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We incorporate parameter heterogeneity in a two-patch susceptible-infectious-susceptible (SIS) epidemic
model with infection during transport and prove that the disease-free and endemic equilibria are globally
asymptotically stable when the basic reproduction number R0 < 1 and R0 > 1, respectively. We find that
infection during transport increases the possibility that the disease persists in both patches and amplifies
prevalence when disease is present. We then study the effect of a perfect unilateral exit screening pro-
gramme. Finally, we compare numerically the effects of using different incidence functions for infection
within and while travelling between patches, and find that using mass action incidence to model infection
during transport has the effect of maintaining disease prevalence at a higher level compared with when
standard incidence is used.
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1. Introduction

Infection with respiratory diseases (tuberculosis (TB), influenza, SARS, common cold, etc.) is usually
caused by direct contact, large droplets or airborne transmission. Contact transmission involves direct
body-to-body or indirect contacts with a contaminated intermediate object (e.g. a door knob or elevator
button during SARS). Large droplets are generated when an infectious individual sneezes, coughs and
talks. These droplets are propelled short distances and deposited on a susceptible host’s conjunctiva or
mucosa. Airborne transmission involves the dissemination of microorganism that can remain in the air
for indefinite periods (Tang et al., 2009) and be inhaled into the bronchioles of the recipient’s respiratory
tract (Desenclos, 2008). See, e.g. Brankston et al. (2007) for a review of the mechanisms of transmission
of influenza A or Morrison et al. (2008) for TB.

The role of prolonged proximity in the spread of infectious pathogens has been known for a long
time. For instance, nosocomial (hospital acquired) infections have long plagued hospitals worldwide,
both for droplet transmitted and airborne diseases (Eames et al., 2009). Because transportation usually
puts individuals in close proximity for extended periods of time, it is likely that the probability of
transmission during transport increases, in particular as a function of the duration of transport, so that
long distance travel would be transmission prone.
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There are many documented cases of disease transmission occurring during transport. WHO con-
firmed that seven healthy people on a 42-h train journey from Ho Chi Minh City to Hanoi in Vietnam
caught Tamiflu-resistant A/H1N1 influenza (Le et al., 2010). For more instances of influenza infection
during train transportation, see Furuya (2007). In January 1996, a 22-year-old man was diagnosed with
smear- and culture-positive TB infection after he had travelled on 2 US passenger trains (29.1 h) and
a bus (5.5 h) over 2 days; of 240 passengers and crew members who underwent a tuberculin skin test
(TST), 4 (2%) had a documented TST conversion and 11 (5%) had a single positive TST result (Moore
et al., 1999). Propagation is also known to have occurred on-board aircrafts (Moser et al., 1979; Centers
for Disease Control and Prevention (CDC), 1995; Olsen et al., 2003; Baker et al., 2010), although some
authors claim that these remain rare occurrences because of the nature of ventilation systems on-board
airplanes (Leder & Newman, 2005; Byrne, 2007). See in particular the extensive review of Mangili
& Gendreau (2005) for details about in-flight transmission. Contamination within cars has also been
examined (Knibbs et al., 2012).

To summarize, infection can occur not only within patches (where ‘patch’ refers to a geographical
location) but also during transportation between patches. It could therefore be important to take the latter
component into consideration. In practice, however, the precise impact of infection during transport
is not well understood. This is becoming crucial in the world of today, where travel has become so
common. Over three billion passengers travel by air annually (Khan et al., 2009). Overall, it is estimated
that humans travelled 23 billion kilometres in 2000 and that this will grow to an annual 105 billion
kilometres by 2050 (Schafer & Victor, 2000).

Modelling can contribute to the understanding of the potential consequences of infection during
transport on the global spread and burden of an infectious pathogen. However, despite its importance,
this has not yet emerged as a very active research area. Some work concerning transmission in enclosed
spaces, as for instance Noakes et al. (2006), can be adapted to the more specific context of transporta-
tion. Most of the work carried out so far specifically about transport and infection has concerned the
actual transmission during transport and uses probabilistic or statistical models; see, e.g. Andrews et al.
(2013) for a model of TB transmission in public transportation in South Africa, Chen et al. (2011) for
transmission of TB onboard trains and Beggs et al. (2003) for a review of some (statistical) models used
in the context. Other models are very detailed computational fluid dynamics models that focus on the
circulation of air within aircrafts; see, e.g. Gupta et al. (2011).

However, there have been few papers considering the effect of infection during dispersal on the
global spread of infectious pathogens. Some authors have considered the impact of arrival into a loca-
tion of individuals already infected: Brauer & van den Driessche (2001) proposed a disease evolution
model in a single patch with immigration of infectives and Guo and coauthors have studied problems
related to the inflow of individuals infected with TB; see, e.g. Guo & Li (2011, 2012) and Guo & Wu
(2011). The previous models consider infection of some migrants as a fait accompli and do not postu-
late about the origin of this infection (whether it is acquired prior to or during travel is irrelevant there).
These models pose interesting mathematical problems because the inflow of infectives precludes the
existence of a disease-free equilibrium (DFE) and thus the definition of a basic reproduction number in
the classical way.

One way to overcome the difficulty linked to the non-existence of a DFE is to consider models set
in a metapopulation framework, which allows to describe movement of individuals in any epidemio-
logical status while, usually, retaining the existence of a DFE and therefore, of a basic reproduction
number defined the classical way. A few authors have considered the problem in the context of dif-
ferential equations with a discrete delay, which allow to set a precise travel time between locations;
see, e.g. Knipl et al. (2013), Liu et al. (2008) and Nakata (2011). In an ordinary differential equations
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setting, Cui et al. (2006) and Takeuchi et al. (2007) formulated susceptible-infectious-susceptible (SIS)
patch models with infection during transport and studied the local and global dynamics of those models.
However, they assumed that all corresponding parameters in both patches are exactly the same, which
results in the number of susceptible individuals at DFE, the number of susceptible and infective individ-
uals at boundary equilibria and endemic equilibrium being identical in two patches regardless of initial
conditions. If both susceptible and infective individuals travel in two patches, the population in two
patches converges to the same equilibrium in Cui et al. (2006) and Takeuchi et al. (2007). This implies
that their SIS patch model is in some sense equivalent to a model for a single population.

For the consideration of more reality, we allow corresponding parameters in the two patches to differ
and revisit the model of Cui et al. (2006). We also perform some computational analysis of the problem.

2. Model formulation

We make the following assumptions regarding the model.

– The total population in each location is divided into two compartments according to the epidemi-
ological status of hosts: susceptibles, S, and infectives, I.

– The population in the two patches and during transport is homogeneously mixing.

– Disease transmission within patch i is of standard incidence type, i.e. the number of infectives
produced by random contact between Si susceptible and Ii infective is given by βiSiIi/Ni with
Ni = Si + Ii, where βi is the transmission coefficient in patch i, representing the number of infect-
ing contacts per infective per unit time.

– miSi susceptibles and miIi infectives travel from patch i to patch j per unit time using a specific
type of vehicle (e.g. long distance bus, train or aircraft). Each vehicle approximately has the
same number of seats; there are n vehicles transporting passengers from one patch to the other
per unit time; therefore, each vehicle carries approximately miSi/n susceptibles and miIi/n infec-
tives. We also assume the vehicle has relatively good ventilation and passengers onboard do not
interact much with each other. Then the contacts in each vehicle can be described using stan-
dard incidence (if there were more interactions, one could use mass action contacts as is done in
Section 7). Thus, the rate at which new infections occur during transport is given by

αi
miIi

n
· miSi

n
· 1

(miSi/n) + (miIi/n)
= αimiSiIi

nNi
,

where 0 � αi � 1 is the proportion of contacts between susceptible and infectious individuals that
lead to a new infection. Therefore, the total infection (n vehicles) per unit time during transport
from patch i to patch j is

n · αimiSiIi

nNi
= αimiSiIi

Ni
.

(When mass action contacts are assumed, αi is not dimensionless, it has units per successful
contact.)

– All newly recruited individuals in patch i are susceptible with constant recruitment rate bi. Indi-
viduals die at a natural rate di and there is no extra disease-caused mortality.
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Fig. 1. Flow chart of system (2.1).

– Infectives in patch i recover at a constant rate γi without becoming immune to reinfection. Indi-
viduals do not recover during transport (Fig. 1).

The resulting SIS patch model with infection during transport is formulated as follows:

dS1

dt
= b1 − β1S1I1

N1
+ γ1I1 − d1S1 − m1S1 +

(
1 − α2I2

N2

)
m2S2, (2.1a)

dI1

dt
= β1S1I1

N1
− d1I1 − γ1I1 − m1I1 +

(
1 + α2S2

N2

)
m2I2, (2.1b)

dS2

dt
= b2 − β2S2I2

N2
+ γ2I2 − d2S2 +

(
1 − α1I1

N1

)
m1S1 − m2S2, (2.1c)

dI2

dt
= β2S2I2

N2
− d2I2 − γ2I2 +

(
1 + α1S1

N1

)
m1I1 − m2I2, (2.1d)

with initial conditions

Si(0) > 0, Ii(0) � 0, i = 1, 2, I1(0) + I2(0) > 0. (2.2)

Next, we present some basic properties of model (2.1).
Define fi(Si, Ii) = SiIi/Ni, f (1)

i (Si, Ii) = Si/Ni, f (2)
i (Si, Ii) = Ii/Ni. For mathematical convenience,

assume that

f (1)
i (0, 0) = f (2)

i (0, 0) = 0, i = 1, 2. (2.3)
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Then we have, for i = 1, 2,
fi(0, 0) = 0. (2.4)

Theorem 2.1 Model (2.1) is well posed: (i) (2.1) is globally Lipschitz in R
4
+ and there exists a unique

solution for every initial condition; (ii) all solutions of (2.1) with initial conditions (2.2) stay non-
negative for t � 0 and (iii) the total population converges to a constant as t → ∞.

Proof. (i) Existence and uniqueness of solutions
We see that

lim
(Si,Ii)→(0,0)

fi(Si, Ii) = 0,

with (Si, Ii) ∈ R
2
+. Equation (2.4) implies that the right-hand side functions of (2.1) are continuous on

R
4
+. Straightforward computation using (2.3) shows they are globally Lipschitz on R

4
+. Hence, a solution

of (2.1) with any initial condition exists and is unique.
(ii) Non-negativity
With non-negative initial conditions (2.2), if for instance S1 becomes zero at time t1 before S2, I1, I2

become zero, then from (2.1a), dS1/dt = b1 + γ1I1 + m2S2 − α2m2S2I2/N2 > b1 + γ1I1 > 0 since 0 �
α2 � 1. Thus, S1 is an increasing function of t at t1, and therefore S1 stays positive if S1(0) > 0. The
same way, we conclude that S2 is positive if S2(0) > 0. Similarly, if I1 becomes zero at time t2 before
S1, S2, I2 become zero, then from (2.1b), dI1/dt = α2m2S2I2/N2 + m2I2 > 0 at t2. Thus I1 is an increasing
function of t at t2, and therefore I1 stays non-negative. I2 is shown to be non-negative the same way.

(iii) Convergence of the total population
From model (2.1), the differential equations governing the evolution of N1 and N2 are

dN1

dt
= b1 − (m1 + d1)N1 + m2N2, (2.5a)

dN2

dt
= b2 + m1N1 − (m2 + d2)N2. (2.5b)

A direct calculation shows that the unique positive equilibrium (N∗
1 , N∗

2 ) of (2.5) is asymptotically sta-
ble, where

N∗
1 = b1d2 + m2(b1 + b2)

d1d2 + d1m2 + d2m1
, (2.6a)

N∗
2 = b2d1 + m1(b1 + b2)

d1d2 + d1m2 + d2m1
. (2.6b)

This implies the convergence of total population N(t)

lim
t→∞ N(t) = N∗

1 + N∗
2 = b1(m1 + m2 + d2) + b2(m1 + m2 + d1)

m1d2 + m2d1 + d1d2
. �

Note that it follows directly from this result that solutions to (2.1) are bounded.
In epidemiology, the basic reproduction number R0 of an infection is the mean number of secondary

cases a typical single infected case will cause in a population with no immunity to the disease and in
the absence of interventions to control the infection. If R0 < 1, the infection will generally die out in
the long run, while when R0 > 1, the infection will be able to spread in a population. Mathematically,
R0 = 1 is the hypersurface in parameter space where the DFE loses its local asymptotic stability.
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The DFE of (2.1) is

(S0
1 , I0

1 , S0
2 , I0

2 ) =
(

b1d2 + m2(b1 + b2)

d1d2 + d1m2 + d2m1
, 0,

b2d1 + m1(b1 + b2)

d1d2 + d1m2 + d2m1
, 0

)
=: E0. (2.7)

Applying the next generation matrix method of van den Driessche & Watmough (2002), we have the fol-
lowing results about the basic reproduction number, where the notation R(x)

0 indicates the reproduction
number for system (x).

Theorem 2.2 If R
(2.1)
0 < 1, with R

(2.1)
0 given by (2.8) below, then the DFE E0 in (2.7) is locally asymp-

totically stable; if R
(2.1)
0 > 1, then E0 is unstable.

Proof. Using the next generation matrix method of van den Driessche & Watmough (2002), we write
equations for the two infected variables I1 and I2 as

d

dt

(
I1

I2

)
= F − V =

⎛
⎜⎜⎝

β1S1I1

N1
+ α2m2S2I2

N2

β2S2I2

N2
+ α1m1S1I1

N1

⎞
⎟⎟⎠−

(
(d + γ1 + m1)I1 − m2I2

−m1I1 + (d + γ2 + m2)I2

)
,

and compute F = DF and V = DV evaluated at the DFE E0, giving

F =
(

β1 α2m2

α1m1 β2

)
, V =

(
d1 + γ1 + m1 −m2

−m1 d2 + γ2 + m2

)
.

Then

FV−1 =

⎛
⎜⎜⎝

P1

det(V)

β1m2 + α2m2(d1 + γ1 + m1)

det(V)

β2m1 + α1m1(d2 + γ2 + m2)

det(V)

P2

det(V)

⎞
⎟⎟⎠ ,

where

P1 := (d2 + γ2 + m2)β1 + α2m1m2,

P2 := (d1 + γ1 + m1)β2 + α1m1m2,

det(V) := (d1 + γ1 + m1)(d2 + γ2 + m2) − m1m2.

Therefore, the basic reproduction number of (2.1) is

R
(2.1)
0 := ρ(FV−1) = P1 + P2 + √

Δ

2 det(V)
, (2.8)

where

Δ = (P1 − P2)
2 + 4[β1m2 + α2m2(d1 + γ1 + m1)][β2m1 + α1m1(d2 + γ2 + m2)]

and ρ(X ) is the spectral radius of matrix X .
It is easy to verify that hypotheses (H1)–(H5) in van den Driessche & Watmough (2002, Theorem 2)

hold and the result follows. �
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In fact, the case R
(2.1)
0 < 1 can be shown to make the DFE E0 globally asymptotically stable (see

Section 4 for details).
If there is no travel (m1 = m2 = 0), then the equations for the two patches decouple. The DFE in

patch i = 1, 2 is (Si, Ii) = (bi/di, 0). The basic reproduction number is then given by

R0,i := βi

di + γi
, i = 1, 2. (2.9)

Define

RT
0,i := βi

di + γi + mi
for i = 1, 2. (2.10)

The term 1/(di + γi + mi) is the average time spent in compartment Ii taking travelling between the two
patches into account. RT

0,i is a modified reproduction number that includes travel of infectives.

3. The full system without infection during transport

Assume that infectives in both patches travel and there is no infection during transport (i.e. αi = 0, i =
1, 2). Substituting αi = 0 (i = 1, 2) into (2.1) yields the following basic SIS patch model:

dI1

dt
= β1(N1 − I1)I1

N1
− d1I1 − γ1I1 − m1I1 + m2I2, (3.1a)

dI2

dt
= β2(N2 − I2)I2

N2
− d2I2 − γ2I2 − m2I2 + m1I1, (3.1b)

dN1

dt
= b1 − (d1 + m1)N1 + m2N2, (3.1c)

dN2

dt
= b2 + m1N1 − (d2 + m2)N2, (3.1d)

where we use Ni = Si + Ii for simplicity.
System (3.1) has the DFE E0 given by (2.7). Using next generation matrix method, (3.1) has the

basic reproduction number

R
(3.1)
0 := P̄1 + P̄2 +

√
Δ̄

2 det(V̄ )
, (3.2)

where

P̄1 := (d2 + γ2 + m2)β1,

P̄2 := (d1 + γ1 + m1)β2,

Δ̄ := (P̄1 − P̄2)
2 + 4β1β2m1m2,

det(V̄ ) := (d1 + γ1 + m1)(d2 + γ2 + m2) − m1m2 =: det(V).

(3.3)

For system (3.1), Salmani & van den Driessche (2006) gave a detailed analysis; their main result is the
following.
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Lemma 3.1 (Salmani & van den Driessche, 2006) The DFE E0 in (3.1) is globally asymptotically
stable if R

(3.1)
0 < 1 and there exists a unique globally asymptotically stable endemic equilibrium E∗

if R
(3.1)
0 > 1.

4. The full system with infection during transport

In this section, we continue studying model (2.1) to complete the preliminary results obtained in
Section 2.

Theorem 4.1 The DFE E0 of model (2.1) is globally asymptotically stable if R
(2.1)
0 < 1.

Proof. It suffices to prove that each positive solution of (2.1) tends to E0 as t → ∞. Equivalently, this
can be done if we prove that each positive solution (S1(t), I1(t), S2(t), I2(t)) of (2.1) satisfies

lim
t→∞(S1(t), I1(t), S2(t), I2(t)) =

(
b1d2 + m2(b1 + b2)

d1d2 + d1m2 + d2m1
, 0,

b2d1 + m1(b1 + b2)

d1d2 + d1m2 + d2m1
, 0

)
. (4.1)

From (2.1b) and (2.1d) with Si(t) � Ni(t)(i = 1, 2) for all t, we deduce that

dI1

dt
� β1I1 + α2m2I2 − d1I1 − γ1I1 − m1I1 + m2I2, (4.2a)

dI2

dt
� β2I2 + α1m1I1 − d2I2 − γ2I2 − m2I2 + m1I1. (4.2b)

The right-hand side of (4.2) has coefficient matrix F − V . For R
(2.1)
0 = ρ(FV−1) < 1, each eigenvalue

of F − V lies in the left half plane (van den Driessche & Watmough, 2002, Proof of Theorem 2), thus,
following a standard comparison theorem of ODE, each positive solution of (2.1b) and (2.1d) satisfies
limt→∞(I1, I2) = (0, 0).

By the theory of asymptotically autonomous systems (Castillo-Chavez & Thieme, 1995,
Theorem 2.5), the limit system of (2.1a) and (2.1c) obtained when Ii → 0 as t → ∞ is written as

dS1

dt
= b1 − d1S1 − m1S1 + m2S2, (4.3a)

dS2

dt
= b2 − d2S2 − m2S2 + m1S1. (4.3b)

It is easy to verify from (4.3) that

lim
t→∞ Si(t) = bidj + mj(bi + bj)

didj + dimj + djmi
, i, j = 1, 2 and i |= j. (4.4)

The global asymptotic stability of the DFE E0 is then proved if R
(2.1)
0 < 1. �

Theorem 4.1 extends the result of Takeuchi et al. (2007, Theorem 3.3) in proving the global asymp-
totic stability of the DFE when the basic reproduction number is less than unity, without any parameter
restrictions.

Discussions in Section 2 tell that the unique positive equilibrium (N∗
1 , N∗

2 ) is asymptotically stable
in the linear system (2.5). Replacing Ni with N∗

i (i = 1, 2) in sub-system (2.1b) and (2.1d) gives the limit
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system

dI1

dt
= β1

(N∗
1 − I1)I1

N∗
1

+ α2m2
(N∗

2 − I2)I2

N∗
2

+ m2I2 − m1I1 − (γ1 + d1)I1 =: P(I1, I2), (4.5a)

dI2

dt
= β2

(N∗
2 − I2)I2

N∗
2

+ α1m1
(N∗

1 − I1)I1

N∗
1

− m2I2 + m1I1 − (γ2 + d2)I2 =: Q(I1, I2). (4.5b)

Take a Dulac function D = 1/(I1I2). Then

∂(DP)

∂I1
(I1, I2) = β1

N∗
1 I2

− α2m2
(N∗

2 − I2)

N∗
2 I2

1

− m2

I2
1

,

∂(DQ)

∂I2
(I1, I2) = β2

N∗
2 I1

− α1m1
(N∗

1 − I1)

N∗
1 I2

2

− m1

I2
2

and
∂(DP)

∂I1
(I1, I2) + ∂(DQ)

∂I2
(I1, I2) < 0.

From the Bendixson–Dulac criterion (Dulac, 1937), we have the following result.

Theorem 4.2 System (4.5) does not admit any cycle in the invariant region D := {(I1, I2); 0 < Ii �
N∗

i , i = 1, 2}.
Now we prove the existence and uniqueness of an endemic equilibrium.

Theorem 4.3 If R
(2.1)
0 > 1, then there exists a unique endemic equilibrium for system (4.5).

Proof. The existence of the endemic equilibrium is confirmed using the properties of ordinary equa-
tions in the plane. From Theorem 2.2, if R

(2.1)
0 > 1, then the DFE (0, 0) is unstable. Since all solutions

are ultimately bounded in the plane and there does not exist any cycle in the feasible set, it follows that
there must exist endemic equilibrium (equilibria) attracting trajectories of (4.5).

To establish uniqueness, set the right-hand side of (4.5) equal to zero

m2(α2 + 1)I2 − α2m2

N∗
2

I2
2 = (m1 + γ1 + d1 − β1)I1 + β1

N∗
1

I1
2, (4.6a)

m1(α1 + 1)I1 − α1m1

N∗
1

I1
2 = (m2 + γ2 + d2 − β2)I2 + β2

N∗
2

I2
2. (4.6b)

Equations (4.6) are two ellipses given by the implicit equations

Φ1(I1, I2) := (I1 − x0)
2

a2
+ (I2 − y0)

2

b2
= 1, (4.7a)

Φ2(I1, I2) := (I1 − x̂0)
2

â2
+ (I2 − ŷ0)

2

b̂2
= 1, (4.7b)
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where

x0 = β1 − (m1 + γ1 + d1)

2β1
N∗

1 <
N∗

1

2
, y0 = α2 + 1

2α2
N∗

2 > N∗
2 ,

x̂0 = α1 + 1

2α1
N∗

1 > N∗
1 , ŷ0 = β2 − (m2 + γ2 + d2)

2β2
N∗

2 <
N∗

2

2
,

a =
(

N∗
1 (m1 + γ1 + d1 − β1)

2/(4β1) + m2N∗
2 (α2 + 1)2/(4α2)

β1/N∗
1

)1/2

,

b =
(

N∗
1 (m1 + γ1 + d1 − β1)

2/(4β1) + m2N∗
2 (α2 + 1)2/(4α2)

(α2m2)/N∗
2

)1/2

,

â =
(

N∗
2 (m2 + γ2 + d2 − β2)

2/(4β2) + m1N∗
1 (α1 + 1)2/(4α1)

β2/N∗
2

)1/2

,

b̂ =
(

N∗
2 (m2 + γ2 + d2 − β2)

2/(4β2) + m1N∗
1 (α1 + 1)2/(4α1)

(α1m1)/N∗
1

)1/2

.

The ellipse Φ1(I1, I2) has centre (x0, y0) with two radii a and b; the ellipse Φ2(I1, I2) has centre (x̂0, ŷ0)

with two radii â and b̂; the major radius is max(a, b) and the minor radius is min(a, b); both Φ1(I1, I2)

and Φ2(I1, I2) pass through the origin. From the existence part of the proof, we know that if R
(2.1)
0 > 1,

system (4.5) has at least one positive equilibrium in the feasible set {(I1, I2) : 0 < I1 < N∗
1 , 0 < I2 <

N∗
2 } =: D . Next, we show by Fig. 2(a–d) that the two ellipses given by (4.7) have at most one intersec-

tion point in D . In fact, considering x̂0 > N∗
1 and y0 > N∗

2 , then the expected positive equilibrium lies
in the region Σ bounded by I1, I2 axes, the horizontal line I2 = y0 and the vertical line I1 = x̂0.

Therefore, system (4.5) has a unique endemic equilibrium in D when the basic reproduction
number R

(2.1)
0 > 1. The proof is complete. �

Remark 4.1 In the analysis above, we show that the two ellipses given by (4.7) in D have at most
one intersection point if it exists. So we omit the cases where the two ellipses may not intersect in the
bounded region Σ (see Fig. 3(a,b)), which can never happen if R

(2.1)
0 > 1. Without loss of generality,

when drawing Fig. 2(a–d), and Fig. 3(a,b), we assume â, b as the major radii, and a, b̂ as the minor radii
for the two ellipses, i.e. â > b̂ and a < b. For the remaining cases, a < b and â < b̂; a > b and â > b̂;
a > b and â < b̂, the same conclusion can be obtained.

Remark 4.2 Under the relations x0 < x̂0 and y0 > ŷ0, there are in fact additional cases for the two
ellipse positions that are not included in Figs 2 and 3. The condition R(2.1)

0 > 1 has no correlation with
the conditions x0 < x̂0 and y0 > ŷ0. When R(2.1)

0 > 1, system (4.5) is proved to have at least one endemic
equilibrium in D (i.e. the two ellipses intersect at least one point in D). The four cases in Fig. 2 are all
the possibilities that the two ellipses intersect in D . As we see, the intersection point in D for the four
cases of Fig. 2 is unique. Besides R(2.1)

0 > 1, no other parameter restrictions are needed to guarantee the
existence of the unique endemic equilibrium for system (4.5).

Based on Theorem 4.3, we have the following result.

Theorem 4.4 If R
(2.1)
0 > 1, then system (2.1) has a unique positive equilibrium that is globally asymp-

totically stable in the feasible set D .
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(a) (b)

(c) (d)

Fig. 2. (a) x0 > 0, ŷ0 > 0, (b) x0 > 0, ŷ0 < 0, (c) x0 < 0, ŷ0 > 0 and (d) x0 < 0, ŷ0 < 0.

(a) (b)

Fig. 3. (a) x0 > 0, ŷ0 > 0 and (b) x0 > 0, ŷ0 < 0.
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Fig. 4. Behaviour of I1 and I2 close to R0 = 1 without and with infection during transport.

Theorem 4.4 makes the conjecture of Takeuchi et al. (2007) ‘the positive equilibrium is globally
asymptotically stable if it exists’ decidable, without extra parameter restrictions. Cui et al. (2006) also
discuss the simplified system of (2.1). However, all their results are local.

The basic reproduction numbers R
(2.1)
0 is sensitive to the two disease transmission parameters during

transport α1 and α2. Straightforward calculations indicate that R
(2.1)
0 increases with respect to both α1

and α2. Moreover, R
(2.1)
0 = R

(3.1)
0 only when α1 = α2 = 0. This implies that R

(2.1)
0 � R

(3.1)
0 . Thus, the

risk for disease outbreak is higher in system (2.1) with infection during transport. Even if disease is
eradicated for system (3.1), but it can be endemic in both patches for system (2.1).

This is illustrated in Fig. 4, in which R(2.1)
0 = 1.0072, R(3.1)

0 = 0.9899, β1 = 0.235, β2 = 0.02 while
other parameters take values as in Table 2.

5. Infectives from only one patch travel: perfect exit screening scenario

During an infectious disease outbreak and other public health events, as well as routinely in some
countries, passengers are sometimes screened to check if they present symptoms of a disease or if
they satisfy certain health requirements such as vaccination against a particular disease. Screening can
take place either upon departure from a country (exit screening) or upon arrival into a country (entry
screening). For example, with the rapid international spread of SARS from March through May 2003,
WHO requested that all affected areas screen departing passengers for SARS symptoms. The Public
Health Agency of Canada introduced various measures to screen airplane passengers at selected airports
for symptoms and signs of SARS (St John et al., 2005). Many Asian countries hit by SARS set up
thermal scanners at airports to screen for passengers who may have been feverish. During the 2009
pH1N1 scare, these countries restarted these checks.
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Here, we consider a perfect exit border screening programme implemented asymmetrically in one
patch. Without loss of generality, we assume that susceptibles from both patches and infectives from
patch 1 travel freely, while infectives from patch 2 are restrained from travelling to patch 1.

Two specific models are presented and studied in this section.

5.1 Model without infection during transport

By setting α1 = 0, m2I2 = 0, we derive from (2.1) the following system of differential equations:

dI1

dt
= β1(N1 − I1)I1

N1
− d1I1 − γ1I1 − m1I1, (5.1a)

dI2

dt
= β2(N2 − I2)I2

N2
− d2I2 − γ2I2 + m1I1, (5.1b)

dN1

dt
= b1 + m2N2 − (d1 + m1)N1 − m2I2, (5.1c)

dN2

dt
= b2 − (d2 + m2)N2 + m1N1 + m2I2, (5.1d)

which describes a model with a perfect border screening and without infection during transport.
Using the next generation matrix method as in Section 2, the basic reproduction number of (5.1) is

calculated, with

R
(5.1)
0 := max{R0,2, RT

0,1}.

There possibly exist three non-negative equilibria E0, EBE and E∗ for (5.1), which are the disease-
free, the boundary and the endemic equilibrium, respectively. The expressions of three equilibria are
as follows:

(i) the DFE E0 is given by (2.7);

(ii) the boundary equilibrium (BE) is

EBE := (I1BE, I2BE, N1BE, N2BE)

= (0, (1 − 1/R0,2)N2BE, (b1 + b2 − d2N2BE)/d1, N2BE) (5.2)

with I2BE positive if R0,2 > 1, where

N2BE = (d1 + m1)b2 + m1b1

d2(d1 + m1) + d1m2/R0,2
; (5.3)

(iii) EE E∗ := (I1∗, I2∗, N1∗, N2∗) = ((1 − 1/RT
0,1)N1∗, I2∗, N1∗, N2∗) with d1N1∗ + d2N2∗ = b1 + b2.

The coordinate I1∗ is positive if RT
0,1 > 1. The coordinate I2∗ satisfies

β2I2
2∗

N2∗
+ (d2 + γ2 − β2)I2∗ − m1

(
1 − 1

RT
0,1

)
N1∗ = 0. (5.4)
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Equation (5.4) has a unique positive solution for I2∗ when RT
0,1 > 1. Indeed, writing (5.1c) and (5.1d) at

equilibrium as a linear system in (N1∗, N2∗):

(−(d1 + m1) m2

m1 −(d2 + m2)

)(
N1∗
N2∗

)
=
(−b1 + m2I2∗

−b2 − m2I2∗

)

gives

N1∗ = d2b1 + m2(b1 + b2)

d1d2 + d1m2 + d2m1
− d2m2

d1d2 + d1m2 + d2m1
I2∗

=: p1 − q1I2∗,

N2∗ = d1b2 + m1(b1 + b2)

d1d2 + d1m2 + d2m1
+ d1m2

d1d2 + d1m2 + d2m1
I2∗

=: p2 + q2I2∗,

(5.5)

where p1, q1, p2, q2 > 0 and 0 < q2 < 1. Define c := m1(1 − 1/RT
0,1), so c > 0 whenever RT

0,1 > 1.
Equation (5.4) can then be rewritten as

β2I2
2∗ + (d2 + γ2 − β2)I2∗N2∗ − cN1∗N2∗ = 0. (5.6)

Substituting N1∗ and N2∗ in (5.5) into (5.6) yields

AI2
2∗ + BI2∗ + C = 0, (5.7)

where

A = β2 + q2(d2 + γ2 − β2) + cq1q2

= (1 − q2)β2 + q2(d2 + γ2) + cq1q2 > 0,

B = p2(d2 + γ2 − β2) − cp1q2 + cp2q1,

C = −cp1p2 < 0.

It is then obvious that (5.4) has a unique solution for I2∗ when RT
0,1 > 1.

Salmani & van den Driessche (2006) presented a more general model for (5.1), in which the disease
may cause fatality and travel rates are dependent of disease status, and showed the global asymptotic
stability of E0 if R0,2 < 1 and RT

0,1 < 1, i.e. R
(5.1)
0 < 1; local asymptotical stability of EBE if R0,2 > 1

and RT
0,1 < 1 (by the Routh–Hurwitz criterion); local asymptotic stability of E∗ (numerical result in

Salmani & van den Driessche, 2006) if R0,2 < 1 and RT
0,1 > 1. The global asymptotic stability of EBE

and analytical results on E∗ remain open. For (5.1), when d1 = d2, Wang & Mulone (2003, Theorem 2.4)
showed that the disease is uniformly persistent in two patches if RT

0,1 > 1.

Theorem 5.1 The BE EBE of (5.1) is globally asymptotically stable if R0,2 > 1 and RT
0,1 < 1.
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Proof. Note from (iii) that when RT
0,1 < 1, system (5.1) only has disease-free and boundary equilibria.

Equation (5.1b) indicates that

dI1

dt
� β1I1 − d1I1 − γ1I1 − m1I1 = β1

(
1 − 1

RT
0,1

)
I1.

We conclude that limt→∞ I1 = 0 if RT
0,1 < 1. Thus, by the theory of asymptotically autonomous systems

(Castillo-Chavez & Thieme, 1995, Theorem 2.5), one only needs to study the limiting system of (5.1):

dI2

dt
= β2(N2 − I2)I2

N2
− d2I2 − γ2I2, (5.8a)

dN2

dt
= b2 − (d2 + m2)N2 + m1N1 + m2I2, (5.8b)

dN1

dt
= b1 + m2N2 − (d1 + m1)N1 − m2I2. (5.8c)

System (5.8) has two equilibria: the BE E′
0 and the positive equilibrium E′

BE. Here,

E′
0 :=

(
0,

b2d1 + m1(b1 + b2)

d1d2 + d2m1 + d1m2
,

b1d2 + m2(b1 + b2)

d1d2 + d2m1 + d1m2

)

and
E′

BE := ((1 − 1/R0,2)N2BE, N2BE, (b1 + b2 − d2N2BE)/d1).

Salmani & van den Driessche (2006) proved that for (5.8), the BE E′
0 is unstable and the positive

equilibrium E′
BE is locally asymptotically stable if R0,2 > 1 and RT

0,1 < 1. It is sufficient to prove that
the positive equilibrium E′

BE of (5.8) is globally asymptotically stable.
Next, we apply the second compound matrix (Appendix 8) and the Poincaré–Bendixson property

(Appendix 8) to prove the global asymptotic stability of E′
BE.

The stability property of E′
0 described above indicates that a similar argument as in Li et al. (1999,

Proof of Proposition 3.3) may be used to show system (5.8) is uniformly persistent, i.e. there exists a
constant 0 < c < 1 such that any solution (I2(t), N2(t), N1(t)) with (I2(0), N2(0), N1(0)) ∈ Σ satisfies

min
{

lim inf
t→∞ I2(t), lim inf

t→∞ N2(t), lim inf
t→∞ N1(t)

}
> c.

This implies that system (5.8) has a compact absorbing orbit set K ∈ Σ , where Σ is the interior of Σ

in R
3. Moreover, E′

BE is the unique equilibrium in Σ . Hence, condition (1) in Theorem A.2 holds.
The Jacobian matrix of (5.8) at an arbitrary point P(I2, N2, N1) is

J(P) =

⎛
⎜⎜⎝

β2 − d2 − γ2 − 2β2I2

N2

β2I2
2

N2
2

0

m2 −(d2 + m2) m1

−m2 m2 −(d1 + m1)

⎞
⎟⎟⎠ .

By examining J(P) and choosing the matrix H = diag(1, −1, 1), one can verify that, when R0,2 > 1 and
RT

0,1 < 1, the system (5.8) is competitive in the convex region Σ =: {(N1, N2)|(b1 + b2)/max{d1, d2}) �
N1 + N2 � {(b1 + b2)/min{d1, d2}} with respect to the partial ordering defined by the orthant
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{(I2, N2, N1) ∈ R
3 : I2 � 0, N2 � 0, N1 � 0}. By Theorem A.1, System (5.8) satisfies the Poincaré–

Bendixson Property and thus condition (3) in Theorem A.2 holds.
The second compound matrix J [2](P) (Appendix 8) of the Jacobian matrix J(P) is

⎛
⎜⎜⎜⎜⎝

β2 − 2d2 − γ2 − m2 − 2β2I2

N2
m1 0

m2 β2 − d2 − γ2 − d1 − m1 − 2β2I2

N2

β2I2
2

N2
2

m2 m2 −(d1 + m1 + d2 + m2)

⎞
⎟⎟⎟⎟⎠ .

Let z = (z1, z2, z3)
T be the solution of the second compound system dz/dt = J [2](P)z, namely,

ż1 =
(

β2 − 2d2 − γ2 − m2 − 2β2I2

N2

)
z1 + m1z2,

ż2 = m2z1 +
(

β2 − d2 − γ2 − d1 − m1 − 2β2I2

N2

)
z2 + β2I2

2

N2
2

z3,

ż3 = m2z1 + m2z2 − (d1 + m1 + d2 + m2)z3.

(5.9)

Define the norm of z as

‖z‖ = max{|z1| + |z2|, |z3|}. (5.10)

If ‖z‖ = |z1| + |z2|, then

D+‖z‖ = D+(|z1| + |z2|)

�
(

β2 − 2d2 − γ2 − m2 − 2β2I2

N2

)
|z1| + m1|z2|

+ m2|z1| +
(

β2 − d2 − γ2 − d1 − m1 − 2β2I2

N2

)
|z2| + β2I2

2

N2
2

|z3|

�
(

β2 − 2d2 − γ2 − 2β2I2

N2

)
|z1| +

(
β2 − d2 − γ2 − d1 − 2β2I2

N2

)
|z2| + β2I2

2

N2
2

|z3|

�
(

β2 − 2d2 − γ2 − 2β2I2

N2

)
|z1| +

(
β2 − d2 − γ2 − d1 − 2β2I2

N2

)
|z2| + β2I2

N2
|z3|

�
(

β2 − 2d2 − γ2 − 2β2I2

N2

)
|z1| +

(
β2 − d2 − γ2 − d1 − 2β2I2

N2

)
|z2| + β2I2

N2
(|z1| + |z2|)

�
(

β2 − d2 − γ2 − β2I2

N2

)
(|z1| + |z2|) − d2|z1| − d1|z2|

= İ2

I2
(|z1| + |z2|) − d2|z1| − d1|z2|

� − min

{
d1 − İ2

I2
, d2 − İ2

I2

}
‖z‖. (5.11)
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Suppose that the solution Ω := (I2(t), N2(t), N1(t)) to (5.8) is periodic with the least positive period ω

and the initial condition (I2(0), N2(0), N1(0)) ∈ R
3
+0. We then have

−
∫

Ω

min

{
d2 − İ2

I2
, d1 − İ2

I2

}
dt � −

∫
Ω

min{d1, d2} dt

= − min{d1, d2}ω < 0. (5.12)

On the other hand, if ‖z‖ = |z3|, then

D+‖z‖ = D+|z3|
� m2(|z1| + |z2|) − (d1 + m1 + d2 + m2)|z3|
� −(d1 + m1 + d2)‖z‖. (5.13)

Inequalities (5.11)–(5.13) indicate that ‖z‖ → 0 as t → ∞, and this in turn implies that (z1, z2, z3) → 0
as t → ∞. Therefore, the linear system (5.9) is asymptotically stable and the periodic solution Ω :=
(I2(t), N2(t), N1(t)) of (5.8) is asymptotically orbitally stable. By Theorem A.2, the equilibrium E′

BE is
globally asymptotically stable. �

5.2 Model with infection during transport

By setting m2I2 = 0, we derive from model (2.1) the following system of differential equations:

dI1

dt
= β1(N1 − I1)I1

N1
− d1I1 − γ1I1 − m1I1, (5.14a)

dI2

dt
= β2(N2 − I2)I2

N2
+ α1m1(N1 − I1)I1

N1
− d2I2 − γ2I2 + m1I1, (5.14b)

dN1

dt
= b1 + m2N2 − (d1 + m1)N1 − m2I2, (5.14c)

dN2

dt
= b2 − (d2 + m2)N2 + m1N1 + m2I2, (5.14d)

which describes the model with perfect exit border screening and infection during transport.
The basic reproduction number of (5.14) is R

(5.14)
0 := max{R0,2, RT

0,1}. Note that R
(5.14)
0 = R

(5.1)
0 .

The disease transmission coefficient during transport α1 has no effect on R
(5.14)
0 when a perfect border

screening programme is initiated.
The three possible non-negative equilibria of (5.14) are as follows.

1. DFE E0 as given by (2.7);

2. BE EBE as given by (5.2) with I2BE positive if R0,2 > 1, where N2BE has the same form as (5.3);

3. EE E∗ := ((1 − 1/RT
0,1)N1∗, I2∗, N1∗, N2∗) with d1N1∗ + d2N2∗ = b1 + b2. The coordinate I2∗ sat-

isfies

β2I2
2∗

N2∗
+ (d2 + γ2 − β2)I2∗ − m1

(
1 + α1

RT
0,1

)(
1 − 1

RT
0,1

)
N1∗ = 0. (5.15)
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Using an argument very similar to that used when considering (5.4), it can be shown that (5.15)
has a unique positive solution for I2∗ when RT

0,1 > 1.

Theorem 5.2 The DFE E0 of (5.14) is globally asymptotically stable if R
(5.14)
0 < 1.

Proof. Since I1 � N1 and I2 � N2, (5.14a) and (5.14b) satisfy

dI1

dt
� β1I1 − d1I1 − γ1I1 − m1I1, (5.16a)

dI2

dt
� β2I2 + α1m1I1 − d2I2 − γ2I2 + m1I1. (5.16b)

Define an auxiliary system as

dĪ1

dt
= β1 Ī1 − d1 Ī1 − γ1Ī1 − m1 Ī1, (5.17a)

dĪ2

dt
= β2 Ī2 + α1m1 Ī1 − d2 Ī2 − γ2Ī2 + m1 Ī1. (5.17b)

The basic reproduction number R
(5.14)
0 < 1 makes all eigenvalues of (5.17) negative, which implies

that limt→∞ Ī1 = limt→∞ Ī2 = 0. Following a standard comparison theorem of ODE (Smith & Waltman,
1995, Theorem B.1), we have limt→∞(I1, I2) = (0, 0).

By the theory of asymptotically autonomous system (Castillo-Chavez & Thieme, 1995,
Theorem 2.5), the limiting system of (5.14c) and (5.14d) is written as

dN2

dt
= b2 − (d2 + m2)N2 + m1N1, (5.18a)

dN1

dt
= b1 + m2N2 − (d1 + m1)N1. (5.18b)

A direct calculation shows that the positive equilibrium (N∗
1 , N∗

2 ) of (5.18) is a stable focus. �

Theorem 5.3 The BE EBE of (5.14) is locally asymptotically stable if R0,2 > 1 and RT
0,1 < 1.

Proof. At the BE EBE, (5.1) and (5.14) have the same characteristic equation. Therefore, just as for
(5.1), conditions R0,2 > 1 and RT

0,1 < 1 guarantee the local asymptotic stability of EBE for system (5.14).
�

Note that in (5.14),
lim

t→∞ I1 = 0 if RT
0,1 < 1, (5.19)

which leads to the same limiting system for (5.14) as for (5.8).

Theorem 5.4 The BE EBE of (5.14) is globally asymptotically stable if R0,2 > 1 and RT
0,1 < 1.

The proof of Theorem 5.4 is similar to that of Theorem 5.1 and we omit it. Analytical results for the
endemic equilibrium E∗ are still an open problem. Taking different initial values for I1(t), I2(t), N1(t)
and N2(t) and solving system (5.14) numerically gives Fig. 5, which shows the global asymptotic sta-
bility of the unique endemic equilibrium E∗ when RT

0,1 > 1, R
(5.14)
0 > 1, independent of the value of
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(a) (b)

Fig. 5. Time plot showing the trajectories of (5.14) converging to the unique endemic equilibrium E∗, with parameters as in

Table 2 except (a) β2 = 0.1, R0,2 < 1, RT
0,1 > 1, R(5.14)

0 > 1; (b) β2 = 0.2, R0,2 > 1, RT
0,1 > 1, R(5.14)

0 > 1. This seems to indicate
that E∗ could be globally asymptotically stable.

R0,2. As long as the disease becomes endemic in isolated patch 1 and the travel rate m1 from patch 1
to patch 2 is small, then the disease is endemic in both patches. This indicates that the combination of
the infection during transport and the partial (in location) border screening does not help eradicate the
disease. Numerical simulations seem to indicate that the endemic equilibrium E∗ is globally asymptoti-
cally stable if RT

0,1 > 1 (see Fig. 5) independent of R0,2, unlike system (5.1). This implies that infection
during transport is more likely to cause a disease outbreak in both patches.

Systems (5.1) and (5.14) have identical basic reproduction numbers, implying that infection during
transport does not change the dynamics if infectious individuals only in one patch travel. Moreover,
analysis in this section show that if perfect border screening is implemented on patch 2, disease dies
out in both patches when R0,2 < 1, RT

0,1 < 1, disease is endemic in patch 2 and dies out in patch 1 when
R0,2 > 1, RT

0,1 < 1 and disease becomes endemic in both patches when R0,2 < 1, RT
0,1 > 1, whereas

disease would not persist in patch 2 in isolation.
Another special case is that a perfect border screening programme is initiated in both patches that

results in no travel for infectious individuals. Setting m1I1 = m2I2 = 0, we derive from model (2.1) the
following system of differential equations:

dI1

dt
= β1(N1 − I1)I1

N1
− d1I1 − γ1I1, (5.20a)

dI2

dt
= β2(N2 − I2)I2

N2
− d2I2 − γ2I2, (5.20b)

dN1

dt
= b1 − d1N1 − m1(N1 − I1) + m2(N2 − I2), (5.20c)

dN2

dt
= b2 − d2N2 + m1(N1 − I1) − m2(N2 − I2). (5.20d)
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Table 1 List of reproduction numbers

Reproduction number Expression Corresponding system

R0,i
βi

di + γi
Decoupled system without travel

RT
0,i (modified)

βi

di + γi + mi
Coupled system with travel of infectives

R
(2.1)
0

P1 + P2 + √
Δ

2 det(V)
System with infection during transport and
travel of all infectives

R
(3.1)
0

P̄1 + P̄2 +
√

Δ̄

2 det(V̄)
System with no infection during transport and
travel of all infectives

R
(5.1)
0 max{R0,2, RT

0,1} System with no infection during transport and
no travel of infectives from patch 2

R
(5.14)
0 max{R0,2, RT

0,1} System with infection during transport and no
travel of infectives from patch 2

The basic reproduction number for (5.20) is R
(5.20)
0 := max{R0,1, R0,2}. System (5.20) always has a

DFE E0; it has an endemic equilibrium when R
(5.20)
0 > 1. Note that R

(5.20)
0 � {R(5.1)

0 , R(5.14)
0 }. Then we

infer that disease can be endemic in both patches in system (5.20) although in systems (5.1) and (5.14)
disease dies out in both patches or is endemic only in one patch.

6. Relations between reproduction numbers

For convenience, we list all basic (or modified) reproduction numbers in Table 1. Note that R0,i > RT
0,i

for i = 1, 2 and R
(5.1)
0 = R

(5.14)
0 . Since R

(2.1)
0 is an increasing function with respect to α1 and α2, and also

R
(2.1)
0 = R

(3.1)
0 when α1 = α2 = 0, then R

(2.1)
0 > R

(3.1)
0 . When RT

0,1 � R0,2, then R
(3.1)
0 > R

(5.1)
0 = R

(5.14)
0 .

Arino (2009, p. 41) proved that min{R0,1, R0,2} � R
(3.1)
0 � max{R0,1, R0,2}. We next compare R

(3.1)
0

with RT
0,i.

Equations (3.2) and (3.3) implies R
(3.1)
0 > β1β2(P̄1 + P̄2 + |P̄1 − P̄2|)/2P̄1P̄2. When P̄1 � P̄2,

then R
(3.1)
0 > β1β2/P̄2 = β1/(d1 + γ1 + m1) =: RT

0,1. In addition, P̄1 � P̄2 ⇔ β1/(d1 + γ1 + m1) �
β2/(d2 + γ2 + m2) ⇔ RT

0,1 � RT
0,2. Thus, we have R

(3.1)
0 > max{RT

0,1, RT
0,2}; when P̄1 < P̄2, by the sim-

ilar way, we infer that R
(3.1)
0 > max{RT

0,1, RT
0,2}. Thus, R

(3.1)
0 > max{RT

0,1, RT
0,2} is always true.

Summarizing the analysis above leads to the following results:

i. R0,i > RT
0,i;

ii. R
(5.1)
0 = R

(5.14)
0 ;

iii. R
(2.1)
0 > R

(3.1)
0 > max{RT

0,1, RT
0,2};

iv. R
(3.1)
0 > R

(5.1)
0 , R(5.14)

0 when RT
0,1 � R0,2.
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Table 2 Parameter values used in simulations

Parameter Value Unit

b1 6 Individuals × Day−1

b2 8 Individuals × Day−1

β1 0.3 Day−1

β2 0.2 Day−1

m1 0.045 Day−1

m2 0.030 Day−1

α1 0.3 Day−1

α2 0.6 Day−1

γ1 1/5 Day−1

γ2 1/6 Day−1

d1 1/(365 · 60) Day−1

d2 1/(365 · 65) Day−1

(a) (b)

Fig. 6. Effect of α1 and α2 on the prevalence in system (2.1), for (a) patch 1 and (b) patch 2. Units are number of infectious
individuals per 100,000 people. Other parameters are as in Table 2.

7. Numerical results

In this section, we present some numerical simulation results to illustrate and extend analytical results.
Parameter values used are summarized in Table 2. Initial values are (I1(0), I2(0), N1(0), N2(0)) =
(2000, 4000, 120, 000, 130, 000).

Figure 6 shows the sensitivity of disease prevalence in both patches to variations of α1 and α2 when
a perfect exit screening programme is implemented in patch 2. It is found that the endemic level in patch
2 (I2) is an increasing function of the disease transmission coefficient for individuals from patch 1, α1,
but does not depend on α2. Indeed, infection during transport from patch 1 to patch 2 contributes to
disease prevalence in patch 2, whereas since exit screening is perfect out of patch 2, there is no travel
of infectives out of patch 2 and thus no effect of the rate of travel out of patch 2.
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(a) (b)

Fig. 7. Comparisons of the effect of different strategies on disease endemicity. In both cases: 0 → 200 days: no infection during
transport nor exit screening; 400 → 600 days: perfect exit screening in patch 2; 600 → 800 days: no travel of infectives. Then,
200 → 400: (a) infection during transport but no exit screening; (b) no infection during transport.

In Fig. 7, the infection curves in the first 200 days represent the case in which both infectives
and susceptibles travel with neither infection during transport nor border screening; infection during
transport is incorporated for the second 200-day time period; a perfect border screening programme
is then implemented in patch 2 during days 400–600; perfect border screening programmes in both
patches follows for the last 200 days. Comparison of infection curves between days 0 → 200 and days
200 → 400 indicates that infection during transport increases the endemic level in both patches when the
disease is present. Infection curves corresponding to days 400 → 600 show that a perfect exit screening
programme in patch 2 effectively lowers prevalence in patch 1 by forbidding the travel of infectious
individuals to patch 1 from patch 2. Furthermore, when a perfect border screening programme is also
introduced to patch 1, one can see from the infection curves in days 600 → 800 that prevalence increases
in patch 1 and decreases in patch 2, since perfect border screening in patch 1 interrupts the exportation
of infectives to patch 2.

If ventilation is poor in the vehicle or that the vehicle is very crowded, an infective individual might
be able to infect a comparatively larger number of travellers. In this case, mass action incidence would
more appropriately describe the phenomenon of disease transmission during transport. We assume that
there are ni vehicles in average per unit time carrying passengers from patch i to patch j (i, j = 1, 2 and
i |= j). Then, infection during transport per unit time from patch i to patch j occurs at the rate

ni · αi · miSi

ni
· miIi

ni
= αim2

i SiIi

ni
. (7.1)

Model (2.1) with mass action incidence during transport then takes the form of the following system of
differential equations:

dS1

dt
= b1 − β1S1I1

N1
+ γ1I1 − d1S1 − m1S1 +

(
1 − α2m2I2

n2

)
m2S2, (7.2a)
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(a) (b)

Fig. 8. Comparison of the effect of different incidence functions on disease endemicity: bilinear versus standard type.

dI1

dt
= β1S1I1

N1
− d1I1 − γ1I1 − m1I1 +

(
1 + α2m2I2

n2

)
m2I2, (7.2b)

dS2

dt
= b2 − β2S2I2

N2
+ γ2I2 − d2S2 +

(
1 − α1m1I1

n1

)
m1S1 − m2S2, (7.2c)

dI2

dt
= β2S2I2

N2
− d2I2 − γ2I2 +

(
1 + α1m1I1

n1

)
m1I1 − m2I2. (7.2d)

In Fig. 8(a,b), the values n1 = 40, n2 = 45 and n1 = 80, n2 = 90 are used, respectively. Figure 8 shows
that prevalence in both patches undergoes damped oscillations in the first couple of days; afterwards,
the prevalence in both patches for system (7.2) with mass action incidence during transport are higher
than those for system (2.1) with standard type incidence during transport, when the number of vehicles
travelling per unit time is comparatively large.

Cui et al. (2006) showed that the basic reproduction number in the case of subsection 5.2 is iden-
tical to that in the case both patches implement a perfect border screening programme (similar to sys-
tem (5.20)).

8. Discussion

In this work, we extend a metapopulation model with infection during transport of Cui et al. (2006). The
extension concerns the inclusion of different parameters in the two patches and travel-related infection
terms.

Cui et al. (2006) computed the basic reproduction number R0 for the two simplified systems of
(5.14) and (5.20), where R0,1 = R0 = R0,2. However, in our model, we show that the basic reproduction
numbers R0,1, R0,2 in two isolated patches can be different and R

(5.14)
0 not only depends on R0,2 but

also on the modified basic reproduction number RT
0,1. Theorem 5.2 shows that the local stability of the

DFE E0 and the BE EBE in Cui et al. (2006) is in fact global.
Section 5 concerns the effect of border screening. Border screening and travel restrictions have been

shown to have little efficiency, both in a deterministic context (Arino et al., 2007) and in a stochastic
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one (Scalia Tomba & Wallinga, 2008). In a modern transportation network, this is further compounded
by the fact that passengers screened can, sometimes predominantly, simply be connecting through an
infected area (Khan et al., 2013). However, another conclusion of Khan et al. (2013) is that if border
screening is to be implemented, it is best implemented on exit rather than on entry. The situation con-
sidered in Section 5 with perfect border screening on exit is, of course, an oversimplification of reality.
Performing screening at a level guaranteeing 100% efficacy would require so much time, personnel and
resources that it would be infeasible in practice. However, this thought experiment does allows to draw
some general principles that would most likely hold in more realistic settings.

Note that the effect of perfect border screening in the model is to reduce the population in the
patches. Of course, this would not happen in real life. When using metapopulation models to consider
realistic situations, one typically works the following way (see, e.g. Arino & Khan, 2014; Arino &
Portet, 2014): since the population in patches, movement rates and death rates are known, the birth
rate is chosen so that equilibrium patch population matches the known patch population. Changing the
movement rates then simply means that the birth rates have to be adjusted accordingly. This was not
done here in the numerics because the example investigated is artificial.
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Appendix A. Proving global stability using the Poincaré–Bendixson property

Definition A.1 (Li & Wang, 2002) Let x �→ f (x) ∈ R
n be a C1 function for x in an open set D ∈ R

n.
Consider the differential equation

dx

dt
= f (x). (A.1)

Denote by x(t, x0) the solution to (A.1) such that x(t, x0) = x0. A set K is said to be absorbing in D for
(A.1) if x(t, K1) ⊂ K for each compact K1 ⊂ D and t sufficiently large.

The following two basic assumptions are made:

(H1) There exists a compact absorbing set K ⊂ D .

(H2) Equation (A.1) has a unique equilibrium x̄ in D .

Definition A.2 (Li & Wang, 2002) The differential equation (A.1) is said to be competitive in D if,
for some diagonal matrix H = diag(ε1, . . . , εn), where each εi is either 1 or −1, H(∂f /∂x)H has non-
positive off-diagonal elements for all x ∈ D . If D is convex, the flow of a competitive system preserves,
for t < 0, the partial ordering in Rn defined by the orthant K = {(x1, . . . , xn) ∈ Rn : εixi � 0, i = 1, . . . , n}.

54

 at O
hio State U

niversity on June 18, 2016
http://im

am
m

b.oxfordjournals.org/
D

ow
nloaded from

 

http://imammb.oxfordjournals.org/


SIS MODEL WITH TRANSPORT INFECTION

Theorem A.1 (Wang & Mulone, 2003, Chapter 3, Theorem 4.1.) Assume that n = 3 and D is convex.
Suppose that (A.1) is competitive in D . Then it satisfies the Poincaré–Bendixson Property, i.e. any
nonempty compact omega limit set of (A.1) that contains no equilibria is a closed orbit.

For higher dimensional systems that satisfy the Poincaré–Bendixson property, Li & Wang (2002)
present the following global stability result.

Theorem A.2 (Li & Wang, 2002) Assume that

(1) assumptions (H1) and (H2) hold;

(2) x̄ is locally asymptotically stable;

(3) system (A.1) satisfies the Poincaré–Bendixson Property;

(4) each periodic orbit of (A.1) in D is orbitally asymptotically stable.

Then the unique equilibrium x̄ is globally asymptotically stable in D .

Appendix B. The second additive compound matrix

Let A be a linear operator on R
n and also denote its matrix representation with respect to the standard

basis of R
n. Let ∧2

R
n denote the exterior product of R

n. Operator A induces canonically a linear operator
A[2] on ∧2

R
n : for u1, u2 ∈ R

n, define

A[2](u1 ∧ u2) =: A(u1) ∧ u2 + u1 ∧ A(u2)

and extend the definition over ∧2
R

n by linearity. The matrix representation of A[2] with respect to the
canonical basis in ∧2

R
n is called the second additive compound matrix of A. This is an

(n
2

)× (n
2

)
matrix

and satisfies the property (A + B)[2] = A[2] + B[2]. In the special case when n = 2, we have A[2]
2×2 = tr A.

In general, each entry of A[2] is a linear expression of those of A. For instance, when n = 3, the second
additive compound matrix of A = (aij) is

A[2] =
⎡
⎣a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

⎤
⎦ .

A comprehensive survey and discussion on compound matrices and their relations to differential equa-
tions is given in Muldowney (1990).
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