) = lim

t→∞
Lx(t) = lim

t→∞
R(t) = 0.

Here again, (5.17) is not of type K and a standard comparison theorem cannot be
used. Let τn →∞ be the sequence such that Lx(τn)→ L∞

x . Then Lx(τn)
′ → 0 using

lemma 2.1 in Ref. [28]. Then equation 5.17b gives

0 ≤ λxβxIx(τn)−{d+ εx}L∞
x +γxIx(τn),

that is,

L∞
x ≤ λxβx +γx

d+ εx
I∞x . (5.18)

Now let sn →∞ be a sequence such that Ix(sn)→ I∞x , implying that Ix(sn)
′ → 0

[28, lemma 2.1]. Then Equation 5.17c gives

0 < αxxβx
Lx(sn)

N(sn)
I∞x +(1−λx)βx

S(sn)+σxR(sn)

N(sn)
I∞x + εxLx(sn)

−{d+ δx + tix +γx} I∞x .

Using Assumption (A3), it follows from
(

S(t)+σsR(t)+Ls(t)
N(t)

)
< 1, Ls(t) ≤ L∞

s and
Equation 5.18 that

0 ≤ R0x −1
a5(a5a6 − εsγs)

I∞s , (5.19)
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where a5 and a6 are given by (5.15b). If R0x < 1, then I∞x = 0. Hence
limt→∞ Ix(t) = 0. Moreover, the total population N converges to b/d. We then study
(5.17) after convergence of N and Ix, reducing it to the following model

S′ = b−dS

L′
x =−{d+ εx}Lx

R′ =−dR.

(5.20)

The proof is finished by remarking that (5.20) is linear and limits to (b/d,0,0).

The same method of proof can be used to show that the disease-free equilibria for
the drug sensitive and MDR-TB subsystems are globally asymptotically stable under
assumptions (A3) and (A2) when R0s < 1 and R0m < 1, respectively.

5.2 DISCUSSION

In this chapter, a model to study the emergence and propagation of drug-resistant TB,
both MDR and XDR, is developed and analyzed. The most important results proved
are as follows:

1. System (5.1) has a globally asymptotically stable DFE when R0 < 1 under
suitable conditions (Theorem 5.2).

2. If condition (A1) in Theorem 5.2 does not hold, system (5.1) can undergo a
backward bifurcation. The existence of subthreshold endemic equilibria is gov-
erned by the bifurcation structure of the “top level” model, namely, that for
XDR-TB.

Note that the model presented here has not been validated in the usual sense.
Indeed, in epidemiology, validating models is a hard task. There are many factors
that contribute to this difficulty. The data available to carry out the task is of varying
quality. For instance, TB data of relatively good quality is mostly available for coun-
tries with strong healthcare systems, which see very few “homegrown” M/XDR-TB
cases (most are imported), so estimating the rates of treatment-induced progression
from drug-sensitive TB to MDR-TB and onward to XDR-TB is hard. Validation is
further complicated because estimating parameters of the contact rate function is, at
best, guesswork. Indeed, even for a disease such as TB that has been studied intensely
for over a century, while the general mechanisms of transmission are well known, the
specifics are to a large extent unknown. For instance, it is known that repeated and pro-
longed contacts favor the person-to-person transmission of TB. But a quantification
of what constitutes this type of contacts is unknown. As a consequence, this model,
like most that came before it and many that will follow, remains largely an intellec-
tual exercise. However, this does not make it irrelevant. Mathematical epidemiology
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has contributed a lot to the understanding of disease transmission processes and their
control; see, for instance, the discussions in Refs. [3, 20]. The contribution of the
present model is in laying out a potential scenario for the occurrence and spread of
M/XDR-TB in a population and the elucidation of some of the basic properties of
this model.

Our mathematical analysis revealed the potential presence of subthreshold
endemic equilibria. Despite having been investigated since before the work of Hadeler
and van der Driessche [19], little progress has been made in the understanding of the
reasons for the presence of such subthreshold endemic equilibria in epidemic mod-
els (other than the mathematical reasons, which are straightforward and have to do
with the degree of the multivariable polynomial, one must solve to find endemic equi-
libria). We know of no work that would satisfactorily address the pressing question
of the determination of the direction of a bifurcation in real data; given the quality
of epidemic data and the uncertainty on parameters, it is in general impossible to
decide whether one is observing an endemic situation with R0 < 1 or R0 > 1. The
situation is not as clear cut as it was which led to the publication [23], since back-
ward bifurcations were identified in more realistic models in more feasible parameter
regions, but, in our view, backward bifurcations are mostly anecdotal. Their presence
should however be established, they forbid most type of global stability analysis; to
the best of our knowledge, the work by Arino et al. [2] is the only work in which
it was proved that when Rc <R0 < 1, all solutions not starting on the stable mani-
fold of the unstable subthreshold equilibrium are attracted to one of the locally stable
equilibria.

This is a preliminary analysis. The model is quite complicated with a large number
of nonlinearities, and considerations beyond the simple case of the disease-free equi-
librium for all three strains are quite involved and will be considered in further work.
Further work will also involve parametrizing the model and, if possible, comparing
it with data.

Note. It has come to the authors’ attention during revisions of this manuscript
that the model studied here is very similar to a model of Bhunu [5], with some
subtle differences. The model in Ref. [5] adds the possibility for individuals with
active XDR-TB to be quarantined but does not consider treatment of individuals
latently infected with the drug-sensitive strain nor natural recovery of individuals
with active TB. Also, we assume that any type of reinfection, not only of treated
individuals, can lead to slow or fast progression to infectiousness. These differences
imply that while the classical analysis (R0 and nature of the bifurcation at R0 = 1)
proceeds quite similarly, there are little differences in the results. Also, Bhunu [5]
considered boundary equilibria, which are barely discussed here in Theorem 5.3.
On the other hand, our results in the case of R0 < 1 are global when a back-
ward bifurcation is ruled out. Thus, the analyses here and in Ref. [5] complement
each other. The fact that two models starting with the same basic building blocks
(the SLIR TB model [8], the SLIT model [10] and their progeny) and description
of the epidemiology of M/XDR-TB are so similar is also encouraging and should
probably be interpreted as a first step in the validation of the model of Bhunu
(and ours).
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