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Abstract
We analyse a model that describes the propagation of many pathogens within and
between many species. A branching process approximation is used to compute the
probability of disease outbreaks. Special cases of aquatic environments with two host
species andoneor twopathogens are consideredboth analytically and computationally.

Keywords Multiple species–multiple pathogens · Branching process approximation ·
Introductions

1 Introduction

The ranges of species are continuously changing (Kirkpatrick andBarton 1997; Sexton
et al. 2009). However, the process has accelerated in recent years because of climate
change (Atkins and Travis 2010; Parmesan 2006). Regardless of what is driving their
evolution, a consequence of the modification of ranges is more frequent interactions
between species that did not use to interact or interacted quite infrequently.

This has a wide variety of consequences. Competition for resources is modified if
an invading species is, for instance, using the same resource as a resident one. This
is thought to be one of the main drivers of species evolution (Phillips et al. 2010).
Range shifting can also lead to the introduction into ecosystems of pathogens from
which they were absent, when species whose range now includes these ecosystems
become more frequent there (Carlson et al. 2022). Introductions of pathogens due to
range shifting is also very similar to what happens when human populations encroach
into the ranges of species (Ellwanger and Chies 2021), which has led to an increasing
number of spillover events (Meadows et al. 2023).

In both cases, some of the populations involved may be hosts to a wide variety of
pathogens. Understanding a situation with different pathogens and different species is
therefore important.

The specific motivation for the present work comes from the observation that
salmonids are observed increasingly frequently the Mackenzie River, in the west-
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ern Canadian arctic. Of interest to collaborators from Fisheries and Oceans Canada
(see Acknowledgments) is the fact that these vagrant salmon species spend most of
their lives in distant ecosystems, where they can acquire pathogens that are, to this
point, mostly absent from the Mackenzie River aquatic ecosystem. When they are
collocated in that ecosystem, those vagrant species can in turn transmit those novel
pathogens to resident species.

While pathogens abound in terrestrial ecosystems, the situation is even more pro-
nounced in aquatic ecosystems, where numerous pathogens are present (Bergh et al.
1989; Wommack and Colwell 2000; Wyn-Jones and Sellwood 2001). Viruses, for
instance, are estimated to be the most abundant “lifeforms” in the oceans, represent-
ing over 90% of the nucleic-acid-containing particles and about 5% of the biomass
there (Suttle 2007). Many aquatic pathogens infect fish species, so that the invading
species mentioned earlier may be coming into contact with a wide variety of pathogens
prior to their entering a novel ecosystem.

Our aim is therefore to establish models to help understand the introduction of
pathogens in species from which they were absent up to that point, when these species
come into contact with other species potentially bearing the pathogen. The model in
this paper is a simplified model and serves to set the general setting in which we
operate. We use a simple SLIR model, whose dynamics in a single location and single
population is well understood, but assume that there are multiple species of hosts as
well as multiple pathogen species. We also assume that there is no coinfection with
multiple pathogens.

The article is organised as follows. In Sect. 2, an ordinary differential equations
(ODE) multi-species epidemiological model is introduced, followed by its continuous
time Markov chain (CTMC) equivalent. The section also presents an analysis of both
the ODE and CTMC models, the latter using a branching process approximation to
compute the probability of a disease outbreak. Section 3 focuses on the case of two
species and one pathogen, with example scenarios corresponding to three different fish
viruses investigated numerically, as well as a particular case focusing on introduction
of a pathogen by a species in which it is endemic. In Sect. 4, the case of two species
and two pathogens is discussed.

2 The General Model

Consider P populations. These populations could be the same or different species, the
important feature being that they be distinguishable according to some criterion. In
the sequel, we use both terms, species and population, interchangeably. Within and
between these populations, V pathogens can propagate. Specifically, each population
is described by an SLIR epidemic model, where susceptible individuals in a given
population can become infected by any of the V viruses if they come into contact with
an individual infected by it, regardless of the population that individual belongs to.

Further, we assume that coinfection does not occur, i.e., once infected by a given
pathogen, an individual cannot acquire infection from another pathogen. This is a
strong assumption. Coinfections are known to occur frequently both in fish species
(Kotob et al. 2017) and more generally (since our model could be applied to other situ-
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ations) Karvonen et al. (2019). However, as noted by Kotob et al. (2017), coinfections
are poorly understood and the data is scarce for coinfections in animal species. This
true also in humans; see, e.g., Klein et al. (2016). Some pathogens interact synergis-
tically, others are antagonistic, so it is not clear a priori whether being infected with
one pathogen facilitates or hinders infection with another. As a consequence and as a
first approximation, we make this assumption, meaning that in a way, we are focusing
on the primary infection.

Another strong assumption of themodel is that infectionwith one pathogen confers,
upon recovery, permanent immunity to all pathogens. This is, of course, an oversimpli-
fication, but it is applicable for example in situationswhere pathogens are antigenically
close and natural infection induces broad and long-lived immune responses Krammer
(2019). It is also important to bear in mind that, depending on the species under con-
sideration, recovery from infection with some pathogens may take a long time or even
never occur, so that an individual may remain infectious and potentially immune to
infection with another pathogen until they die.

2.1 Formulation of the Deterministic Model

For p = 1, . . . , P , denote Sp the number of individuals susceptible to infection in
the pth population. Individuals of species p may become infected by any of the V
pathogens present when they come across an individual infectious with that pathogen.
The parameter describing the rate atwhich contacts between a susceptible from species
p and an infectious individual from species q = 1, . . . , P infected with pathogen
v = 1, . . . , V , results in new infections, is βpqv , i.e., in words, the parameter β has
indices

βwho becomes infected, who infects, with which pathogen.

Incidence is assumed to be mass action.
Upon infection, individuals of species p = 1, . . . , P infected by pathogen v =

1, . . . , V become latently infected, with numbers denoted L pv . We do not consider
coinfection with multiple pathogens; once an individual is contaminated with any of
the viruses, they cannot become infected by any other pathogen.

After an incubation period ofmean duration 1/εpv time units, individuals of species
p infected with pathogen v become infectious to others. The number of such infectious
individuals is denoted Ipv . Finally, after an average 1/γpv time units spent infectious
with the pathogen, individuals recover and move to the Rp compartment. Note that
the recovery rate may be very small or even zero in the case of some pathogens,
with individuals remaining infectious until they die. At this point, the pathogen they
were infected with is ignored as it is not relevant to the problem under consideration.
Regarding species demography, birth into population p = 1, . . . , P occurs at the fixed
rate bp, while death occurs in all compartments at the per capita rate dp.

Taking all this into account, we have a group model, with dynamics of the different
states governed for population p = 1, . . . P and pathogen v = 1, . . . , V by the
following ordinary differential equations:

123



   87 Page 4 of 39 C. Djuikem, J. Arino

Table 1 State variables and their meaning

Variable Meaning

Sp Susceptible individual in population p

L pv Latent individual in population p infected by virus v

Ipv Individual in population p infectious with virus v

Rp Recovered individual in population p

Ṡp = bp −
⎛
⎝

P∑
q=1

V∑
v=1

βpqv Iqv + dp

⎞
⎠ Sp, (1a)

L̇ pv =
P∑

q=1

βpqv IqvSp − (εpv + dp)L pv, (1b)

İ pv = εpvL pv − (γpv + dp)Ipv, (1c)

Ṙp =
V∑

v=1

γpv Ipv − dpRp. (1d)

System (1) is considered with nonnegative initial conditions. To avoid a trivial case,
it is assumed that L pv + Ipv > 0 for at least one (p, v) ∈ {1, . . . , P} × {1, . . . , V }.
The total size of each population p for i = 1, . . . , P is given by:

Np = Sp +
V∑

v=1

L pv +
V∑

v=1

Ipv + Rp. (2)

2.2 Notation

Equations (1b) and (1c) involve two different indices. Analysis of the system often
requires to list these indices. To simplify presentation, for given symbols X and Y , we
use the notation

�X p� = X1, . . . , XP ,

�X pv� = X11, X12, . . . , X1V , X21, X22, . . . , X2V , . . . , XP1, XP2, . . . , XPV

and

�X pv + Yp� = X11 + Y1, X12 + Y1, . . . , X1V + Y1,

X21 + Y2, X22 + Y2, . . . , X2V + Y2, . . . ,

XP1 + YP , XP2 + YP , . . . , XPV + YP .
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Thus, when multiple indices are present, we present indices as would the row-first
enumeration of indices of the entries of a P × V matrix. Note that the assumption is
that indices p and v are reserved, respectively, for population and virus species indices
and therefore run in 1, . . . , P and 1, . . . , V .

2.3 Basic Analysis of the Deterministic Model

The disease-free equilibrium (DFE) of system (1) is

E(1)
0 =

(
�S0p�, 0RP(2V+1)

)
, (3)

where S0p = bp/dp for p = 1, . . . , P . Note that for equilibria as well as for the basic
reproduction number, we use a superscript to refer to the specific form of the system
that is being considered.

To determine thematrices used in the computation of the basic reproduction number
using the next generation matrix method of van den Driessche and Watmough (2002),
order infected variables by type: �L pv�, �Ipv�. Then the nonnegative 2PV × 2PV -
matrix G has block form

G =
[
0 G12
0 0

]
, (4)

where the PV × PV -matrixG12 is itself a block matrix, with each V ×V sized block
taking the form, for p, q ∈ {1, . . . , P},

Gpq
12 = S0pdiag(βpq1, . . . , βpqV ). (5)

The matrix W is a nonnegative 2PV × 2PV -matrix and has block form

W =
[
W11 0

−W21 W22

]
, (6)

with the PV × PV -sized block taking the form

W11 = diag(�εpv + dp�),W21 = diag(�εpv�) and W22 = diag(�γpv + dp�). (7)

The basic reproduction number of (1) is then the spectral radius of GW−1 and is

given by R(1)
0 = ρ(GW−1). Since W is block lower triangular,

W−1 =
[

W−1
11 0

W−1
22 W21W

−1
11 W−1

22

]
,

whence, from the form of G, we obtain

R(1)
0 = ρ(G12W

−1
22 W21W

−1
11 ).
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The matrices (7) are diagonal and the structure of G12 is relatively simple; it is
therefore possible to further simplify the expression above. We obtain

R(1)
0 = max

v=1,...,V
Rv

0, (8)

where

Rv
0 = ρ(Bv),

is the basic reproduction number of virus v = 1, . . . , V and Bv is a P × P-matrix
defined as

Bv = [Bpqv]pq , (9)

where Bpqv denotes the element in the p-th row and q-th column of the matrix Bv and
is given by

Bpqv = βpqvεqvS0p
(εqv + dq)(γqv + dq)

,

for p, q = 1, . . . , P, v = 1, . . . , V .
From (van den Driessche and Watmough (2002)„Theorem 2) we deduce the fol-

lowing result concerning the local asymptotic stability of the disease-free equilibrium

E(1)
0 .

Lemma 1 The disease-free equilibrium E(1)
0 of (1) is locally asymptotically stable if

R(1)
0 < 1 and unstable if R(1)

0 > 1.

Remark that in the absence of interaction between the populations, i.e.,whenβp�v =
0 if p �= �, the basic reproduction number in each population p = 1, . . . , P is given
by

R0p = max
v=1,...,V

(Rv
0p), where Rv

0p = βppvεpvS0p
(εpv + dp)(γpv + dp)

. (10)

Various forms of the reproduction numbers appear in the remainder of the text. To
clarify, we list them here.

• R0p denotes the basic reproduction number of species p in the presence ofmultiple
pathogens V , excluding other species.

• Rv
0p denotes the basic reproduction number of species p in the presence of a single

pathogen v, excluding other species.
• Rv

0 denotes the basic reproduction number of a single pathogen v across P inter-
acting species.

• R0 denotes the basic reproduction number ofmultiple pathogens V acrossmultiple
interacting species P , i.e, for the full (1).

Asymptotic stability is in fact global for a given pathogen whenR0 < 1, as estab-
lished in the following theorem.
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Table 2 Events, transitions k → j and transition rates σ(k, j) of the general CTMC model (11)

Event Transition Transition rate

Birth of Sp Sp → Sp + 1 bp

Natural death of Sp Sp → Sp − 1 dpSp

Natural death of L pv L pv → L pv − 1 dpL pv

Natural death of Ipv Ipv → Ipv − 1 dp Ipv

Natural death of Rp Rp → Rp − 1 dp Rp

Infection of Sp by Iqv Sp → Sp − 1, L pv → L pv + 1 βpqv IqvSp

End of incubation of L pv L pv → L pv − 1, Ipv → Ipv + 1 εpvL pv

Recovery of Ipv Ipv → Ipv − 1, Rp → Rp + 1 γpv Ipv

Theorem 2 If R(1)
0 < 1, then the DFE E(1)

0 is globally asymptotically stable (GAS)
in �, where

� =
{
(�Sp�, �L pv�, �Ipv�, �Rp�) ∈ R

2P(V+1) :

Np = SP +
V∑

v=1

(L pv + Ipv) + Rp ≤ bp
dp

; p = 1, . . . , P

}
.

This result is proved in Appendix B.

2.4 The Continuous timeMarkov Chain Model

We now consider a continuous timeMarkov chain (CTMC) related to the ODE system
(1). CTMCs allow to explore various scenarios that the deterministic models cannot
capture. In particular, CTMCs of the type used here have discrete state variables,
thereby allowing transitions toward a state where the disease is eradicated. In ODE
models, such states are typically approached only as limits, which leads to implausible
situations (Fowler 2021).

Let T denote the set of all finite-dimensional vectors whose components are non-
negative integers. The CTMC model related to the deterministic model (1) then takes
the form,

Xt = (
�Sp(t)�, �L pv(t)�, �Ipv(t)�, �Rp(t)�

)
, t ∈ R+, (11a)

where each element of the vector is a collection of discrete random variables that take
values in T and where the time between events is exponentially distributed (Allen
2010). The process is time-homogeneous as the rates in the ODE are constants, so the
CTMC is characterised by transition probabilities from state k to state j,

P(X(t + 	t) = j | X(t) = k) = σ(k, j), (11b)

with transition rates σ(k, j) given in Table 2.
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Note that theβpqv used in the CTMCand theODEdo not have the same units. How-
ever, since the total population Np of species p is asymptotically constant in the ODE
(1), the transmission parameter βpqv in the ODE can be written as βpqv = β̃pqv/Np.
In this sense, using mass action or proportional incidence makes no difference except
in the units and values of the transmission parameter.

2.5 Branching Process Approximation of the CTMC

We use a multitype branching process approximation (MBPA) to approximate the
CTMC Xt near the disease-free equilibrium. This approximation allows to study the
early phase of the epidemic, when most individuals are still susceptible, meaning that
the infection process can be treated as being approximately linear. Indeed, by the
scaling mentioned in Sect. 2.4, it can be assumed that transmission takes the form
βSI/N with S � N at the start of the outbreak.

Let Z(t) = (�Z�
pv(t)�, �Z

i
pv(t)�) := �Zk

pv(t)� be a 2PV -type branching process,
where Zk

pv(t) denotes the number of individuals of type (k, p, v) at time t . Here,
k ∈ {�, i} refers to latent or infectious states, p = 1, . . . , P is the host species, and
v = 1, . . . , V is the virus type. The set of all possible types (k, p, v) defines the
structure of the multitype process.

Each individual of type (i, q, v), denoted Iqv , remains infectious for a time that
follows an exponential distribution with parameter dq + γqv . During its infectious
period, it produces individuals of type (�, p, v) at rate βpqvS0p for each p = 1, . . . , P ,
where S0p denotes the initial number of susceptibles of species p. This transmission
is independent from transmissions by other infectious individuals since almost all the
population is susceptible. Each infectious individual then recovers with probability
γqv/(dq + γqv) or dies before recovering with probability dq/(dq + γqv).

In turn, each latent individual of type (�, p, v), denoted L pv , remains so for an
exponentially distributed time with parameter dp + εpv . Upon transition out of L pv , it
produces an individual of type (i, p, v)with probability εpv/(dp+εpv), corresponding
to the progression from the latent to the infectious state, or dies without producing
infectious offspring with probability dp/(dp + εpv). All lifetimes, infection events,
and transitions are assumed to be mutually independent across individuals.

The associated discrete-time multitype Galton-Watson (GW) process describes the
evolution across successive generations: each infectious individual of type (i, q, v)

produces, for each p = 1, . . . , P , a number of latent individuals of type (�, p, v) fol-

lowing ageometric distributionwith parameterβpqvS0p/
(
dq + γqv +∑P

p=1 βpqvS0p
)
.

Having described the process, we now derive the probability generating function
(p.g.f.) F(t,u) = �Fk

pv(u)� for the full process using (Athreya andNey (1972),Chapter
V Sect. 1), with

Fk
pv(t,u) = E

[
uZ(t)

∣∣∣∣ Z(0) = ekpv

]
, (12)

where E is the expectation, ekpv is the standard unit vector corresponding to type

(k, p, v) and u = (�u�
pv�, �u

i
pv�) := �ukpv� is a vector with u

k
pv ∈ [0, 1]. The notation
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uZ(t) stands for the product

uZ(t) =
∏

(k′,p′,v′)
(uk

′
p′v′)

Zk′
p′v′ (t).

Using the branching property and standard results from the theory of branching
processes (Athreya and Ney (1972),Chapter V Section 7.1), we obtain the backward
Kolmogorov differential equation for all (k, p, v) types,

∂

∂t
Fk
pv(t,u) = ωk

pv

[
f kpv(F(t,u)) − Fk

pv(t,u)
]
, (13)

with initial condition �Fk
pv(0,u)� = �ukpv�. Here,ω

k
pv is the parameter of the exponen-

tial distribution for the time that an individual spends as an (k, p, v)-type individual
and f kpv(F(t,u)) is the contribution of the offspring of (k, p, v)-type individuals to
the generation of offspring.

The function f kpv(u) := f kpv(F(0,u)), which we call the offspring generating func-
tion, is the distribution of the number and types of first-generation offspring produced
by a single individual of type (k, p, v) during its time as an (k, p, v)-type individual.
Formally,

f kpv(u) =
∞∑

�rkpv�=0

P

(
�rkpv�

) ∏
(k′,p′,v′)

(uk
′
p′v′)

rk
′
p′v′ , (14)

where P(�rkpv�) denotes the probability that an individual of type (k, p, v) produces

rk
′
p′v′ individuals of type (k′, p′, v′) during its time as an (k, p, v)-type individual.
Using the general form in (14) and using the infinitesimal transition rates of the

CTMC near the disease-free equilibrium, assuming Sp = S0p is constant, the offspring
generating functions are given by

f �
pv(u) = εpvuipv + dp

εpv + dp
, (15a)

f ipv(u) =

⎛
⎝

P∑
q=1

βqpvS
0
qu

�
qv

⎞
⎠ uipv + γpv + dp

�pv
, (15b)

with

�pv =
P∑

q=1

βpqvS
0
q + γpv + dp.

The following result then holds, which is proved in Appendix C.
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Theorem 3 The multitype branching process is positive regular and nonsingular, the
probabilities of extinction and outbreak in the multitype branching process with prob-
ability generating functions (15) are given by

Pext =
P∏

p=1

V∏
v=1

(z�pv)
�pv0(zipv)

i pv0 =
P∏

p=1

V∏
v=1

(
εpvzipv + dp

εpv + dp

)�pv0

(zipv)
i pv0 ,

(16a)

Poutbreak = 1 − Pext, (16b)

where
z :=

(
�z�pv�, �z

i
pv�
)

is a fixedpoint on [0, 1]2PV of the p.g.f. (15) and �L pv(0)� = ��pv0�, �Ipv(0)� = �i pv0�
is the initial condition. Moreover, the following alternative holds:

• ifR(1)
0 ≤ 1, then z = 1, i.e., Pext = 1;

• if R(1)
0 > 1, then additionally to z = 1, there is a unique vector 0 < z < 1 such

that F(z) = z.

InMBPA, processes either reach zero or approach infinity. The probability of extinc-
tion is interpreted in our model as the probability of a minor epidemic, while an
outbreak is the establishment of the pathogen. However, once the number of infected
individuals in the branching process reaches a certain level, it is no longer an accurate
approximation of the epidemic, as the MBPA does not adequately represent dynamics
far from the disease-free equilibrium.

3 Case of One Pathogen and Two Species

To get better insight into the behaviour of the system in a tractable case, we consider the
case with P = 2 species and V = 1 pathogen.We first specialise themodel and results
ofmathematical analysis to this special case (Sect. 3.1), then consider numerically four
specific transmission scenarios, which we also summarise by indicating the type of
propagation taking place between populations P1 and P2.

1. Pathogen propagation within and between species (Sect. 3.2, P1 ↔ P2).
2. Thepathogen is transmitted to both species, but one species canonly infectmembers

of its species (Sect. 3.3, P1 → P2, P2 �→ P1).
3. Both species can acquire the pathogen, but one of the two species does not become

a transmitter (Sect. 3.4, P1 → P2, P2 �→).
4. The pathogen is established at an endemic level in one species and is absent from

the other species (Sect. 3.5, P

1 → P2).
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3.1 TheModels and Their Basic Analysis

Because V = 1, the second index of ε and γ and the third index of β always equals 1.
To simplify notation, in the remainder of Sect. 3, we drop this superfluous index and
write εp, γp and βpq , for p, q = 1, . . . , P .

3.1.1 The ODEModel When P = 2 and V = 1

Setting P = 2 and V = 1 in (1) gives

Ṡ1 = b1 − β11S1 I1 − β12S1 I2 − d1S1 (17a)

L̇1 = β11S1 I1 + β12S1 I2 − (ε1 + d1)L1 (17b)

İ1 = ε1L1 − (γ1 + d1)I1 (17c)

Ṙ1 = γ1 I1 − d1R1 (17d)

Ṡ2 = b2 − β21S2 I1 − β22S2 I2 − d2S2 (17e)

L̇2 = β21S2 I1 + β22S2 I2 − (ε2 + d2)L2 (17f)

İ2 = ε2L2 − (γ2 + d2)I2 (17g)

Ṙ2 = γ2 I2 − d2R2, (17h)

The system is considered with variables ordered as S1, S2, L1, L2, I1, I2, R1, R2.
The analysis in Sect. 2.3 carries through, taking into account that since V = 1, a
few adaptations of the terms and matrices defined there are required. The disease-free
equilibrium (DFE) of (17) is

E(17)
0 =

(
�S0p�, 0R3P

)
=
(
b1
d1

,
b2
d2

, 0R6

)
, (18)

infected variables are �L p�, �Ip�, P×P matrixG12 is not a blockmatrix but instead
has entry (p, q) equal to S0pβpq and, since P = 2,

G12 =
(

β11S01 β12S01
β21S02 β22S02

)
.

Blocks in the matrix W take the form

W11 = diag(�εp + dp�),W21 = diag(�εp�) and W22 = diag(�γp + dp�),

so that in the case P = 2 under consideration,

W =

⎛
⎜⎜⎝

ε1 + d1 0 0 0
0 ε2 + d2 0 0

−ε1 0 γ1 + d1 0
0 −ε2 0 γ2 + d2

⎞
⎟⎟⎠ .
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Table 3 Reaction rates used to determine transition probabilities for 2-species and 1-pathogen CTMC
model

Event (p = 1, 2) Transition Transition rates

Birth of Sp Sp → Sp + 1 bp

Natural death of Sp Sp → Sp − 1 dpSp

Natural death of L p L p → L p − 1 dpL p

Natural death of Ip Ip → Ip − 1 dp Ip

Natural death of Rp Rp → Rp − 1 dp Rp

Infection of Sp by Iq Sp → Sp − 1, L p → L p + 1 βpq Sp Iq

End of incubation of L p L p → L p − 1, Ip → Ip + 1 εpL p

Recovery in Ip Ip → Ip − 1, Rp → Rp + 1 γp Ip

It follows that the basic reproduction number of (17) is

R(17)
0 = β11κ1S01 + β22κ2S02 +

√(
β11κ1S01 − β22κ2S02

)2 + 4β12β21κ1κ2S01 S
0
2

2
,

(19)
where, for p = 1, 2,

κp = εp

(εp + dp)(γp + dp)
.

Results of Lemma 1 carry forward to the local asymptotic stability or instability of

(18) based on the value of R(17)
0 as defined by (19).

3.1.2 The CTMCModel When P = 2 and V = 1

In this case of one virus and two species, the CTMC takes the form

Xt = (S1(t), S2(t), L1(t), L2(t), I1(t), I2(t), R1(t), R2(t)), t ∈ R+ (20)

and is characterised by the transition rates in Table 3.

3.1.3 Branching Process Approximation

Theorem 3 is specialised to the P = 2, V = 1 case by letting Z = (L1, L2, I1, I2) be
a MBPA of the CTMC defined in (20), with infected types �10, �20, i10 and i20. The
p.g.f. (15) takes here the form, for u = (u�

1, u
�
2, u

i
1, u

i
2),

F(u) = ( f �
1 (u), f �

2 (u), f i1 (u), f i2 (u)), (21)
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where

f �
1 (u) = ε1ui1 + d1

ε1 + d1
(22a)

f �
2 (u) = ε2ui2 + d2

ε2 + d2
(22b)

f i1 (u) = (β11S01u
�
1 + β21S02u

�
2)u

i
1 + γ1 + d1

�1
(22c)

f l2(u) = (β12S01u
�
1 + β22S02u

�
2)u

i
2 + γ2 + d2

�2
, (22d)

with

�p =
P∑

q=1

βqpS
0
q + γp + dp, p = 1, 2.

Solving the equation F(z) = z in the present case involves finding (z1, z2, z3, z4)
such that

z1 = ε1z3 + d1
ε1 + d1

, z2 = ε2z4 + d2
ε2 + d2

(23a)

(β11S
0
1 z1 + β21S

0
2 z2)z3 + γ1 + d1 = (β11S

0
1 + β21S

0
2 + γ1 + d1)z3 (23b)

(β12S
0
1 z1 + β22S

0
2 z2)z4 + γ2 + d2 = (β12S

0
1 + β22S

0
2 + γ2 + d2)z4. (23c)

This is easily done numerically in applications and is known by Theorem 3 to have a

unique solution in [0, 1) when R(17)
0 > 1.

3.2 Infectious Hematopoietic Necrosis (P1 ↔ P2)

Initially observed at fish hatcheries in Oregon and Washington in the 1950s Rucker
et al. (1953), Infectious Hematopoietic Necrosis (IHN) is a viral disease that affects
various species of salmonids, including Sockeye Salmon (Oncorhynchus nerka) and
Chum Salmon (Oncorhynchus keta). The causative agent of IHN is the Infectious
Hematopoietic Necrosis virus (IHNV), which belongs to the Rhabdoviridae family.
This virus primarily targets the hematopoietic tissues, leading to severe anaemia and
necrosis. The incubation period ranges from 5 to 45 days (Spickler 2024). Clinical
signs of IHN include lethargy, darkening of skin colour, haemorrhages in various
organs and eventual death. Infected fish may display reduced swimming ability and
impaired feeding behaviour due to anaemia caused by red blood cell destruction (Yong
et al. 2019). IHN can have a significant economic impact on fish farms that raise young
rainbow trout or salmon, with mortality rates reaching 90-95% in highly susceptible
fish species (Dixon et al. 2016; Spickler 2024). The virus can be transmitted hori-

123



   87 Page 14 of 39 C. Djuikem, J. Arino

zontally through direct contact or vertically from infected parents to their offspring.
Waterborne transmission is also possible, particularly in crowded aquaculture settings.

Assume Chum Salmon is species 1 and Sockeye Salmon is species 2. IHN can
spread within and between these two species. From (23), the fixed point is solution to

z1 = ε1z3 + d1
ε1 + d1

, z2 = ε2z4 + d2
ε2 + d2

(24a)

R01z
2
3 −

(
R01 + β11S02

γ1 + d1
(1 − z4) + 1

)
z3 + 1 = 0 (24b)

R02z
2
4 −

(
R02 + β22S01

γ2 + d2
(1 − z3) + 1

)
z4 + 1 = 0. (24c)

Computing exact expressions of z3 and z4 is not easy, but from Theorem 3, this fixed
point exists. The probabilities of IHN extinction and INH outbreak are:

P
IHN
ext =

⎧⎪⎨
⎪⎩

(
ε1z3 + d1
ε1 + d1

)�10
(

ε2z4 + d2
ε2 + d2

)�20

zi103 zi204 , R(17)
0 > 1

1, R(17)
0 < 1,

P
IHN
outbreak = 1 − P

IHN
ext (25)

We perform a sensitivity analysis of the probability of an outbreak of the INH
virus, assessing the impact of each parameter. Note that here and throughout the
computational work, we assume reproduction numbers larger than 1 unless otherwise
specified.

Chum salmon has a lifespan of 3 to 6 years, during which females lay between
2,000 and 4,000 eggs National Oceanic (2023a). Similarly, sockeye salmon has a
lifespan of 4 to 5 years, with females laying between 2,000 and 4,500 eggs National
Oceanic (2023b). Assuming an 80%hatch rate, the birth rates for Chum (species 1) and
Sockeye (species 2) in (17) are within the range of [355.55, 711.11] and [355.55, 800]
per year, respectively. In a study Foott et al. (2006), the incidence of infection after
release ranged from 0% to 20%. These percentages do not indicate transmission rates.
However, when considering the transmission rates of (17), we compute their values
using the corresponding basic reproduction number. Refer to Table 4 for parameter
values ranges used in the sensitivity analysis. Moreover, with an expression of the
basic reproduction number of species 1 given byR01, the transmission rates are given
by

β11 = R01(ε1 + d1)(γ1 + d1)

ε1S01
(26a)

and

123



Transmission of Multiple Pathogens… Page 15 of 39    87 

Table 4 Parameter ranges and values for IHN transmission between Chum Salmon (species 1) and Sockeye
Salmon (species 2)

Meaning Range/day

b1 Birth rate species 1 [1, 5] National Oceanic (2023a)

b2 Birth rate species 2 [1, 5] National Oceanic (2023b)

ε1 Incubation rate of 1 [0.02, 0.2] Spickler (2024)

ε2 Incubation rate of 2 [0.02, 0.2] Spickler (2024)

γ1 Recovery rate of 1 [0.1, 0.33] LaPatra et al. (2000)

γ2 Recovery rate of 2 [0.1, 0.33] LaPatra et al. (2000)

d1 Mortality rate of 1 [ 16 ,
1
2 ]× 1

365 ]

d2 Mortality rate of 2 [ 15 ,
1
2 ]× 1

365 ]

Fig. 1 Partial rank correlation coefficient (PRCC) of the probability (25) of IHN outbreak for different
initial conditions y0 = (l10, l20, i10, i20) ∈ (e1, e2, e3, e4). The range of parameter values remaining in
Table 4 (Color Figure Online)

β22 = R02(ε2 + d2)(γ2 + d2)

ε2S02
. (26b)

We assume that the infection rate of species 2 by species 1 and species 1 by species 2
is five times higher than the infection rate within species 1 and species 2, respectively,
i.e., β21 = 5β11 and β12 = 5β22.

Figure 1 presents a sensitivity analysis of the probability of disease outbreak, illus-
trating the significant impact of incubation rates on the probability of an IHN outbreak.
Also important are demographic parameters bi and di .
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3.3 Transmission fromWild to Farmed Fish (P1 → P2, P2 →/ P1)

Interactions betweenwild and farmed fish populations are complex and crucial aspects
of ecological and economic landscapes. In the scenario wherewild fish could penetrate
the space where fish are farmed, the potential transmission of diseases between these
populations becomes a significant concern (Arechavala-Lopez et al. 2013). Note that
contamination of wild fish by farm fish is also of concern (Johansen et al. 2011;
Krkosek et al. 2007).

The situation we consider here has wild fish (species 1) able to introduce diseases
to farmed populations, while farmed fish (species 2) cannot transmit diseases to wild
fish, because they are raised in captivity. This asymmetry in transmission dynamics
implies that (20) is considered with β21 �= 0, while β12 = 0.

It follows that the fixed point relations (23) take the form

z1 = ε1z3 + d1
ε1 + d1

, z2 = ε2z4 + d2
ε2 + d2

, z3 = 1

R01
, (27a)

R02z
2
4 − (R02 + c + 1) z4 + 1 = 0. (27b)

where we have denoted c = β21(R01 − 1)(γ1 + d1)/(β11(γ2 + d2)) and

R02 = β22ε2S02
(ε2 + d1)(γ2 + d1)

(28)

the basic reproduction for the pathogen in species 2 in the absence of contact with
species 1.

To solve (27b), we first consider the discriminant and using the fact the c > 0,

D = (R02 + c + 1)2 − 4R02 > (R02 + 1)2 − 4R02 = (R02 − 1)2 > 0.

Therefore, (27b) has two real solutions z−4 and z+4 given by

z−4 = (R02 + c + 1) − √
D

2R02
and z+4 = (R02 + c + 1) + √

D

2R02
.

Given that R02 > 1, both z−4 and z+4 are positive, z+4 > z−4 , and z+4 z
−
4 = 1/R02.

Moreover, since D > (R02 − 1)2, we obtain

z+4 > 1 + c

2R02
�⇒ z+4 z

−
4 > z−4 �⇒ z−4 <

1

R02
.

Thus, z+4 > 1, z−4 < 1 and solution to the fixed point problem has

z4 := z−4 = (R02 + c + 1) −
√

(R02 + c + 1)2 − 4R02

2
. (29)
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Table 5 Parameter ranges and
values for transmission from
wild to farmed fish

Parameter Range Value

R0 [0.1, 5] -

b1 [2, 20] 8

b2 [2, 20] 10

ε1 [0.01, 0.2] 0.05

ε2 [0.01, 0.2] 0.05

γ1 [0.01, 0.1] 0.02

γ2 [0.01, 0.1] 0.02

d1 [ 1
10 ,

1
2 ]× 1

365 -

d2 [ 1
10 ,

1
2 ]× 1

365 -

Then the probability of extinction of the disease in a wild-to-farmed (W → F) context

P
W→F
ext =

{
z�101 z�202 zi103 zi204 R01,R02 > 1

1, R01,R02 ≤ 1,

where z1, z2 and z3 are given by (27a) and z4 by (29); furthermore,

P
W→F
outbreak = 1 − P

W→F
ext . (30)

For the sensitivity analysis of (30), we utilized the assumed parameter values pro-
vided in Table 5. The parameter ranges for β11 and β21 were computed using the
relations given in (26a) and (26b).

Sensitivity analysis of disease outbreak probability P
W→F
outbreak (30) (Figure 2) shows

that birth (b1), death (d1) and recovery (γ1) rates of species 1 are key drivers of
the probability of an outbreak, regardless of initial conditions. Interestingly, for the
incubation rates (ε1 and ε2) of species 1 and 2, respectively, there is a notable difference
in impact based on the initial condition. The PRCC is 0.3 and 0.22 for the initial
condition starting with one latent individual in Species 1 and Species 2, respectively,
while it is very small when initially starting with infected individuals.

In contrast, factors such as infection rates β of both species and death rate of
species 2 exert minimal influence on the probability of an outbreak.Moreover, specific
cases involving parameters γ2 and d1 exhibit interesting patterns depending on where
the infection starts. For instance, these parameters show a positive impact when the
infection originates within species 1 but have a negative impact if it starts in species
2.

Focusing on sensitivity to mortality rates, we observe that effects can be both
positive and negative. To investigate this further,we consider in Figure 3 the probability
P
W→F
outbreak of an outbreak as a function of the mortality rates d1 and d2 of species 1 and

2, respectively. When the infections start with one infectious individual in species 1,
the probability of an outbreak is between 0.55 and 1. When the disease starts with one
infectious individual of species 2, this range narrows to between 0.9 and 1. For initial
infections in species 1, it is primarily the mortality rate of species 2 that impacts the
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Fig. 2 PRCC of the probability (30) of disease outbreak P
W→F
outbreak for four different initial conditions

y0 = (�10, �20, i10, i20) ∈ (e1, e2, e3, e4). Parameter values ranges in Table 5 (Color Figure Online)

Fig. 3 Probability (30) of disease outbreak as a function of mortality rates of wild and farmed fish. For two
initial conditions y0 = (�10, �20, i10, i20) ∈ (e3, e4). Parameter values inTable 4,withβ11 = β22 = 10−5,
β21 = 5β11 (Color Figure Online)

value of this probability. In contrast, when the infection is initiated by species 2, both
mortality rates play a role in determining the outcome. Specifically, as the mortality
rate d1 of species 1 increases, there is a decrease in the probability of an outbreak,
while an increase in d2 leads to a higher probability value. Thus, initial infections in
different species can lead to varying probabilities of outbreak.

3.4 Viral Hemorrhagic Septicaemia (P1 → P2, P2 �)

Viral Hemorrhagic Septicaemia (VHS) is a highly contagious and deadly disease that
affects various species of fish in both cultured and wild populations. It is prevalent
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in freshwater and marine environments across several regions of the Northern Hemi-
sphere (Gagné et al. 2007; Meyers and Winton 1995; Takano et al. 2001). VHS is
caused by the Viral Hemorrhagic Septicemia Virus (VHSV) and was first isolated
in Alaska from skin lesion material of two Pacific cod Gadus macrocephalus (Mey-
ers et al. 1992). VHSV is known for causing hemorrhagic septicemia, which leads
to severe internal bleeding and organ damage in infected fish. The symptoms vary
depending on the species and the stage of infection. Some common signs include
lethargy, loss of appetite, abnormal swimming behaviour and external haemorrhag-
ing. Over 100 species of freshwater and marine fish have been reported to be naturally
or experimentally susceptible to VHSV (Batts et al. 2020). These species include the
Pacific herring Clupea pallasii Kocan et al. (2001); Meyers et al. (1994).

We consider the latter as species 1 in (17). We suppose that the latent stage is an
enzootic stage, the infectious stage is the combination of disease amplification and
outbreak stage and the recovery stage combines recovery and refractory as suggested
by Mitro and White (2008). Now, while VHSV can infect a wide range of fish, not all
infected individuals show signs of clinical disease and not all are capable of transmit-
ting the virus to others (Ord et al. 1976). So we consider as species 2 the hybrid fry,
Steelhead trout (Salmo gairdneri)×Coho Salmon (Oncorhynchus kisutch), which can
get infected, but whose ability to transmit VHS has not been demonstrated (Ord et al.
1976), further simplifying the situation by making the assumption that this hybrid fry
cannot transmit VHS. As a consequence, β121 = 0 and β221 = 0. Then, the fixed point
relations (23) become

z1 = ε1z3 + d1
ε1 + d1

, z2 = ε2z4 + d2
ε2 + d2

(31a)

R01z
2
3 − (R01 + 1)z3 + 1 = 0 (31b)

β21S
0
1 z1z4 + γ2 + d2 = (β21S

0
1 + γ2 + d2)z4 (31c)

where we have denoted

R01 = β11ε11S01
(ε11 + d1)(γ11 + d1)

(32)

the basic reproduction for species 1 and the virus in the absence of contact with species
2.

Solving (31) yields

(1, 1, 1, 1) and (z1, z2, z3, z4)

where

z1 = ε1z3 + d1
ε1 + d1

, z2 = ε2z4 + d2
ε2 + d2

, z3 = 1

R01
, z4 = 1

c + 1
(33)

with c = β21(R01 − 1)(γ1 + d1)/(β11(γ2 + d2)).
Therefore, the probability of extinction (no outbreak) is one ifR01 ≤ 1, but less than

one if R01 > 1. Given the initial conditions L1(0) = �10, I1(0) = i10, L2(0) = �20,
and I2(0) = i20, it follows from the independent branching process approximation
that the probabilities of the disease extinction and the disease outbreak are
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P
VHS
ext =

{
z�101 z�202 zi103 zi204 , R01 > 1

1, R01 ≤ 1,

P
VHS
outbreak = 1 − P

VHS
ext , (34)

where the expressions of z1, z2, z3 and z4 are given in (33).
On average, a female Pacific herring lays 20,000 eggs each year (AlaskaDepartment

2024). If we suppose that the viable percentage of the population is around 60%, then
b1 = 12000/year ≈ 33/day. In laboratory experiments with infected herring, it was
observed that shed VHSV can be identified in water within 4-5 days after exposure
(PE), preceding the onset of host mortality due to the disease. The peak of viral
shedding occurs between 6-10 days PE (Garver and Hawley 2021). We then consider
the incubation period of 5-100 days. The duration of recovery varied depending on the
phase of the epizootic. During the acute phase, which occurred around day 13 post-
exposure, virus loads in tissues were significantly higher compared to the recovery
phase, which spanned days 30 to 42 Hershberger et al. (2010); for sensitivity analysis
of this duration is taken between 20 and 100 days. We suppose hybrid fry averaging
12,000 eggs per year with 80% viability, giving b2 = 9600/year = 26.3/day. For the
sensitivity analysis of the probabilityP

VHS
outbreak ofVHSoutbreak, the range of parameter

values are given in Table 6, (26a) and (26b) is used to compute infection rates.
In Fig. 4, a sensitivity analysis of the probability of disease outbreak P

VHS
outbreak is

presented for four different initial conditions. The birth rate b1 of species 1 stands out
as having a significant impact on the probability of an outbreak regardless of the initial
condition. When the infection begins with one latent and one infectious individual in
species 2, parameters b1, γ1, γ2, and d1 all exhibit a similar level of impact on the
probability of an outbreak. The mortality rate d1 of species 1 shows varying effects on
the probability of an outbreak depending on where the disease originates. When the
infection starts in species 2, d1 has a significantly positive impact on the likelihood of
an outbreak. However, this impact becomes negative when the disease originates in
species 1.

Amongst all parameters analysed, certain factors show no discernible impact on the
probability of an outbreak. This includes parameter b2, as well as transmission rates
β11 and β21.

These findings highlight which variables have little to no effect on influencing
whether a disease outbreak will occur. Moreover, the influence of different initial
conditions on outcomes is a crucial aspect to consider.

3.5 The Pathogen is Endemic in One Species (P�
1 → P2)

The problem motivating this study concerns vagrant species coming in contact with
resident species while bearing a pathogen the resident species has not been exposed
to yet.

To model this situation, we artificially impose that species 1 be at an endemic
equilibrium while species 2 be at a disease-free equilibrium. A situation with mixed
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Fig. 4 PRCC of the probability of disease outbreak (34) for different initial conditions y0 =
(�10, �20, i10, i20) ∈ (e1, e2, e3, e4). Parameter values ranges in Table 6

equilibria of this type is not possible in (17), so we “cheat”: we start by assuming
that both species are not in contact and that species 1 is at the endemic equilibrium
E

1 := (S


1, L


1, I



1 , R


1), in which

E

1 =

(
S01
R01

,
(R01 − 1)(γ1 + d1)d1

β11ε1
,

(R01 − 1)d1
β11

,
(R01 − 1)γ1

β11

)
, (35)

whereR01 given by (32) is the basic reproduction for the pathogen in species 1 in the
absence of contact with species 2.We suppose that this determines the dynamics of the
pathogen in species 1, which we now ignore except insofar as the infecting potential
of the I 


1 individuals from species 1 infectious with the pathogen potentially coming
into contact with susceptible individuals from species 2. We then consider the second
population, focusing on conditions leading to the disease becoming established there.

3.5.1 The ODE Introduction Model

Given a prevalence of infection I 

1 in species 1, the infection dynamics in species 2 is

governed by

Ṡ2 = b2 − β21 I


1 S2 − β22S2 I2 − d2S2 (36a)

L̇2 = β21 I


1 S2 + β22S2 I2 − (ε2 + d2)L2 (36b)

İ2 = ε2L2 − (γ2 + d2)I2 (36c)

Ṙ2 = γ2 I2 − d2R2, (36d)

123



Transmission of Multiple Pathogens… Page 23 of 39    87 

considered with nonnegative initial conditions.
Model (36) is not a classic immigration model, since the term β21 I 


1 is factor of S2,
not a constant. However, similarly to immigration models, the term β21 I 


1 S2 in (36b)
precludes the existence of a disease-free equilibrium for (36). As a consequence, no
basic reproduction number can be computed for (36). The method of Almarashi and
McCluskey (2019) is not applicable here since immigration occurs at the per capita
rate β21 I 


1 , not at a constant rate. The term β21 I 

1 cannot be considered as encoding

horizontal transmission either, at least not in the usual sense, since inflow into (36b)
is function of S2, not I2.

As a consequence, a thorough analysis of properties of (36) is difficult and beyond
the scope of this work. Instead, we focus on simple properties as well as computational
considerations.

System (36) admits a unique equilibrium, an endemic equilibrium taking the form
E

2 := (S


2, L


2, I



2 , R


2), where

S

2 = ε2 + d2

β21 I 

1 + β22 I 


2
L

2, L


2 = γ2 + d2
ε2

I 

2 , R


2 = γ2 I 

2

d2

and I 

2 is a root of the second order polynomial

β22(I


2 )2 − ((R02 − 1)d2 − β21 I



1 )I 


2 − β21d2 I 

1R02

β22
= 0, (37)

where R02 given in (28) is the basic reproduction for species 2 and the virus in the
absence of contact with species 1.

Since the coefficients β22 > 0 and β21R02 I 

1 /β22 > 0, Descartes rule of signs

implies that the polynomial (37) has a unique positive solution. The expression of this
solution is given by

I 

2 =

(R02 − 1)d2 − β21 I 

1 +

√
((R02 − 1)d2 − β21 I 


1 )2 + 4R02d2β21 I 

1

2β22
. (38)

In Fig. 5, we show how (equilibrium) prevalence of infection in species 2 depends
on prevalence of infection in species 1. For low values of the reproduction number
in species 2, the situation is quite dependent on the prevalence of infection in the
“introducing species”, but as the reproduction number increases, this dependence
diminishes to the point of the situation becoming indistinguishable for large values of
R02.

3.5.2 The CTMC Introduction Model

Note that it is not possible here to use a multitype branching process approximation,
for roughly the same reasons that a basic reproduction number does not exist for the
deterministic model (36). Indeed, while branching processes incorporating immigra-
tion exist (Heathcote 1965; Pakes 1971), they assume that immigration is a process
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Fig. 5 Equilibrium prevalence of infection I 
2 in population 2 as a function of the reproduction number
R02 for the pathogen in species 2. The different curves correspond to different values of prevalence I 
1 in
population 1 (Color Figure Online)

that is independent from the population immigrants are joining. In our model, this is
not true, since “immigration” depends on the susceptible population S2. So we focus
here on the computational analysis of the CTMC. In all results presented here, 10,000
simulations (realisations) of the CTMC associated to (36) are used for each data point.

Figure 6 shows the percentage of 10K simulations inwhich at least one transmission
occurs from species 1 to species 2 (red curve) and from species 2 to species 2 (green
curve). Simulations assume that R02 = 1.5 and are run for 90 days. Note that the
latter type of transmission always requires that introduction by species 1 has taken
place. Additionally, we show the percentage of realisations in which spread by species
1 occurs followed by extinctions, where we characterise an extinction of the infection
in species 2 as a moment when the total number of infected in species 2, L2(t)+ I2(t),
is zero after having been positive.

This illustrates a very important part of the introduction process. In keepingwith the
terminology in Arino et al. (2021, 2020), let us assess success of an introduction from
the perspective of the pathogen. In view of Fig. 6, what drives successful introductions
is the size of the introduction, i.e., the so-called inoculum size. However, before it
becomes established in species 2 (the consequence ofwhich is shown in a deterministic
context by Fig. 5), the infection in species 2 must “survive” the stochastic phase of the
epidemic; see, e.g., the one location case in Arino andMilliken (2022). This illustrates
that spillover events are often unsuccessful, as observed in the zoonotic case with bats
Sánchez et al. (2022).

To better understand this issue, consider Fig. 7, where we show violin plots of the
distribution of times at which the first infection in species 2 arises stemming from
contact with, respectively, species 1 and species 2. These values are from the same
simulations as used in Fig. 6 and thus represent the percentages shown there of 10K

123



Transmission of Multiple Pathogens… Page 25 of 39    87 

Fig. 6 Percentage of 10K realisations in which spread by species 1 (introductions) and species 2 occurs.
Also shown is the percentage of realisations where introductions by species 1 are followed by extinctions

Fig. 7 Distribution of the times at which the first infection event occurs in species 2 following contact with
an infected individual from species 1 (red) and species 2 (blue), for different values of I 
1 . Boxplots within
the violins show the median, interquartile range and whiskers extents

simulations. First, consider infections with source species 1, i.e., introductions into
species 2. We observe that as the prevalence I 


1 in species 1 increases, the time to first
introduction progressively diminishes, with the interquartile range covering smaller
and smaller values. Now consider the timing of infections originating from species 2,
i.e., taking place after the infection has become somewhat established in species 2.
There, we observe that as the prevalence I 


1 increases, times to the first transmission
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decrease, but not as acutely as those to the first introduction. This confirms our earlier
observation that introduction and establishment, although evidently correlated, are not
as tightly tied as can be expected.

4 Case of Two Pathogens and Two Species

Here the dynamicswith P = 2 species and V = 2 pathogens are considered.While the
cases in Sect. 3 aremore tractablemathematically, the situation here ismore realistic. In
practice, the collaboration motivating this work is interested in over a dozen pathogens
potentially infecting four fish species.We do not consider such a general situation here,
but illustrate the computational complexities that arise even when P = V = 2. One
particularly interesting feature is the existence of mixed equilibria, i.e., equilibria in
which one of the pathogens is present and the other absent.

4.1 Deterministic Model and Basic Analysis

Ṡ1 = b1 −
⎛
⎝

2∑
q=1

2∑
v=1

β1qv Iqv + d1

⎞
⎠ S1, Ṡ2 = b2 −

⎛
⎝

2∑
q=1

2∑
v=1

β2qv Iqv + d2

⎞
⎠ S2,

(39a)

L̇11 =
2∑

q=1

β1q1 Iq1S1 − (ε11 + d1)L11, L̇21 =
2∑

q=1

β2q1 Iq1S2 − (ε21 + d2)L21,

(39b)

L̇12 =
2∑

q=1

β1q2 Iq2S1 − (ε12 + d1)L12, L̇22 =
2∑

q=1

β2q2 Iq2S2 − (ε22 + d2)L22,

(39c)

İ11 = ε11L11 − (γ11 + d1)I11, İ21 = ε21L21 − (γ21 + d2)I21, (39d)

İ12 = ε12L12 − (γ12 + d1)I12, İ22 = ε22L22 − (γ22 + d2)I22, (39e)

Ṙ1 =
2∑

v=1

γ1v I1v − d1R1, Ṙ2 =
2∑

v=1

γ2v I2v − d2R2. (39f)

The disease-free equilibrium of (39) is

E(39)
0 = (S01 , S

0
2 , 0R10), with S01 = b1

d1
and S02 = b2

d2
. (40)
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To compute the basic reproduction numberR0, observe that the matrices G12 andW
derived in Sect. 2.3 take here the form

G12 =
[
G11

12 G12
12

G21
12 G22

12

]
,

whereG11
12 = S01diag(β111, β112),G12

12 = S01diag(β121, β122),G21
12 = S02diag(β211, β212)

and G22
12 = S02diag(β221, β222) are diagonal matrices, and S01 and S02 are scalars. The

matrixW is block lower triangular, with blocks

W11 = diag(d1 + ε11, d1 + ε12, d2 + ε21, d2 + ε22),

W21 = diag(ε11, ε12, ε21, ε22)

and

W22 = diag(d1 + γ11, d1 + γ12, d2 + γ21, d2 + γ22).

The basic reproduction number of system (39) following the formula in equation (8)
is given by:

R(39)
0 = max(R1

0,R2
0)

whereR1
0 = ρ(B1) andR2

0 = ρ(B2), with the matrices B1 and B2 obtained by using
a form of a matrix in equation (9), and then

B1 =
⎛
⎝

β111ε11S01
(ε11+d1)(γ11+d1)

β121ε21S01
(ε21+d2)(γ21+d2)

β211ε11S02
(ε11+d1)(γ11+d1)

β221ε21S02
(ε21+d2)(γ21+d2)

⎞
⎠ ,B2 =

⎛
⎝

β112ε12S01
(ε12+d1)(γ12+d1)

β122ε22S01
(ε22+d2)(γ22+d2)

β212ε12S02
(ε12+d1)(γ12+d1)

β222ε22S02
(ε22+d2)(γ22+d2)

⎞
⎠

(41)

Note that the result provided by using R(39)
0 does not show the whole picture.

Indeed, one interesting characteristic of (1) is that the viruses function in a disconnected
way. This can be inferred from the reducibility of the system discussed in Appendix A.

Theorem 4 Consider (39) with R01 > 1 and R02 ≤ 1. Then the DFE of (39) is
unstable and consists of a mixed equilibrium wherein pathogen 1 is present at an
endemic level and pathogen 2 is absent. Stability of the pathogen-2-free equilibrium
is global and asymptotic with respect to the pathogen-2 subsystem.

The existence part of the proof of this result is shown inAppendixD. Global asymp-
totic stability of the pathogen-2-free equilibrium follows directly from Theorem 2 and
reducibility of the system.

4.2 Branching Process Approximation

Let Z = (L11, L12, L21, L22, I11, I12, I21, I22) be the multitype branching process
approximation of CTMC X2,2(t)with infected types �11, �12, �21, �22, i11, i12, i21 and
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i22. The p.g.f. for u = (u�
11, u

�
12, u

�
21, u

�
22, u

i
11, u

i
21, u

i
21, u

i
22) is defined as

F(u) = ( f �
11(u), f �

12(u), f �
21(u), f �

22(u), f i11(u), f i21(u), f i21(u), f i22(u)), (42)

where, for p, v = 1, 2,

f �
pv(u) = εpvuipv + dp

εpv + dp
, (43a)

f ipv(u) =
(∑2

q=1 βqpvS0qu
�
pv

)
uipv + γpv + dp

�pv
. (43b)

The Jacobian matrix then takes the form

DF(u) =
⎡
⎣

0 | M12
−− −− −−
M21 | M22

⎤
⎦ ,

where

M12 = diag
(

ε11

ε11 + d1
,

ε12

ε12 + d1
,

ε21

ε21 + d2
,

ε22

ε22 + d2

)
,

M21 =

⎛
⎜⎜⎜⎜⎜⎝

β111S01u
i
11

�11
0

β121S02u
i
11

�11
0

0
β112S01u

i
12

�12
0

β122S02u
i
12

�12
β211S01u

i
21

�21
0

S02β221ui21
�21

0

0
β212S01u

i
22

�22
0

β222S02u
i
22

�22

⎞
⎟⎟⎟⎟⎟⎠

and

M22 = diag
(

β111S01u
�
11 + β121S02u

�
21

�11
,
β112S01u

�
12 + β122S02u

�
22

�12
,

β211S01u
�
11 + β221S02u

�
21

�21
,
β212S01u

�
12 + β222S02u

�
22

�22

)
.

Theorem 3 applies here. Given L11(0) = �110, L12(0) = �120, L21(0) = �210,
L22(0) = �220, I11(0) = i110, I12(0) = i120, I21(0) = i210 and I22(0) = i220, it
follows from the independent branching process approximation that the probabilities
of extinction and disease outbreak are:

P
(42)
ext

=
⎧⎨
⎩

(z�11)
�110 (z�12)

�120 (z�21)
�210 (z�22)

�220 (zi11)
i110 (zi12)

i120 (zi21)
i210 (zi22)

i220 , R(39)
0 > 1

1, R(39)
0 < 1,

P
(42)
outbreak = 1 − P

(42)
ext (44)
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5 Discussion

We formulated an SLIR model for the spread of V pathogens between and within P
species. The model was first formulated as a set of 2P(1 + V ) ordinary differential
equations, of which we considered elementary properties: basic reproduction number
R0 and local asymptotic stability as a function of the value of the reproduction number.
Global asymptotic stability when R0 < 1 was also established. We then considered
the corresponding continuous-time Markov chain (CTMC) model, which provides a
better tool to study the behaviour of the system close to the disease-free equilibrium
(DFE), which is our main interest here. To do so, we employed a multitype branching
process approximation of the CTMC near the DFE, obtaining an expression for the
probability of an outbreak when R0 > 1. This probability was interpreted, in the
context of our model, as the probability that the pathogen becomes established in the
population, at least temporarily. (The result is local and does not address the proper
establishment at an endemic level.)

The case of a single pathogen spreading between two species was then investigated
computationally. A metapopulation (spatial) version of this situation with a slightly
different underlying SLIR model was investigated both mathematically and compu-
tationally in Arino et al. (2005), with, using the notation here, P species present.
However, focusing on just two species as we did here allows to get a better under-
standing of the processes. To this effect, in particular, we investigated the sensitivity
of the system to its parameters in the case of three viruses affecting fish leading to
very different transmission scenarios. These highlighted in particular the important
role played by demographic parameters. A fourth, more abstract case concerned intro-
duction of a pathogen in a population by another in which the pathogen is present at
an endemic level.

One interesting feature of the model is that despite its complication, pathogens
function more or less independently from one another. This was shown in the case
P = V = 2, which we considered next. We conjecture that the following natural
extension of Theorem 4 holds.

Conjecture 5 Consider (1) in which pathogens a = 1, . . . , k have R0a < 1 and
pathogens e = k + 1, . . . , V have R0e > 1, for some k ∈ {1, . . . , n}. Then (1) has
an unstable mixed equilibrium in which pathogens 1, . . . , k are absent and pathogens
k + 1, . . . , V are present at an endemic level.

By Theorem 2, those pathogens that are absent would naturally be globally asymp-
totically stably so. This highlights a limitation of the model: because we assume that
species dynamics is independent of the pathogens and that coinfections cannot occur,
a situation as described by Theorem 4 or Conjecture 5 is possible. While not neces-
sarily unrealistic, taking into account more advanced interactions between pathogens,
or effects of pathogens onto their host species, could be interesting and lead to wholly
different results. Competition effects between species could also be incorporated and
would also likely lead to different results.

Another interesting variation could involve considering an epidemic model. In its
current form, the model is an endemic model, with the basic reproduction numbers
distinguishing between a situation where the disease is absent and one where the
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disease is present at an endemic level. In this case, of course, the pathogen always
becomes extinct; it is not clear, though, if a situation similar to that in Theorem 4 and
Conjecture 5, in this case with some pathogens undergoing an epidemic and others
not, would hold.

Finally, note that we considered an SLIR model, not an SLIRS model, i.e., we
assumed that acquired immunity is permanent. With respect to the work carried out
here, this makes very little difference. Indeed, adding a flow from R to S does not
modify the expression of the disease-free equilibrium nor of the basic reproduction
number, which is the focus of most of our work. The only difference between the two
model formulations would appear, in the present work in the particular case where
the pathogen is endemic in one species (Sect. 3.5). There, (35) would be slightly
modified, but this has no consequence since E


1 is used as a parameter. The expressions
in Sect. 3.5.1 would also change, as some would incorporate the rate of movement
from R to S, but the overall conclusions remain.

A Normal forms of matrices

When considering the global asymptotic stability of the DFE in Appendix B or exis-
tence of threshold behaviour in Appendix C, we observe that the matrices involved are
reducible. While the presentation used in the body of the paper is the most natural, the
proofs in these appendices require to use the normal form of the matrices involved.
Further understanding of the reproduction number is also gained by using the normal
form. Let us illustrate this using matrix A22 in Appendix B. The permutation matrix
obtained in the process is the same for all four matrices we consider here.

It is clear thatmatrix A22 as given by (48) is reducible. Indeed, consider theweighted
loop-directed graph having A22 as its adjacency matrix. Diagonal entries of the two
main diagonal blocks correspond to loops. The blocks �(xS, xI ) and diag(�εpv�),
on the other hand, show that vertices form PV strongly connected components, with
each component comprising 2 vertices. Consider for instance the (1, 1) entry in �

and the (1, 1) entry in diag(�εpv�). They establish that vertex 1 is connected to vertex
PV + 1 and that vertex PV + 1 is connected to vertex 1. All entries in these matrices
define similar pairs of vertices, giving the PV strong components. Ordering vertices
(and corresponding matrix entries) so that vertices in a strong connected component
are listed consecutively, it is then easy to find the permutation matrix � such that

� A22(xS, xI )�T =
⊕

�pv�

(−(εpv + dp)
∑P

q=1 βqpvSq
εpv −(γpv + dp)

)
. (45)

Applying � to DF given by (50) in Appendix C, we find

� DF(u�,ui ) �T =
⊕

�pv�

⎛
⎜⎜⎝

0
εpv

εpv + dp

S0p
βpqvuipv

�pv

∑P
q=1 S

0
qu

�
qv

�pv

⎞
⎟⎟⎠ . (46)
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B Proof of Theorem 2

To prove global asymptotic stability of the disease-free equilibrium of (1) whenR0 <

1, we use a result of (Kamgang and Sallet (2008),Theorems 4.3 and 4.5). For the
convenience of the reader, we recall this result but with notation adapted to the problem
under consideration here.

Let xS = (�Sp�, �Rp�)
T ∈ R

2P and xI = (�L pv�, �Ipv�)T ∈ R
2PV be, respec-

tively, the vectors of non-infected compartments and infected compartments. Denote
x0S = (�S0p�, �0�)

T ∈ R
2P the part of the disease-free equilibrium of (1) corresponding

to xS , i.e., the DFE is (x0S, 02PV ). Rewrite (1) in the following compact form,

ẋS = A11(xS, xI )(xS − x0S) + A12(xS, xI )xI ,

ẋI = A22(xS, xI )xI ,
(47)

with

A11(xS, xI ) =
(−diag

(
�dp�

)
0

0 −diag
(
�dp�

)
)

∈ R
2P×2P ,

A12(xS, xI ) =
(
0 −�(xS, xI )
0 �(xS, xI )

)
∈ R

2P×2PV ,

A22(xS, xI ) =
(−diag

(
�εpv + dp�

)
�(xS, xI )

diag
(
�εpv�

) −diag
(
�γpv + dp�

)
)

∈ R
2PV×2PV , (48)

where �(xS, xI ) is a P × PV -matrix whose j th row is a PV -vector with entries
�S jβ j pv�, �(xS, xI ) is a P × PV -matrix with j th row having V nonzero entries
γ j1, . . . , γ jV in columns ( j − 1)V + 1 to jV and �(xS, xI ) is a diagonal PV × PV -
matrix,

�(xS, xI ) = diag

⎛
⎝�

P∑
q=1

βqpvSq�

⎞
⎠ ,

with the enumerator running over indices p = 1, . . . , P and v = 1, . . . , V .
As discussed in Appendix A, it is clear that matrix A22 as given by (48) is reducible.

So we apply the method described in that Appendix and instead work with the similar
normal form matrix (45). We can apply (Kamgang and Sallet (2008),Theorem 4.3) to
each of the PV blocks in (45) or apply (Kamgang and Sallet (2008),Theorem 4.5),
which considers the reducible case. We use a combination of the two results.

Let � ⊂ R
2P+ × R

2PV+ be the set defined in the statement of Theorem 2. If the
following five conditions hold true, then (Kamgang and Sallet (2008),Theorem 4.5)
establishes that the disease-free equilibrium (x0S, 02PV ) is globally asymptotically
stable when R0 < 1.

C1 System (47) is defined on a positively invariant set � of the nonnegative orthant
and dissipative on �.
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C2 Subsystem ẋS = A11(xS, 0)(xS − x0S) is globally asymptotically stable at the
disease-free equilibrium x0S on the canonical projection of � on R

2P+ .
C3 Matrix Ã22(xS, xI ) given by (45) is block upper triangular, with each diagonal

block Â pv
22 being Metzler and irreducible for any x = (xS, xI ) ∈ �.

C4 For each p, v, there exists an upper-bound matrix Â pv
22 for M = {Apv

22 (x) ∈
R
2×2; x ∈ �} with the property that either Â pv

22 /∈ M or if Â pv
22 ∈ M , (i.e.,

Â22 = max� M), then for any x̂ ∈ � such that Â22 = A22(x̂), x̂ ∈ R
2P+ ×{0}2PV .

C5 The spectral abscissa of the matrix Â pv
22 verifies σ( Â pv

22 ) ≤ 0 when R(1)
0 ≤ 1.

The right-hand side of (47) is of class C1 on the open set R
2P+ × R

2PV+ , so solutions
are defined. Solutions in � remain in �. Furthermore, extending � as

�δ = l{(�Sp�, �L pv�, �Ipv�, �Rp�) ∈ R
2P(V+1) :

Np = SP +
V∑

v=1

(L pv + Ipv) + Rp ≤ bp
dp

+ δ; p = 1, . . . , Pr},

we have that solutions with initial conditions in R
2P(V+1) eventually enter�δ , for any

δ > 0. As a consequence, (47) is dissipative and C1 is satisfied. Then note that in the
original form, the model without disease is, for p = 1, . . . , P ,

Ṡp = bp − dpSp, (49a)

Ṙp = −dpRpv. (49b)

Thus it is clear that for each p = 1, . . . , P , Sp(t) → bd/dp and Rp(t) → 0 regardless
of initial conditions, meaning that conditionC2 holds.Matrix (45) is in block-diagonal
form and as a consequence, is block upper triangular. Recall that a matrix is Metzler
if its offdiagonal entries are nonnegative, so C3 holds.

To verify that C4 holds, remark that for solutions in �, the maximal value for
a given Sp is attained when Sp = Np, i.e., at the disease-free equilibrium x0S . In
other words, for x̃ ∈ R

2P+ × {0}2PV , x̃S ≤ x0S . Thus, the upper-bound matrix is

Â22 = Â22(x0S, 0) = G−W. Note that the result can also be formulated using blocks

Â pv
22 as in (45) and selecting the relevant components in �(G − W)�T , but we do

need the form using the unreduced matrix Â22 to show that condition C5 holds.
Indeed, to show C5, return to the unreduced form (48) and note that we have

σ( Â22) = σ(G − W), with the matrices as defined in Sect. 2.3 and satisfying the
conditions of (van den Driessche and Watmough (2002),Theorem 2). The proof of
that theorem establishes that R0 < 1, i.e., the spectral radius ρ(GW−1) < 1, is
equivalent to the spectral abscissa σ(G −W) < 0. As a consequence, whenR0 < 1,
then σ( Â22) < 0 and the same is true for each diagonal block Â pv

22 in the matrix in
normal form (45), since it is similar to (48).

Since conditions C1–C5 are satisfied, the proof is done.
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C Proof of Theorem 3

The Jacobian of (15) is the 2PV × 2PV block matrix

DF
(
u�,ui

)
=
(

0 M12
M21 M22

)
, (50)

where each block has size PV × PV . First,

M12 = diag
(

�
εpv

εpv + dp
�

)
, M22 = diag

(
�

∑P
q=1 S

0
qu

�
qv

�pv
�

)
.

Then, the PV × PV -matrix M21 is itself a block matrix, with each V ×V sized block
taking the form, for p, q ∈ {1, . . . , P},

Kpq = S0qdiag

(
�
βpqvuipv

�pv
�

)
.

(i) It is clear that (50) is such that if x, y ∈ [0, 1)2PV are such that x ≤ y, one has
DF(x) ≤ DF(y). Indeed, terms u� and ui appear as sums in the numerators of the
expressions involving them. Furthermore, F(0) > 0, i.e., it is a nonnegative matrix
with some positive entries. This implies that the multitype branching processes are
not singular (Berman and Plemmons (January 1979),Theorem 2.3).

(ii) The matrix of first moments is M = DF(12PV ), where 12PV is the unit column
vector of size 2PV . In the transformed matrix (46), diagonal blocks of M take the
form

⎛
⎜⎜⎝

0
εpv

εpv + dp

S0p
βpqv

�pv

∑P
q=1 S

0
q

�pv

⎞
⎟⎟⎠

and are therefore irreducible (and even primitive). Consequently, the matrix of first
moments M is block-primitive.

From (i) and (i i), we conclude that the branching process is positive and regular. As a
consequence, applying the (Allen and van den Driessche (May 2013),Threshold The-
orem) together with (Harris (1963) ,Theorem 7.1 (Chapter 2))to each of the diagonal
blocks in the matrix in normal form (46), gives the threshold behaviour, with existence
of a fixed point (0, 0) < (z�pv, z

i
pv) < (1, 1) additionally to (z�pv, z

i
pv) = (1, 1) when

the process is supercritical. Putting things together, under the conditions of Theorem 3,
there exists an additional fixed point 0 < z < 1 when R0 > 1. Then the probability
of extinction is given by:

Pext =
P∏

p=1

V∏
v=1

(z�pv)
�pv0(zipv)

i pv0 (51a)
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Poutbreak = 1 − Pext, (51b)

To finish the proof, it is clear that (15a) implies that z�pv = (εpvzipv + dp)/(εpv + dp),
where zipv is the fixed point of (15b). As a consequence, the probabilities in (51)

defined for R(1)
0 > 1 become those in (16).

D Existence of a mixed equilibrium for (39)

Suppose that the conditions of Theorem 4 are satisfied: P = V = 2, virus 2 is at
the disease-free equilibrium (DFE), i.e., L12 = L22 = I12 = I22 = 0 and R02 < 1.
We seek equilibria of (39) with positive values for L


11, I


21, I



11 and I 


21, under the
assumption that R01 > 1.

Substituting the DFE of species 2 into (39), we obtain from (39c) that

S

1 = ε11 + d1

β111 I 

11 + β121 I 


21
L

11, S


2 = ε21 + d2
β211 I 


11 + β221 I 

21
L

21,

while (39e) gives

L

11 = γ11 + d1

ε11
I 

11, L


21 = γ21 + d2
ε21

I 

21

and, finally, from (39f),

R

1 = γ11

d1
I 

11, R


2 = γ21

d2
I 

21.

Since the total population of each species is governed, for i = 1, 2, by Ṅi = bi −di Ni ,
at an equilibrium, bi − di N 


1 = 0 and thus, when (39) is at an equilibrium with virus
2 at the DFE, one has

b1 − d1
(
S

1 + L


11 + I 

11 + R


1

) = 0 and b2 − d2
(
S

2 + L


21 + I 

21 + R


2

) = 0.

Expressing all terms as functions of Ii1, i = 1, 2, and using the expressions of S1,
L11, R1, S2, L21 and R2 gives

β111(I


11)

2 − [
d1 (R01 − 1) − β121 I



21

]
I 

11 − β121

β111
d1R01 I



21 = 0, (52a)

β221(I


21)

2 − [
d2 (R02 − 1) − β211 I



11

]
I 

21 − β211

β221
d2R02 I



11 = 0. (52b)

To simplify computations, let us denote x = I 

11 and y = I 


21. Then (52) can be
written as

�1(x, y) := β111x
2 + β121xy − d1 (R01 − 1) x − β121

β111
d1R01y = 0, (53a)
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Fig. 8 Situation leading to the existence of a mixed equilibrium. Red curve: �1. Blue curve: �2. The
centres of the hyperbolas are shown as triangles of corresponding colours, as are the vertical and horizontal
asymptotes relevant to the problem. The shaded box shows the possible range of values of the endemic
component of the mixed equilibrium

�2(x, y) := β211xy + β221y
2 − β211

β221
d2R02x − d2 (R02 − 1) y = 0. (53b)

Both�1 and�2 are conic sections. Their discriminants−β2
121 and−β2

211 are both neg-
ative, hence they are both hyperbolas. As (53a) has no second degree y monomial, one
of its asymptotes is vertical. Likewise, since (53b) has no second degree x monomial,
one of its asymptotes is horizontal. If both of these asymptotes intersect the positive
(or first) quadrant Q1 = R+ × R+, then �1 and �2 intersect a single time there. The
situation is shown in Figs. 8 and 9.

Let us show that this is indeed the case. There are two ingredients:

1. The curves �1 and �2 intersect Q1.
2. The vertical asymptote of �1 and the horizontal asymptote of �2 intersect Q1.

First, note that the point of intersection (x, y) = (0, 0) is obvious since neither
(53a) nor (53b) have terms of degree 0. Now consider the x- and y-intercepts of �1
and �2. For �1, x-intercepts satisfy

�1(x, 0) = (β111x − d1(R01 − 1)) x,

i.e., x = 0 and x = d1(R01 − 1)/β111 > 0 by the assumption R01 > 1. For y-
intercepts,

�1(0, y) = −β121

β111
d1R01y,
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i.e., �1 intercepts the y-axis only at the origin. For �2, x-intercepts are given by

�2(x, 0) = −β211

β221
d2R02x,

giving only the origin as x-intercept, while y-intercepts are given by

�2(0, y) = (β221y − d2(R02 − 1)) y,

i.e., y-intercepts are y = 0 and y = d2(R02 − 1)/β221 < 0 by assumption.
We can therefore establish that �1 and �2 intersect Q1. Indeed, from the gradients

∇�1(x, y) and ∇�2(x, y), we deduce that vectors tangent to �1 and �2 are

T1(x, y) =
(

β121x − β121

β111
d1R01, d1(R01 − 1) − 2β111x − β121y

)
,

T2(x, y)

(
2β221y + β211x − d2(R02 − 1),

β211

β221
d2R02 − β211y

)
.

At the origin, T1(0, 0) = (−β121d1R01/β111, d1(R01 − 1)) has signs (−,+). This
means that �1 “moves” through origin from the second quadrant Q2 = R− × R+
when x < 0 to the fourth quadrant Q4 = R+ × R− when x > 0. On the other hand,
T2(0, 0) = (−d2(R02 − 1), β211d2R02/β221) has signs (+,+), implying that left of
the y-axis, �2 is in the third quadrant Q3 = R− × R−, while it is in Q1 when x > 0.

It remains to show that the vertical and horizontal asymptotes of �1 and �2, respec-
tively, intersect the positive quadrant Q1.

The centre of�1 is (d1R01/β111,−d1(R01+1)/β121) ∈ Q4 (red triangle in Fig. 8).
Since�1 intersects Q2, the asymptote to�1∩Q2 has negative slope. It follows that the
vertical asymptote to �1 is the one to �1 ∩Q1 and therefore, intersects Q1. Reasoning
similarly, observe that since the centre (−d2(R02 + 1)/β211, d2R02/β221) of �2 lies
in Q2 (blue triangle in Fig. 8) and �2 intersects Q4, the asymptote to �2 ∩ Q4 has
negative slope and that to the part of �2 ∩ Q1 is horizontal.

As a consequence, there is a point in the interior of the positive quadrant Q1 where
�1 intersects �2. More precisely, remark that since the centres of the hyperbola lie
on the vertical and horizontal asymptotes, respectively, the x-coordinate of the point
of intersection cannot be larger that the x-component of the centre of �1 and its y-
coordinate cannot exceed the y-component of the centre of �2. This means that the
endemic equilibrium belongs to the box

(
0,

d1R01

β111

]
×
(
0,

d2R02

β221

]
(54)

shown shaded in Figs. 8 and 9.
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Fig. 9 Situation leading to the existence of a mixed equilibrium. Zoom on Fig. 8 focusing on the positive
quadrant. �1 and its related features is shown in red, while �2 is in blue (Color figure online)
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