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1 Introduction

On 21 February 2003, a disease now known as the severe acute respiratory syndrome
(SARS) arrived in Hong Kong when a physician from Guandong Province in
Mainland China bearing the SARS coronavirus (SARS-CoV), checked in at the
Metropole Hotel [54]. The primary case in Hong Kong was by no means the index
case: the virus had been circulating in Guandong since at least November 2002 [52].
However, that patient triggered a chain of infections that, together with earlier cases
in China, led to 8098 known cases and 774 deaths in 28 countries [42] and was
declared a pandemic by the World Health Organisation (WHO).

Similarly, it is not certain at the time of writing that SARS-CoV-2 and its
associated disease COVID-19 had its index case in Wuhan, Hubei Province, China.
What is certain, on the other hand, is that it is in Wuhan that COVID-19 underwent
its first noticeable amplification phase, following which it spread rapidly across the
world, to the point that there are now very few top level jurisdictions not having
reported COVID-19 cases.

SARS-CoV-2 is the third novel Coronavirus to emerge in the twenty-first century
(after SARS and the Middle East respiratory syndrome—MERS [28]) and the
second to generate a pandemic (a third pandemic was triggered by the HINI1
influenza outbreak in 2009). COVID-19 is also the most devastating pandemic in
over a century in terms of its death toll as well as its economic and societal impact.

Here, I review some aspects of the spatio-temporal spread of COVID-19. Some
caveats are in order. Firstly, while spatial epidemiology is not the most popular topic
among modellers, it does remain a vast field where a myriad of approaches coexist;
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surveying the work done on the topic would require an entire monograph. While I
have tried to be inclusive, it is certain that I have omitted some topics or techniques.
I am for instance making the choice to describe mostly mechanistic models of
spread, be they deterministic or stochastic, mathematical or computational. Some
very good statistical work has been published on the topic of COVID-19, but I focus
here to a large extent on models that can explain reality perhaps at the detriment of
forecasting power. Secondly, I am aware that many modellers who have worked or
are working with public health authorities may not have had the time yet to publish
their work. Except for my work, I report here only on papers already published or
available on recognised preprint servers. Thirdly, new variants of concern (VoC)
were detected while this paper was under review. A short section at the end of this
document to describe what little is known in terms of spatio-temporal spread of
these variants.

Finally, even though some work makes use of data at a very fine spatial
resolution, in keeping with the philosophy of some prior work [13], I focus on
models that can be used with publicly available data.

This review is organised as follows. First, in Sect.2, I provide an overview of
the mechanisms that lead to the spatial spread of infections and three of the major
types of models that have been used to study it. In Sect.3, I then describe the
spread of COVID-19 from a chronological point of view. Finally, in Sect. 4, I discuss
modelling work specific to COVID-19.

2 Spatialised Infections: Mechanisms and Models

Before considering work specific to COVID-19, let me spend some time on the
spatialisation of infectious diseases in general. Indeed, while COVID-19 presents
specific challenges, it is by no means the first spatial epidemic that humanity is
confronted to; for instance, a simple description of the spatio-temporal trajectory
of the Plague of Athens can be found in the History of the Peloponnesian War
[176], which was written almost 2500 years ago; on a more local scale, spatial
epidemiology can be traced to the cholera epidemic of London in 1854 [171]. There
is therefore much understanding to be gained about the current crisis by considering
what was known prior to its start.

2.1 How Does an Infectious Disease Become Spatial?

Different conceptual models explain the mechanisms that lead to the spatialisation
of an infectious disease, leading to potentially different modelling paradigms.
Working at the level of the individual, one can envision spatial spread as
the repetition of inter-individual spread events. Individuals are mobile in space
and it is their movement while bearing the infectious pathogen that leads to the
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disease becoming spatial, when they come into contact with susceptible individuals
who are also mobile. This description falls mostly into what have been called
Markovian contact processes [146]. When considered at the population level, this
leads to models using partial differential equations and is particularly appropriate
for describing the spread of a disease where the hosts can move freely, such as
epizooties. Such a description can also lead to network or agent-based models.

Work with my collaborators usually instead focuses on locations and adopts a
vision of spatial spread articulated in [17]: an infectious disease becomes spatialised
by the repetition of processes summarised as importation, amplification, exportation
and transport. Importation itself is the event when an individual infected with the
disease reaches a new location. Importation is successful if the imported case leads
to at least one local transmission event. This way of thinking about spread is easy to
reconcile with data, since locations are jurisdictions in the context of public health.
It also matches the cones of resolution that some geographers use when they think
about the spatial spread of epidemics; see [11] and references therein. See also [110,
111], which consider the roles of the different levels of mobility on the spread of
SARS in and to and from Beijing.

2.2 What Are the Main Drivers of Spatial Spread?

Whatever the way one conceptualises the spatialisation process, the main driver of
spatial spread is human mobility. Long range fast movements using air travel have
considerably changed the way diseases spread and while amplification in a location
remains driven by population effects, the initial spread is to a large extent driven by
air travel. This was shown for SARS [42], the 2009 HIN1 influenza pandemic [119]
and MERS [90], for instance. Long distance high speed train travel has also been
associated to spread; see, e.g., [47]. It is interesting to note, though, that despite the
highly heterogeneous nature of spatio-temporal spread brought on by modern travel
modalities, continental-level effects can still be observed [93].

2.3 How Does One Model a Spatialised Infectious Disease?

As mentioned in the Introduction, I focus here on mechanistic models. There are
many ways to model the spatio-temporal spread of infectious diseases. Let me
present the main contenders; see an interesting and more complete list in [161]
or [147]. I do not detail reaction-diffusion equations, because, to the best of my
knowledge, they have seen very little use in modelling the spatio-temporal spread
of COVID-19; readers are referred to [158], for instance, for more details on
deterministic aspects involving such systems. See [145] for a seminal review of
the link between stochastic and deterministic spatial models, as well as interesting
overviews in [61].
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2.3.1 Agent-Based Models

Agent-based models (ABM) consider populations of autonomous agents that
interact following some rules [76]. Agents have a set of characteristics that can
be modified through their interactions with other agents. Although there are some
attempts to mathematise some of the properties of such systems, they remain for
the most part computational tools that need to be studied using a large number
of simulations. Their strength lies in their realism: an agent can be given realistic
behavioural characteristics (schedule, place of residence or of work, etc.). ABM are
also easier to implement because they require very little mathematical background.
Agent-based models have proved most useful when considering the effect of
individual behaviours on the spread of infection in smaller populations. For instance,
they have been used to study individual protective behaviour [116], the effect
of presenteeism while infected with a disease [126], the risk in small isolated
communities [49, 129], the effect of social distancing [169] or the role of avoidance
behaviour when vaccines have low effectiveness [177]. Examples of spatialised
problems (all about influenza) that were studied using agent-based models include
its spread in slums of Delhi [5], the use of a hybrid approach involving networks
to describe the social structure and ABM to describe inter-individual spread in
Forsyth Country, NC [98], the potential for social structure to generate inequalities
in incidence in different areas of a county [127] or the spread within an airport
terminal [165]. See also [154, 155], which use a detailed location survey to conduct
a simulation of the spread of influenza in Japan. ABM are also useful as a means to
model evolution; see, for instance, [96], where an ABM is used to model evolution
of virulence at the front line of a spreading epidemic

The area where ABM have proved most informative is when considering spread
of infections within areas where movement is constrained and generalised contact
is impossible, such as buildings or cruise ships. For instance, when considering
nosocomial infections, it is possible to monitor health care personnel movement
and use this data to parametrise an ABM of spread within a hospital [109], or to
formulate a model of spread between beds within an intensive care unit [109].

However, ABM lose in value when populations become larger, except in rare
instances where unexpected emergent behaviour occurs. Where the law of large
number applies, it is indeed less computationally onerous to use “classic” determin-
istic or stochastic models. For instance, the model in [18] reproduces almost exactly
the behaviour of the agent-based model in [134], but furthermore gives access to
explicit expressions of the basic reproduction number Ry and the final size of the
epidemic. See also the comparisons in [7, 66].

Altogether, agent-based models are powerful tools of investigation at the hyper-
local scale. Considering agents consisting of groups of individuals instead of
individuals also allows to operate at a higher spatial scale, although models then
lose some of the interesting properties they have at the finer scale.
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2.3.2 Network Models

Network models are very similar to agent-based models, of which they were,
essentially, the inspiration. The two types of models are sometimes difficult to
distinguish. In epidemiology, work on networks and ABM was popularised in
particular by the NIGMS Models of Infectious Disease Agent Study, which led for
instance to EpiSimS [56, 77]. In network models, nodes are typically simpler than
agents in agent-based models; the most straightforward example would be a network
consisting of nodes (individuals) that can be in two states: susceptible to the disease
or infected and infectious with it. If there is an edge in the network between two
nodes, this means the two nodes came into contact; in the case of a network used to
model disease spread, this indicates that a contact took place, which could lead to
the transmission of the disease. One promising direction of research that has been
explored using networks is that of the link between network structure and shape of
the epidemic curve; see, e.g., [48, 57]. This is particularly important during the early
spread of a disease and has been considered in a variety of contexts using network
models.

Because they are simpler than ABM, network models are more amenable to
analysis; see, e.g., [34, 38]. Originally, tools used to study the dynamics of network
epidemic models originated in statistical mechanics [139, 140]. Because networks
allow to incorporate a more realistic description of the contact process while
maintaining some level of analytic tractability, comparing their dynamics with that
of classical models is useful. In [8], this is done for instance for a two-strains
influenza model with vaccination. [156] There has been a move lately towards
characterising the dynamics of smaller networks using the properties of individual
nodes rather than through distributions of these properties; see, e.g., [32].

While examples of use of network models in mathematical epidemiology
abound, their use in situations that are specifically spatial are not as common.
Instances include [79], who considered an SEIR model set in a lattice and simulated
using a Monte Carlo process, to incorporate both stochasticity and space, [33], who
consider the spread of dengue in city blocks or [82], who consider the spread of
equine influenza. The latter paper illustrates the strength of the method, in that they
have access to extensive data on horse movement between locations and are able to
assess the effect of the topology of the networks, both for long range movement and
shorter contact patterns with locations, on the spread of the infection.

Networks are also a natural candidate for considering the spread of infections
using the air transportation network as a conduit. This was done for instance with
SARS [42].

2.3.3 Metapopulation Models
Also known as patch models, metapopulations couple together (typically sim-

ilar) models, with each model encoding for the dynamics of the disease in a
population and coupling representing the movement of individuals between the
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populations [16], the average time spent in remote locations [37] or the interactions
between populations. Metapopulation models had been used computationally since
the early 1970s, for instance to consider the spread of influenza within countries
[83, 164]. They have known a resurgence since the beginning of the twenty-first
century, because, on the one hand, computing resources made simulating them
easier and, on the other hand, papers such as [15, 19] showed that linear algebra
techniques could be used to render the study of such systems very similar to that
of their constituting systems. See [31] for a list of problems the authors identify as
interesting challenges in the field.

Metapopulations are now quite popular and have been used in a variety of
settings. A lot of work concerns investigation of properties of spatial models. For
instance, with coauthors, I investigated the effect of lowering travel rates between
locations [20] and of interconnection between a large urban centre and smaller
satellite cities [22]. Other interesting issues studied include the effect of vaccination
targeted at high risk areas [29], cooperation between governments on vaccination
policy [123]. Geographically targeted vaccination has also been considered at
smaller spatial scales; see, e.g., [26, 29, 101, 118, 121, 135]. Other spatial control
issues have been considered in [41, 92, 95, 102, 122, 130, 136].

Papers addressing issues that are present also with COVID-19 have considered
infection during transport [25], in particular in relation to entry screening [133]
as well as exit and entry screening [132]. Exit and entry screening were also
considered in [178]. Some work has also considered the effect of media-induced
social distancing [87, 173].

Metapopulation models were used to consider specific diseases as well; the
spread of SARS [162], age-structured contact patterns during the 2009 HINI
pandemic [12], chikungunya [50], dengue [141], cholera [73] or malaria [14, 88, 89];
see also [160].

Standard metapopulation models are not well suited to consider the hyperlocal
scale, because they assume homogeneity within the constituting units. In [12], an
interesting approach is used that allows more heterogeneous contacts within patches.
Similarly, in [148], the authors consider behaviour at the hyperlocal scale but still
within a metapopulation model. In [7], the behaviour of an ABM is compared with
that of a stochastic metapopulation model.

3 Chronology and Characteristics of COVID-19 Spread

To describe the spatio-temporal spread of COVID-19, I use the previously discussed
framework of [17]. There is some discrepancy in reporting units, but to some extent,
one can think along the lines of the ISO 3166 standard [114]. Global spread occurs
between ISO 3166-1 codes (countries, dependent territories and special areas of
geographical interest). Local spread within ISO 3166-1 codes occurs between ISO
3166-2 codes (provinces in Australia and Canada, départements in France, states
in Brazil and the USA, etc.). Many countries also report at a finer geographical
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scale, which I still call local: counties, regional health authorities or cities. Anything
below the city level is hyperlocal; typically, this corresponds to commuting to work,
school or shopping, but can even be mobility within a building. In keeping with my
avowed preference for publicly available data, my description involves higher level
jurisdictions rather than spread at the hyperlocal scale, which is typically associated
to confidential data.

Throughout the description that follows, one should bear in mind that data used
to describe the spread is very likely wrong in some instances, or rather, some
jurisdictions might be reporting with a delay because of a lower capacity to detect
cases. See for instance [100], in which two health security indices, the Global Health
Security Index and the Joint External Evaluation, are used to assess the likelihood
that countries detected COVID-19 early. (The work also shows that countries with
higher values of these indices also saw reduced mortality from the disease to 1 July
2020, although this is likely not true anymore.)

3.1 Chronology and Characteristics of Global Spread

There is evidence that COVID-19 could have started its global spread in December
2019, with reports of a case in France [68] as well as suspicious cases [39] and
positive wastewater samples [128] in Italy. However, these retrospective analyses
have yet to be confirmed, so at the time of writing, the first ten locations to have
confirmed importations are those listed in Table 1. The remainder of January saw
cases being confirmed in several other countries. Of note is that China imposed
a cordon sanitaire in Wuhan on 23 January 2020 and that the first successful
importation (in the terminology of [17], i.e., a local transmission event) was reported
by Vietnam on 24 January 2020 [182].

Table 1 First ten international locations having reported imported COVID-19. Date refers to the
date the case was reported. All dates are in 2020. All cases in this table were imported from China,
except for Vietnam, which concerned both an imported case and a local contact

Date Location Note Source

13 Jan. Thailand Arrived 8 Jan. [181]

16 Jan. Japan Arrived 6 Jan. [168, 179]
20 Jan. Republic of Korea Airport detected on 19 Jan. [180]

20 Jan. USA Arrived Jan. 15 [107]

23 Jan. Nepal Arrived 13 Jan. [35]

23 Jan. Singapore Arrived 20 Jan. 2]

24 Jan. France Arrived 22 Jan. [1]

24 Jan. Vietnam Arrived 13 Jan. [60, 152]
25 Jan. Australia Arrived 19 Jan. [27]

25 Jan. Malaysia Arrived 24 Jan. [74, 151]
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Fig. 1 Number of countries and territories (ISO-3166-1-alpha3 codes) having reported confirmed
cases of SARS-CoV (red) and SARS-CoV-2 (blue) as a function of the number of days since
importation in HKG (SARS-CoV) and importation in THL (SARS-CoV-2)

Starting in February 2020 and with more and more of the locations hav-
ing reported importations earlier seeing local transmission chains, global spread
accelerated. Figure 1 shows the number of ISO 3166-1-alpha3 codes (top level
jurisdictions) reporting their first confirmed case as a function of the time since
the first confirmed international exportation event.

While I do not detail them in the modelling section because of my focus there
on models able to provide explanations of the phenomena, it is worth noting
that interesting time series analyses were performed during the early stages of
spread. For instance, [58] used ARIMA analysis of travel data together with disease
propagation data to forecast future destinations. The authors find that uncertainty
as to the percentage of asymptomatic cases makes previsions complicated; this
conclusion is in line with personal work [23]. Likewise, [99, 105] considered
spatial autoregressive models. Also, although not global, continental-level spread
as documented for Africa in [91] is included here because the focus is not on the
transition between the global level to the continental level but on spread within the
continent. Finally, [138] use self-organising maps to look for similarities in epidemic
curves to identify countries seeing propagation of the same type.

3.2 Attempts to Slow Down the Global Spread

Using the terminology of the conceptual model of spatialisation, when COVID-19
started its international spread, there were very few jurisdictions that were exporters
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of COVID-19 and an immense majority of potential importers. Public health
authorities in those jurisdictions that did not have cases at that point therefore took
measures to try to stop or at least delay importations. To this end, they used three
main types of measures: restriction or suspension of travel, entry screening and post-
arrival self-isolation measures.

Starting early on and ongoing at the time of writing, various jurisdictions took
measures to curtail or even interrupt travel. Passengers themselves also abstained
from travelling. The result of this was a precipitous drop in travel volumes. The
intensity of this effect can be seen in Fig.2, which shows the daily number of
passengers processed by the United States Transport Security Agency, i.e., the
number of individuals undertaking a trip originating in the USA, in 2019 (red)
and 2020 (blue). The data shown for 2019 is for a year earlier, but shifted so it
corresponds to the same day in the week. At the lowest point, on Thursday 16
April 2020, TSA screened 3.63% of the number of travellers they had screened on
Thursday 18 April 2019. The same trend can be observed for instance in tourism,
with the United Nations World Tourism Organisation Tourism Dashboard (https://
www.unwto.org/international-tourism-and-covid- 19) reporting that the number of
international tourists arrivals in April and May 2020 was 97% less than the same
months in 2019.

In [6], an analysis of the global air transportation network is undertaken using
the network distance defined in [44], attempting to tease out the effect of travel
interruptions on the spread. While both of these studies provide very interesting
insights into the issue, a precise quantification of the effect of such fundamental
changes to travel is hard.
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Fig. 2 Daily number of passengers processed by the United States Transport Security Agency
(TSA) in 2019 and 2020; data from https://www.tsa.gov/coronavirus/passenger-throughput
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Entry screening is typically implemented at ports of entry (ports, airports, border
crossings) and seeks to identify individuals who are bearing the disease of concern,
in order to isolate them and thereby avoid potential transmission of the disease in
the local population. There is some debate about the usefulness of entry screening,
especially during the early stages of a global spread event. See [149] for an
extensive review. The sensitivity and specificity of the thermal detection equipment
used is questionable [40]. In the case of COVID-19, it has also been argued that
this low sensitivity would combine with the fact that fever detection would often
fail because of the frequency of asymptomatic cases [45]. Entry screening at the
beginning of a health crisis also means looking for a needle in a haystack, since the
volume of incoming passengers from all locations vastly dominates the volume of
passengers coming from the location of interest [120]. Since prevalence is low at
the beginning of the event, this further compounds the lack of efficacy and results in
poor characteristics for the method [67]. Also, screening protocols themselves vary
widely from location to location [86], rendering a general evaluation of the value of
a protocol difficult. Despite these reservations, in the case of COVID-19, some of
the evidence of early international spread comes through entry screening, so there
seems to have been some limited benefit to thermal imaging entry screening.

After the initial few days during which testing was thermal imaging-based,
screening switched to using much more reliable PCR tests. This became possible
because sequencing of the virus genome was performed remarkably quickly. As
a consequence, currently, there are four main attitudes towards screening: no
screening at all; “soft” screening, i.e., verbal or written questionnaires; testing on
entry; testing prior to entry. Some countries use a combination of approaches, for
instance requiring testing only for individuals arriving from regions considered
particularly at risk.

A jurisdiction still has one option to combat the risk that successful importations
take place: it can recommend or impose that individuals arriving from another
jurisdiction spend some time in quarantine. Canada, for instance, has insisted on
a 2-weeks quarantine period for all incoming travellers since the beginning of the
crisis, with exemptions.

3.3 From Global to Local Spread

The first step in switching from a purely global vision of spread to a local one is to
consider when COVID-19 could arrive in “one’s backyard”. In the early stages of the
pandemic, before most top-level jurisdictions reported reported human-to-human
transmission chains, it was of interest to those jurisdictions having no or few local
cases to understand the risks that their connectedness to other jurisdictions carried.
Because of evidence gathered during past pandemics and other notable public health
events (see Sect. 2.2), this evaluation was mostly carried out by investigating a given
jurisdiction’s connection to the rest of the world by means of the air transportation
network. This was the method used for instance in Mexico [64], India [97] or
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Europe [157]. Much practical work on this aspect has come to rely on global
airline transportation data such as that provided by the International Air Transport
Association (IATA). However, it should be noted that this dataset quickly became
unreliable because of the dramatic fall in travel volumes discussed in Sect. 3.2.

3.4 Chronology and Characteristics of Local Spread

Most of the very early work on local spread concerned China, since it was the first
country to experience this. The same type of method was used in [78] as is detailed
at the start of this section, but with past data on mobility during the Spring Festival
of millions of migrant workers residing in Wuhan. The aim was to assess the risk
to locations visited by the migrant workers. Since Chinese New Year was on 25
January 2020, while the cordon sanitaire was imposed in Wuhan on 23 January, a
lot of individuals did make the trip. This allowed the authors to venture which places
were probably under-reporting cases. See also [184], which uses GIS techniques to
study the spread within China and the factors contributing to this spread. As do the
authors of the previous paper, they find that connection to Wuhan, both in terms of
population flow and economically, was the main driver of the initial spread.
Tracing transmission chains originating from importations allowed to better
understand the consequences of importations. See, for instance, [36], which breaks
down such a transmission chain that started on 27 January 2020 in Bavaria
(Germany). In [46], the early spread in Brazil is documented, from importation
from Europe (as evidenced by genome typing of the strains) to local spread within
states, finally followed by exportation from urban centres. This is confirmed by
[84], who consider spread among 604 cities in Sdo Paulo State, Brazil. They
show that in the heterogeneous setting they consider, there are two patterns of
spread: one spatial, where the disease spreads to the nearest spatial component;
the other hierarchical, where within one unit, spread starts with the top level urban
centre then makes its way to smaller cities. In [80], the authors use genomic and
transportation data to consider the spread within the USA and conclude that quite
early on in the spread, importations into uninfected locations in the country were
much more likely to originate elsewhere in the country than abroad. Propagation
within the USA was also studied by [106], in which the occurrence of space-time
clusters is studied. This interestingly shows that as the epidemic took hold, there
occurred more and more smaller clusters, confirming in some sense the similar
observations in Brazil. Another investigation of continental spread in the USA is
carried out in [144] using a multilayer perceptron neural network. The authors
use the Moran index computed on the incidence rates and a large number (57)
of explanatory variables: socioeconomic, behavioural, environmental, topographic,
demographic, age-adjusted mortality rates from several diseases, both infectious
and chronic. They find that some of the most important factors predicting COVID-
19 incidence rates are the age-adjusted mortality rates of ischemic heart disease,
pancreatic cancer and leukemia, median household income and total precipitation.
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In [3], the time evolution in several countries and the time evolution within
France are investigated using time series methods incorporating spatial components.
While mostly methodological, this provides interesting tools to consider the spatio-
temporal evolution of the disease across multiple jurisdictions.

Other authors considered mechanisms for slowing down the spatial spread within
a country. The authors of [142] advocate for a disconnection between locked-down
urban centres and rural areas in India as a means to avoid complete country-wide
lockdown. This position is justified; indeed, authors in [63], for instance, found
strong correlation between population density and the spread of SARS-CoV-2 in
China, so it could be that forbidding movement between locations at high risk
(the cities) and those at lower risk is a valid approach. However, to the best of
our knowledge, no nation implemented such a system; indeed, during the initial
wave, most countries implemented country-level lockdowns that also relied on
severely limiting or completely interrupting mobility within their territory. In [70],
the authors consider the effect of containment measures on the spread of COVID-19
between provinces in Italy. In [124], the authors used human mobility data in China
to consider the spread of COVID-19 within China, in particular in relation to the
impact of control measures.

3.5 Chronology and Characteristics of Hyperlocal Spread

Hyperlocal spread was documented early on during the course of the pandemic
because of cases that happened onboard cruise ships that were under quarantine.
These events, while unfortunate for those involved, have provided a wealth of data.
In particular, they were extremely helpful in finding out key epidemiologic parame-
ters such as reproduction number [185], prevalence of asymptomatic infections [75],
incidence [153], transmissibility of the disease [143] or case fatality ratio [163].
Because cruise ships have records of who was infected together with the room they
were in, it should become possible to build a good understanding of spatial aspects,
although to the best of our knowledge, this data has not yet been released.

Many countries faced and are facing outbreaks in long-term care facilities (LTC).
There are a variety of reasons for this elevated risk; see, e.g., [172, 175]. This led
to tremendous effort to control such outbreaks [175]. Movement within LTC can be
documented (and modelled) accurately; see, e.g., [51, 150]. The health of residents is
also monitored (usually) well. As a consequence, nosocomial COVID-19 outbreaks
also provide valuable data at the hyperlocal level. See documented outbreaks in
[113, 125, 137, 166, 167].

Note an interesting “twist” on hyperlocal spread: in [108], the authors conduct
a wide-ranging analysis at the hyperlocal scale, in the sense that the consider the
movements of individuals at the local scale but over the entire territory of the United
States of America. This allows them to consider the effect of spatial heterogeneity
of public health orders.
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4 COVID-19-Specific Models

I replicate here the hierarchical spatial structure in Sect. 3 rather than the method-
ological one in Sect. 2.3. Indeed, while most work detailed here falls within one of
the three classes of methods in Sect. 2.3, I also report on other methods that gave
interesting results.

4.1 Models of Global Spread

To the best of my knowledge, most models for the global spread had in their
objectives to study how to slow down the global spread of the infection or considered
spread within specific countries or groups of countries; these are discussed in the
relevant later sections.

In [21, 24], we set the SLiL,I1IA1A2R model of [23] in a metapopulation
context and focused on the risk of importation in different countries. The model was
run daily to provide the Public Health Agency of Canada with an assessment of the
most likely countries to import the disease in the coming days. The model includes
travel at different levels, which, as pointed out in Sect. 3.3, was a documented feature
of spread.

In [170], an SIR-type metapopulation model in the GLEAM framework [30] is
used that combines population densities, commute patterns and long-range travel.
Used at the early stage of the spread, the authors find that it is likely that the value
of the basic reproduction number Ry and the prevalence are badly estimated in some
locations, with estimates in the literature at the time driven by locations with a large
population. They conclude that the number of cases was probably underestimated.

4.2 Modelling the Slowing Down of Global Spread

In [55], a metapopulation model for the global spread of COVID-19 is used to
consider in particular the role of international travel bans. The authors show that
while the cordon sanitaire in Wuhan did little to slow spread within China, its impact
internationally was more pronounced. The combined effect of travel restrictions and
community effort is also studied, with the interesting finding that travel restrictions
alone do not suffice to have an effect on propagation. In [4], a stochastic SEIR
metapopulation model is used, together with Official Airlines Guide (OAG) data,
to consider the role of travel restrictions taking place after 24 January 2020. The
authors found good adequation with the number of imported cases in several
countries as of the end of January. They focused in particular on Australia and
establish that the travel ban there might have delayed the onset of widespread
propagation by 4 weeks.
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A stochastic simulation model is used in [69] to consider different scenarios
regarding testing (rather than screening) of incoming individuals and the duration of
quarantine periods. Similarly, [59] use a stochastic model to quantify the effective-
ness of screening and so-called sensitisation of travellers, i.e., the provision of health
information in an effort to trigger compliance with self-isolation recommendations.
In [159], the example of air transportation in Brazil is considered using an SIR-
type metapopulation. The speed of spread in relation to network measures such as
centrality was explored, with closeness centrality shown to be a good predictor of
the vulnerability of a city.

In [17], we considered the risk of disease importation in a location that is seeing
little to no local transmission chains. As with most of our work on the subject, we
used a modified version of the model in [23]. In this case, we used a stochastic
version, which we subjected to stimulations to represent the inflow of infected
individuals into a location. The model also allowed us to quantify precisely the
effect of quarantine in terms of its effect on the inflow rate.

4.3 Modelling the Transition from Global to Local Spread

In [94], the risk of importation of COVID-19 in African countries was considered
using air travel data as well as data from the Monitoring Evaluation Framework
(MEF) of the WHO International Health Regulations. The model is quite simple and
comprises no dynamic components, meaning that it provides a snapshot evaluation
of the risk of importation. As it was formulated at the beginning of the spread event,
when most of the exportation was assumed to come from China, it does nonetheless
provide meaningful results.

In the already cited [17], we focused on the risk of importation of COVID-
19 in locations that are seeing little to no local transmission, thereby considering
the interface between the rest of the world and such locations. We showed that
the probability of importation was most dependent on the rate at which cases are
imported in the locations, but that the outcome of a successful importation was
then determined to a large extent by the intensity of public health measures in the
locations.

4.4 Models of Local Spread

The location for which data became readily available the soonest was China. Since
China is also a very large country, some very interesting work was carried out in the
context of spread within that country. The authors of [183] considered the spread
of COVID-19 within China using an interesting idea: they estimated the size of the
outbreak in Wuhan from known international exportations, then used a metapopula-
tion model with Wuhan as the source of infection to estimate spread within China.
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In [131], the role of undocumented infections is investigated in relation with the
spread of COVID-19 between 372 Chinese cities using a metapopulation SEIR
model incorporating documented and undocumented infections. In [112], spread
within Hubei Province and in the rest of China is investigated using statistical tools
(the Moran index and a logistic model). Then an ODE SEIR model is used to
compute Ry in the different locations. In [174], an SEIR-type model with additional
compartments for diagnosed and confirmed, suspected and infected as well as
suspected but uninfected individuals is set in a metapopulation framework with two
patches: Hubei Province and the rest of China. The model is used to consider the
effect of lifting lockdown measures.

In [10], a simulation platform is used to consider the spread in France. The model
operates at the level of subregions (départements) and supposes that individuals can
be susceptible, asymptomatic, symptomatic, recovered, hospitalised and diseased.
An interesting feature of the paper is a comparison between the results of continuous
time deterministic and discrete stochastic methods, with the latter showing better
adequation with observed data.

The authors of [46] considered spread of SARS-CoV-2 within Brazil. This colos-
sal endeavour considers actual genotyping of the virus and prior to modelling work
proper, details importations and the spatio-temporal spread of various genomes
of the virus. Spatio-temporal modelling then uses a continuous phylogeographic
model. The model is not predictive but sheds light on the spread process: they
find that spread was mostly local, i.e., within state borders. Both within-state and
between-state spread was also found to have decreased after the implementation of
NPL

In [9], the effect of heterogeneity of policies in the USA is investigated. A model
is formulated that is a metapopulation in essence; based on data on people movement
to places of gathering such as churches, the model allows the redistribution of
individuals between locations following different types of policies. They observe
that spatial heterogeneity in measures tends to increase the likelihood of subsequent
infection waves. Spatial heterogeneity is also investigated in [65], which uses a
metapopulation model to probe the impact of disparity of healthcare capacity in
Ohio. In [53], the effect of changing travel rates within and between locations is
investigated, with data for Taiwan.

Finally, note that because COVID-19 is spreading globally and that national
level jurisdictions (and sometimes even lower level ones) implemented a variety
of responses, it is useful to compare the situation in different jurisdictions. Even
though this is not spatial modelling stricto sensu, such works are worth mentioning
here as they provide the underpinning to spatial models. In [104], the authors use
an SEIR model to compare transmission patterns in China, South Korea, Italy and
Iran. In [103], an age-structured SEIR model is used to compare the dynamics
of disease spread in Hubei Province and six European regions. The focus is on
the estimation of the case-fatality (CFR), symptomatic case-fatality (sCFR) and
infection-fatality (IFR) ratios. The authors find that the latter two indicators are
better suited to describe the potential impact of the pandemic and note that they find
geographic heterogeneity of the estimated values. This heterogeneity is not only
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between Hubei Province and the European locations under consideration, but also
between the European locations themselves. With collaborators, we used the model
in [23] to provide a daily forecast of spread in several Canadian provinces [21] and
found that estimates for some parameters were consistent across provinces while
estimates for others varied widely, in particular, the proportion of asymptomatic
cases.

4.5 Models for Spread at the Hyperlocal Level

A lot of work during this pandemic has focused implicitly on the hyperlocal level,
but recall that here the object is models in which I found an explicit reference to
spatial aspects.

In [115], a network model is used to model the spread of SARS-CoV-2 onboard
the Diamond Princess cruise ship, with nodes representing individual passengers
and crew members. Age-structure was used as well. The model was calibrated to
known transmission data and the effect of control measures was then considered.
See also the already cited [75, 143, 153, 185] for more modelling work related to
spread aboard the Diamond Princess.

The authors of [43] used an SLIAR agent-based model to consider the effect of
social distancing, viral shedding and what they call the social distance threshold.
They find that the three lead to threshold behaviour (“phase transitions”) that have
different effects on the course of the epidemic.

In [81], ABM are used to consider in particular the effect of testing policies.
Agents are distributed on a map depending on the population density in the areas
under consideration. They are also assigned movement patterns that can cover the
whole map, a medium range or a small one. Some interesting observations are that
when tests have low reliability or that the ability to trace contact is low, a large
fraction of the testing capacity remains unused despite an increasing incidence. They
also find that mixed testing policies are useful to contain spread.

5 New Variants

SARS-CoV-2 is an RNA virus and as such is subject to high mutation rates leading
potentially to variants [72, 117]. Thus the emergence of new variants was expected
from the onset of the crisis. At this point, there are several major variants to the
original variant that have been detected. This number can be expected to rise:
detection of most variants requires genome sequencing, which is performed at
different rates in different countries [85], meaning that capacity to detect variants
varies greatly globally. Of particular interest at the time of writing is B.1.1.7,
which was first detected in the United Kingdom in early December 2020 but is
presumed to have been spreading since as early as September 2020. This variant
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is particularly concerning as it appears to be more transmissible than the original
variant. It seems that this variant should not, however, be detrimental to the ongoing
vaccination efforts [62]. Many countries took preventive measures in order to delay
the arrival of the variant, essentially forbidding all travel originating from the
United Kingdom, but given that circulation probably started several months before
these measures, their efficacy is debatable. For instance, [71] estimates that, of 19
countries evaluated, 16 had at least a 50% chance of having already imported the
variant by 7 December 2020. The novel variants led some countries to consider exit
control measures; some European Union (EU) countries (Belgium and France, for
instance) decided late January 2021 or early February 2021 to forbid both entry from
and exit to non-EU countries for non-essential travel. In the context of pandemic
HINI influenza, exit screening was shown to have the potential to be more an
efficacious control measure than entry screening [120]. It is therefore interesting
to see this type of control finally being applied, although the intent is not the one we
were advocating in [120].

Modelling the spatio-temporal spread of these novel variants can be conducted
in very much the same manner as was done for the original variant. For instance,
metapopulation models for multiple species such as those considered in [19, 20] can
be readily adapted to a multiple variant situation. However, it is important to bear in
mind that because of the detection issues mentioned earlier, these models are hard
to parametrise when considering the initial spread of the variants.

6 Discussion

This is but a brief and very incomplete snapshot of the state of knowledge about the
spread of COVID-19 at the time of writing in December 2020, with a few additional
details about the new variants added in January 2021. As indicated, it is likely that I
omitted a lot of publications on the subject, given the immense amount of literature
COVID-19 has generated.

From the perspective of the spatio-temporal spread of the disease, although there
is still much to learn, I think we also now have the luxury of hindsight: many
groups, mine included, have produced a variety of models in the first few months of
the crisis, which can and should now be confronted to the reality of the outbreak.
Because COVID-19 is so widespread, there is less urgency to consider its spatial
spread in the perspective of emergency response and the focus could now evolve,
at least in part, to the evaluation of the models we produced. The problem of re-
importation of the disease in locations having managed to drive it away remains an
important one, so I am not advocating to stop all work regarding spatial spread; I
am only pointing out that understanding what worked and what did not during the
initial spread would actually help for these subsequent importation events.

Going forward, though, I believe that there is still a lot to be done on one
key aspect of spatio-temporal models: most of the work carried out by those of
us working in this area has come to rely on one particular dataset, the so-called



42 J. Arino

IATA air transport data. Figure 2 shows that in the particular instance of COVID-
19, the quality of this data leaves a lot to be desired. When the data for 2020
becomes available in 2021, it will be extremely important to scrutinise it in order to
understand what type of changes took place. Another important point to ponder will
be the use of other data sources to compensate for this loss of relevance of IATA-
type data. Cell phone location data is showing promise, but it suffers from several
limitations, the most important of which being that it is most useful and detailed
at the country level and, more importantly, that it is either proprietary or extremely
expensive to acquire.
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