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Abstract
This paper presents a mathematical model to investigate the co-infection with human
immunodeficiency virus (HIV) and Zika virus (ZIKV) in Colombia and Brazil, where
the first cases were reported in 2015. The model considers the sexual transmission
dynamics of both viruses and vector-host interactions. We begin by exploring the
qualitative behaviour of eachmodel separately.We then analyze thedynamics of the co-
infectionmodel using the thresholds and results defined separately for eachmodel. The
model also considers the impact of intervention strategies, such as personal protection,
antiretroviral therapy (ART), and sexual protection (condom use). Using available
and assumed parameter values for Colombia and Brazil, the model is calibrated to
investigate the long-term co-infection dynamics, the influence of specific parameters,
and the potential effect of implementing these intervention strategies on co-infection
spread. The study’s results revealed that the duration of Zika infection is a critical
factor influencing the burden of co-infection cases. Additionally, bed nets and use of
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condoms are essential for disease control, while ART is less emphasized due to the
cost-effectiveness of condom use.

Keywords Stability · Equilibrium points · Intervention Strategies · Personal
protection · Sexual protection · Antiretroviral therapy · Model calibration

1 Introduction

Human immunodeficiency virus (HIV) and Zika virus (ZIKV) are two major pub-
lic health concerns worldwide, including Latin America and Caribbean countries
(Machado-Silva et al. 2019; García et al. 2014). While HIV is a chronic infection
that attacks the immune system, ZIKV is transmitted by mosquitoes and can even
cause congenital malformations in children, such as Guillain-Barré syndrome (Cao-
Lormeau et al. 2016;Oehler et al. 2014; Smith andMackenzie 2016) andmicrocephaly
(Mlakar et al. 2016; Calvet et al. 2016). If HIV is not promptly treated, it can cause
Acquired Immunodeficiency Syndrome (AIDS) (Kabapy et al. 2020). This virus can
be transmitted through sexual contact, syringe misuse, and vertically (from mother to
child) (Kabapy et al. 2020). HIV/AIDS still has no cure, so treatments seek to lower
or reduce the level of virus replication within the host, which consists of several med-
ications, commonly called antiretroviral therapy (ART) (Saltelli et al. 2008). ZIKV,
unlike other arboviruses, also presents transmission through sexual contact. Some
studies have demonstrated its detection and transmission through semen, urine, and
saliva (Atkinson et al. 2016; Gourinat et al. 2015; Khurshid et al. 2019).

Although HIV is not recognized as a zoonotic disease, it has similar specific trans-
mission mechanisms with ZIKV. Both viruses can be transmitted through sexual
contact and vertically frommother to fetus. In endemic zones, the sexual transmission
route can substantially worsen the vulnerability of bothmother and fetus to other sexu-
ally transmitted infections, particularlyHIV (Rothan et al. 2018). Until now, there have
been few cases of ZIKV infection in HIV-infected individuals worldwide. The first
documented case of HIV/ZIKV co-infection was confirmed in a 38-year-old patient
in a Rio de Janeiro (Brazil) laboratory in 2015 (Calvet et al. 2016). In the same region,
a Zika case was reported in an HIV-infected pregnant woman (Brasil et al. 2016; João
et al. 2018). The fetus displayed significant abnormalities, consistent with findings
from previous studies conducted on pregnant women who contracted the Zika virus
in Brazil. This particular case concluded with the fetus’s death (Brasil et al. 2016).
In 2018, five individuals from the departments of Risaralda and Sucre were reported
with HIV/ZIKV co-infection in Colombia (Smith and Mackenzie 2016), who demon-
strated effective immune response and management of the virus levels in their bodies
to effectively control ZIKV, as compared to those who were only infected with ZIKV
(Smith and Mackenzie 2016).

Therefore, additional research is necessary to understand better the interactionswith
HIV and ZIKV and the impact of this co-infection on the immune response, disease
severity, further complications, and control (Rothan et al. 2018; Smith and Mackenzie
2016). It is not yet well understood how HIV infection increases the risk of ZIKV
infection and vice-versa, and how this the co-infection affects pregnant women and
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fetuses. Nevertheless, laboratory investigations have demonstrated that placental tis-
sues are susceptible to ZIKV infection (Rothan et al. 2018). ZIKV not only causes
immunity response problems but also, in the presence of co-infections, causes pla-
cental dysfunction (Rothan et al. 2018). In pregnant women especially, ZIKV mainly
targets CD14+ monocytes, which leads to an inflammatory responses and immune
tolerance (Rothan et al. 2018). However, there are several ways that ZIKV can play
a role in HIV infection, especially via cytokines and the activation of CD4+T cells
or linking to HIV (Koblischke et al. 2018). Unlike HIV, the relationship between
transmission of ZIKV by mother to child and fetal disease infection has not yet been
established (Aschengrau et al. 2021). However, even in the presence of ART, severe
viral infection is likely to exacerbate the disorder of the immune system for pregnant
women with HIV and increase the risk of transmission from mother to child of HIV
and ZIKV (Aschengrau et al. 2021). Therefore, the potential interaction with HIV and
ZIKVhas recently garnered significant attention (Mittal et al. 2017). These interactions
can modify infections’ epidemiology, pathogenesis, immune response, and therapy.
For instance, co-infection can expedite HIV pathogenesis and enhance transmission
by boosting viral replication efficiency. Furthermore, ZIKV transmission and infec-
tions can potentially cause serious symptoms and conditions for immunocompromised
individuals when co-infections occur (Rothan et al. 2018).

Given the potential impact of HIV/ZIKV co-infection on public health, it is crucial
to understand the transmission dynamics of these viruses and evaluate the effective-
ness of intervention strategies. Mathematical models are useful for understanding and
providing insights into public health policy decisions. To our knowledge, there is no
evidence of mathematical models studying the co-infection of HIV and ZIKV phe-
nomenon in the literature. Therefore, this study aimed to formulate and analyze an
HIV/ZIKV co-infection model, assuming that both viruses are sexually transmitted
and ZIKV is alsomosquito-transmitted. The analysis of this model is expected to iden-
tify important transmission outcomes that would help to design and evaluate different
control and prevention strategies to minimize their impact on public health.

The organization of this study is as follows: In Sect. 2, the co-infection model is
introduced. Subsequently, Sects. 2.1 and 2.2 present the individual dynamics of the
HIV-only and ZIKV-onlymodels, respectively. Section3 focuses on the analysis of the
co-infection model. The optimal control problem is addressed analytically in Sect. 4.
Furthermore, in Sect. 5, a case study centred in Colombia and Brazil is presented,
whereby the uncontrolled and controlled models are numerically analyzed using data
derived from available literature and convenient assumptions. Finally, in Sect. 6, dis-
cussion and concluding remarks are provided, covering the modelling approach and
its outcomes, as well as limitations, opportunities for further study and open-ended
questions.

2 The HIV/ZIKVMathematical Model Formulation

This model examines two distinct groups: the human (host) and mosquito (vector)
populations. Our model was based on the following hypotheses:
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Table 1 Description of the state and control variables involved in the models (2)–(35)

Variable Description

N (t) The total human population at time t

S(t) Susceptible human population at time t

Iz(t) Infected human population with only ZIKV at time t

Ih(t) Infected human population with only HIV at time t

Ihz(t) Infected human population with ZIK/HIV at time t

A(t) Infected human population with AIDS at time t

R(t) Recovered human population of ZIKV at time t

Nm (t) The total mosquito population at time t

Sm (t) Susceptible mosquito population at time t

Im (t) ZIKV-carrying mosquito population at time t

η1(t) Level of use of bed nets or repellents at time t

η2(t) Level of use of antiretroviral therapy (ART) at time t

η3(t) Level of use of condoms at time t

– We considered that Zika transmission follows an SIR structure for humans and an
SI structure for mosquitoes. Additionally, HIV is modelled with an SIA structure,
where A represents the compartments of individuals with AIDS. We also assume
that the probability of individuals with AIDS transmittingHIV or ZIKV sexually is
negligible owing to factors such as reducedviral load under treatment and increased
awareness and precautions taken by both patients and healthcare providers.

– No disease intervention strategies were incorporated in the initial stage of the
model. However, in subsequent sections (seemodel (35)), three intervention strate-
gies will be explored, including the use of repellents, antiretroviral therapy (ART),
and condom use.

– We assumed that a fully susceptible individual can be co-infected with both Zika
and HIV in a single sexual interaction with a co-infected individual.

– The Zika recovery rate for a co-infected human is lower than for a human infected
with only Zika (Rothan et al. 2018; Aschengrau et al. 2021; Bidokhti et al. 2018)
(scaled by the factor ε). However, if a co-infected human recovers from Zika
infection, it still remain HIV-carrier.

Tables 1 and 2 show and describe all the variables and parameters involved in our
mathematical model.

We define the following force of infections:

β̃m = βm
Im
N

, α̃m = αm
Iz + Ihz

N
, β̃z = βz

Iz + Ihz
N

, β̃h = βh
Ih + Ihz

N
and

β̃c = βc
Ihz
N

. (1)
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Fig. 1 HIV/ZIKV co-infection model represented in the model (2) (Color figure online)

Then, the mathematical model is described by the following ODEs:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= Λ − (β̃m + β̃c + β̃z + β̃h)S − μS

d Iz
dt

= (β̃m + β̃z)S − ω2β̃h Iz − (μz + δz + μ)Iz

d Ih
dt

= εδz Ihz + β̃h S − ω1(β̃m + β̃z)Ih − (σ1 + μ)Ih

d Ihz
dt

= β̃cS + ω2β̃h Iz + ω1(β̃z + β̃m)Ih − εδz Ihz − (σ2 + μhz + μ)Ihz

d A

dt
= σ1 Ih + σ2 Ihz − (μh + μ)A

dR

dt
= δz Iz − μR

dSm
dt

= Λm − α̃mSm − μmSm

d Im
dt

= α̃mSm − μm Im

(2)

Figure 1 illustrates the dynamics represented by the equations involved in themodel
(2).

In the following two sections, we qualitatively analyze the properties of the sys-
tem (2). We will start by analyzing the dynamics of the two-component models: the
HIV/AIDS model and the ZIKV model.
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2.1 Qualitative Behaviour of the HIV/AIDSModel

The HIV/AIDS model is obtained by setting Iz = Ihz = R = Sm = Im = 0 in the
system (2). Thus, the ODEs described in (2) can be rewritten as:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS

dt
= Λ − βh

Ih
Nh

S − μS

d Ih
dt

= βh
Ih
Nh

S − (σ1 + μ)Ih

d A

dt
= σ1 Ih − (μh + μ)A,

(3)

where the total human population is Nh(t) = S(t)+ Ih(t)+ A(t). For this model, our
region of biological interest is

Ωh =
{

(S, Ih, A) ∈ R
3+ : 0 ≤ Nh ≤ Λ

μ

}

. (4)

It can be proved that Ωh is positively-invariant under the flow of (3) (see e.g.,
Romero-Leiton et al. 2019), that is, all solutions of the system (3) starting in Ωh

remain in Ωh for all t ≥ 0. Therefore, it is enough to consider the dynamics of (3) in
Ωh .

For our HIV/AIDS model, the disease-free equilibrium (DFE) was analyzed to
determine the stability of the system and the potential for an outbreak. For the model
(3), the DFE is given by:

Eh0 =
(

Λ

μ
, 0, 0

)

. (5)

Here, Λ
μ
represents the equilibrium population size when no individuals are infected

Ih = 0 and A = 0. The stability of this equilibrium point can be analyzed in terms
of the basic reproduction number for the HIV/AIDS model (Rh), which can be com-
puted using the next-generation operator (Driessche and Watmough 2002). Using the
notation of (Romero-Leiton et al. 2019) in the model (3) the matrices F (representing
the rate of new infections) and V (representing the rate of transfer between different
compartments) are given by

F =
[
βh 0
0 0

]

, and V =
[
σ1 + μ 0
−σ1 μh + μ

]

.

Therefore, to find Rh , we need to compute the spectral radius, ρ of the matrix FV−1

which corresponds to its largest eigenvalues. This yields,

Rh := ρ(FV−1) = βh

σ1 + μ
. (6)

The basic reproduction number Rh quantifies the average number of new infections
caused by a single infected individual in a fully susceptible population. If Rh > 1,
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54 Page 8 of 37 J. P. Romero-Leiton et al.

the DFE is unstable and the disease can potentially spread in the population, leading
to an epidemic.

To determine the endemic equilibrium points of the model (3), we must solve the
system of algebraic equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = Λ − βh
Ih
Nh

S − μS

0 = βh
Ih
Nh

S − (σ1 + μ)Ih

0 = σ1 Ih − (μh + μ)A.

(7)

After some algebraic manipulations, and for Ih, A �= 0, we find that the solutions of
the system (7) are

S∗ = Λμ(μh + μ + σ)2

1 + μ(μ + μh + σ)(μh + μ)(σ1 + μ)(Rh − 1)
,

I ∗
h = μh + μ

μh + μ + σ
(Rh − 1)S∗,

A∗ = σ1

μh + μ + σ
(Rh − 1)S∗.

Thus, as long as Rh > 1, the system (3) has an endemic equilibrium point given
by

E∗
h =

(
Λμ(μh + μ + σ)2

1 + μ(μ + μh + σ)(μh + μ)(σ1 + μ)(Rh − 1)
,

μh + μ

μh + μ + σ
(Rh − 1)S∗, σ1

μh + μ + σ
(Rh − 1)S∗

)

. (8)

The following proposition states the global stability of Eh0 and E∗
h .

Proposition 1 The system (3) always has a DFE Eh0 given in (5), and forRh > 1, an
endemic equilibrium point E∗

h given in (8) exists. Additionally,

(i) If Rh < 1, the DFE Eh0 is globally asymptotically stable (GAS), whereas E∗
h is

unstable.
(ii) If Rh > 1, the endemic equilibrium point E∗

h is GAS, whereas the DFE Eh0
becomes unstable.

Proof (i) LetX = (S, Ih, A) and F(X) be the vector field given by the right side hand
of the system (3).Additionally, letY = X+Eh0 anddefine f (Y) = F(Y)−F(Eh0)

so that Y = 0 is a solution to Ẏ = f (Y). Let us consider the function

V (Y) = Ih
σ1 + μ

(9)
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noting that V (0) = 0 and V > 0 for all (S, Ih, A) �= Eh0 in Ωh defined by (4).
The orbital derivative of (9) is

V̇ = ∂V

∂ Ih
İh (10)

= Ih
σ1 + μ

(
βh S

N
− σ1 − μ

)

(11)

≤(Rh − 1)Ih ≤ 0, (12)

for all Ih ≥ 0 when Rh ≤ 1. Since Y = 0 is the only trajectory when Ih = 0
then by LaSalle’s invariance principle (Hainzl et al. 2022),Eh0 is a global attractor
whenever Rh < 1.

(ii) The third equation of the system (3) is uncoupled in the variable S and its only
equilibrium solution is Ih = μh+μ

σ1
A. Replacing this value in the first two equations

of (3), we obtain the planar system:

⎧
⎪⎨

⎪⎩

dS

dt
= Λ − βh(μh + μ)

σ1S + (μh + μ + σ1)A
AS − μS

d A

dt
= βhσ1

σ1S + (μh + μ + σ1)A
AS − (σ1 + μ)A.

(13)

Therefore, the solutions of the system (3) tend asymptotically to those of the pla-
nar system (13) (see e.g. Castillo-Chavez and Thieme 1994). The Dulac criterion
(McCluskey and Muldowney 1998) claims that if there exists a real continu-
ously differentiable function φ(S, A) such that ∇ · [φ(S, A)X(S, A)] �= 0, where
X(S, A) = (F(S, A),G(S, A) is the right side hand of system (13), then there are
no periodic orbits contained entirely inside Ωh . Let

φ(S, A) = σ1S + (μ + μh + σ1)A

SA
for S > 0, A > 0,

then

∇ · [φ(S, A)X(S, A)] = ∂(Fφ)

∂S
+ ∂(Gφ)

∂A

= ∂

∂S

(
Λ(μ + μh + σ1)

S
− μσ1S

A

)

− ∂

∂A

(
σ1(μ + μh + σ1)A

S
+ μ(μ + μh + σ1)A

S

)

= −
(

Λ(μ + μh + σ1)

S2
+ μσ1

A
+ (μ + μh + σ1)(μ + σ1)

S

)

< 0, for S, A > 0.

Thus, there are no periodic orbits in Ωh . Given that Ωh is positively invariant,
and the endemic equilibrium exists if Rh > 1, it follows from the Poincaré-
Bendixson Theorem (McCluskey and Muldowney 1998) that all solutions of the
system starting in Ωh remain in Ωh for all t . Thus, because of the absence of
periodic orbits in Ωh , this implies that the unique endemic equilibrium of the
system (3) is GAS when Rh > 1.

�	
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2.2 Qualitative Behaviour of the ZIKVModel

By setting Ih = Ihz = A = 0 in the system (2), we obtain the ZIKV model as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= Λ −

(

βm
Im
Nz

+ βz
Iz
Nz

)

S − μS

d Iz
dt

=
(

βm
Im
Nz

+ βz
Iz
Nz

)

S − (μz + δz + μ)Iz

d R

dt
= δz Iz − μR

dSm
dt

= Λm − αm
Iz
Nz

Sm − μmSm

d Im
dt

= αm
Iz
Nz

Sm − μm Im

(14)

For this model, the total human population is Nz(t) = S(t) + Iz(t) + R(t), and the
total mosquito population is Nm(t) = Sm(t) + Im(t). We are interested in analyzing
the solutions within the biological region of interest

Ωz =
{

(S, Iz, R, Sm, Im) ∈ R
5+ : 0 ≤ Nh ≤ Λ

μ
; 0 ≤ Nm ≤ Λm

μm

}

. (15)

It can also be shown that Ωz is positively invariant under the flow of (14).
The DFE for the model (14) is given by

Ez0 =
(

Λ

μ
, 0, 0,

Λm

μm
, 0

)

. (16)

Now, we will determine the basic reproduction number Rz for the model (14).
Similarly as in Sect. 2.1, the matrices F, V and FV−1 are given by

F =
[

βz
Λ
μ βm

Λ
μ

αm
Λm
μm

0

]

, V =
[
δz + μ + μz 0

0 μm

]

, and FV−1 =
[

βz
δz+μ+μz

βm
μm

αmΛmμ
Λμm (δz+μ+μz )

0

]

.

Thus, the basic reproduction number for the model (14) is given by

Rz = ρ(FV−1) = Rz1 +
√
(Rz1

)2 + R̄z2 =: Rz1 + Rz2 , (17)

where

Rz1 = βz

2(μz + δz + μ)
, R̄z2 = βmαmΛmμ

Λμ2
m(μz + δz + μ)

and

Rz2 =
√
(Rz1

)2 + R̄z2 . (18)
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Remark 1 Note that if the transmission of ZIKV by sexual contact is not considered
(βz = 0),Rz1 = 0 and Rz reduces to

Rz |(βz=0) =
√

R̄z2 =
√

βmαmΛmμ

Λμ2
m(μz + δz + μ)

,

indicating that sexual contact transmission of ZIKV has an impact on Rz .

The following lemma makes it easier to determine the sign ofRz .

Lemma 1 Let us define
R∗

z = 2Rz1 + R̄z2

= R2
z + 2Rz1(1 − Rz).

(19)

i. IfR∗
z < 1, then 2Rz1 < 1 and Rz < 1.

ii. IfR∗
z > 1 and 2Rz1 < 1, then Rz > 1.

iii. IfR∗
z > 1 and 2Rz1 > 1, then Rz < 1.

iv. IfR∗
z = 1, then Rz = 1.

The proof of item i . can be found in Appendix A.1. Items i i . to iv. can be proved
in a similar manner.

From the above lemma we can see that the sign of Rz is determined by the signs
of R∗

z and 2Rz1 .
Observe that the third equation in the system (14) has a unique equilibrium given

by R = δz

μ
Iz . Therefore, to determine the endemic equilibrium points of the system

(14), we must solve the following system of algebraic equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = Λ −
(

βmμ
Im

μS + (μ + δz)Iz
+ βzμ

Iz
μS + (μ + δz)Iz

)

S − μS

0 =
(

βmμ
Im

μS + (μ + δz)Iz
+ βzμ

Iz
μS + (μ + δz)Iz

)

S − (μ + μz + δz)Iz

0 = Λm − αmμ
Iz

μS + (μ + δz)Iz
Sm − μmSm

0 = αmμ
Iz

μS + (μ + δz)Iz
Sm − μm Im .

(20)
Denoting S∗, S∗

m and I ∗
m the coordinates of the endemic equilibrium solution, after

some algebraic manipulations in (20), we found that:

S∗ = Λ − (μ + μz + δz)I ∗
z

μ
, S∗

m = Λm − μm I ∗
m

μm
, Im = αmμI ∗

z S
∗
m

μm[μS∗ + (μ + δz)I ∗
z ] .

(21)

Replacing the above values into the first equation of (20), we get the following
quadratic equations in the variable Iz :

aI 2z + bIz + c = 0, where (22)

123



54 Page 12 of 37 J. P. Romero-Leiton et al.

a = αmβzμ
4μm

b = Λμ4μmαm
[
βzμm + βmαmΛm + (1 − 2Rz1)

]

c = Λ2μ2μm
(
1 − R∗

z

)
.

(23)

Note that a > 0, and the signs of b and c depends on the sign ofR∗
z and 2Rz1 . We

have the following possibilities.

P1) If R∗
z < 1, then 2Rz1 < 1 (Lemma 2.19 item i). Therefore b > 0, c > 0 and

thus, the quadratic equation (22) has not any positive root.
P2) If R∗

z > 1, then c < 0 and regardless of the sign of b, the quadratic equation
(22) has only one positive root given by

I ∗
z = −b + √

b2 − 4ac

2a
. (24)

P3) If R∗
z = 1 and 2Rz1 < 1, then c = 0 and b > 0. Therefore, the quadratic

equation (22) has as solution Iz = −b/a. Thus, there are no positive roots.
P4) If R∗

z = 1 and b < 0, the quadratic equation (22) has a positive root given by
Iz = −b/a.

Remark 2 The case where R∗
z < 1 and 2Rz1 > 1 (which results in c > 0 and b < 0,

thus allowing for the existence of two positive roots of the quadratic equation (22)
when b2 − 4ac > 0) is not considered. According to Lemma 2.19, item i ., ifR∗

z < 1,
then 2Rz1 < 1. Therefore, this scenario is inconsistent with the conditions of the
lemma and is excluded from consideration.

Based on the information presented earlier, the quadratic equation (22) has only
one positive root defined in (24) whenever R∗

z > 1. The following proposition gives
us the existence and stability conditions of the equilibrium points for the system (14).

Proposition 2 The system (14) always has a DFE Ez0 defined in (16). If R∗
z > 1 the

system has an endemic equilibrium point given by

E∗
z = (S∗, I ∗

z , S∗
m, I ∗

m

)
, (25)

with S∗, I ∗
z , S

∗
m and I ∗

m defined in (21) and (24). Additionally, the following stability
results hold:

(i) IfR∗
z < 1, then Ez0 is GAS.

(ii) IfR∗
z > 1, the endemic equilibrium point E∗

z is LAS in Ωz defined in (15).

Proof (i) We will denote κ = μz + δz + μ and a reasoning analogous to that used in
Proposition 1, with the functions:

V ∗(S, Iz , R, Sm , Im ) =
(

S − Λ

μ
log

Sμ

Λ

)

+ Iz + βmΛ

μμm

(

Sm − Λm

μm
log

Smμm

Λm

)

+ βmΛ

μμm
Im

and

V (S̄, Īz, R̄, S̄m, Īm) = V ∗
(

S − Λ

μ
, Iz, R, Sm, Im − Λm

μm

)

. (26)
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Wemust prove that V defined in (26) is a Lyapunov function. V is positive definite
and the orbital derivative of V along the trajectories of (14) is

V̇ =
(

1 − Λ

μS

)

Ṡ + İz + βmΛ

μμm

(

1 − Λm

μmSm

)

Ṡm + βmΛ

μμm
İm

=
(

1 − Λ

μS

)(

Λ − βm
Im
Nz

S − βz
Iz
Nz

S − μS

)

+
(

βm
Im
Nz

S + βz
Iz
Nz

S − κ Iz

)

+ βmΛ

μμm

(

1 − Λm

Smμm

)(

Λm − αm
Iz
Nz

Sm − μmSm

)

+ βmΛ

μμm

(

αm
Iz
Nz

Sm − μm Im

)

= (Λ − μS) − Λ

μS
(Λ − μS) + Λ

μS

(

βm
Im
Nz

+ βz
Iz
Nz

)

S − κ Iz + βmΛ

μμm
(Λm − μmSm )

− βmΛΛm

μμmSmμm
(Λm − μmSm ) + βmΛΛmαmSm Iz

μμmSmμm
− βmΛμm Im

μμm

≤ − (Λ − μS)2

μS
− βmΛ

μμ2
m

(Λm − μmSm )2

Sm
+
(

Λ

μ
βz + βmαmΛmΛ

μμ2
m

− κ

)

Iz

= − (Λ − μS)2

μS
− βmΛ

μμ2
m

(Λm − μmSm )2

Sm
− κ

(
1 − R∗

z
)
Iz .

Note that the last expression in the above inequality is negative if R∗
z < 1 and

for S = Λ

μ
, Sm = Λm

μm
and Iz = Im = 0. Finally, using the LaSalle’s invariance

principle (Hainzl et al. 2022), Ez0 defined in (16) is a global attractor whenever
R∗

z < 1.
(ii) We start by ordering equations and variables as S, Sm, Iz, Im, R, and by making

the following change of variables:

t1 = βm Im + βz Iz
Nz

(

1 − S

Nz

)

, t2 = αmSm Iz
Nz

, t3 = αm Iz
Nz

,

t4 = βm Im + βz Iz
N 2
z

S, t5 = βz S

Nz
, t6 = αmSm Iz

Nz

(

1 − Iz
Nz

)

, t7 = βmS

Nz
.

The Jacobianmatrix of the system (14) at an arbitrary pointE = (S, Sm, Iz, Im, R),
which is given by

J(E) =
[
J11(E) 0

� −μ,

]

. (27)

Thus, the eigenvalues of J(E) are −μ < 0 and those of J11(E). Thus, the matrix
J11(E) at the endemic equilibrium E∗

z in (25) can be written as:

J11(E∗
z ) =

⎡

⎢
⎢
⎣

−(t1 + μ) 0 t4 − t5 −t7
t2 −(μm + t3) −t6 0
t1 0 −(κ + t4) + t5 t7

−t2 t3 t6 −μm

⎤

⎥
⎥
⎦ .

After some algebraic manipulations, we find that the characteristic polynomial
associated with the matrix J(E∗

z ) is

r(y) = (y + μm)(y3 + b1y
2 + b2y + b3), where
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b1 = l1 + κ(1 − 2Rz1), b2 = l2 + κ(R∗
z − 1), b3 = l3(R∗

z − 1), (28)

and li , i = 1, 2, 3 are positive linear combinations of ti , i = 1, ..., 7. The charac-
teristic polynomial r(y) gives four roots y = −μm , whereas the Routh-Hurtwiz
criteria assures that the other two roots have negative real part if bi > 0 for
i = 1, 2, 3 and b1b2 − b3 > 0. Clearly the coefficients bi > 0, i = 1, 2, 3 are all
positive ifR∗

z > 1 and 1−2Rz1 > 0. Thus, it follows that the endemic equilibrium
E∗
z of the system (14) is LAS ifR∗

z > 1.
�	

3 Qualitative Behaviour of the HIV/ZIKVModel

In this section, we discuss the qualitative properties of the HIV/ZIKV co-infection
model (2). To achieve this purpose, we use the existence and stability results as well
as the definition of the basic reproduction number for the HIV model Rh in (6) and
Rz in (17) obtained in Sects. 2.1 and 2.2.

In the model (2), the total human population is denoted by N (t) = S(t) + Iz(t) +
Ih(t) + Ihz(t) + A(t) + R(t), and the total mosquito population is Nm(t) = Sm(t) +
Im(t). Additionally, to simplify algebraic calculations we rename parameters:

κ1 = μz + δz + μ, κ2 = σ1 + μ,

κ3 = σ2 + μhz + μ, κ4 = μh + μ.
(29)

The interest region set is given by

Ω =
{

(S, Iz, Ih, Ihz, A, R, Sm, Im) ∈ R
8+ : 0 ≤ N ≤ Λ

μ
; 0 ≤ Nm ≤ Λm

μm

}

. (30)

As in the previous sections, it can be proved that Ω is positively invariant under the
flow of (2).

3.1 Computation of the Basic Reproduction Number

The DFE for the model (2) is given by

E0 =
(

Λ

μ
, 0, 0, 0, 0, 0,

Λm

μm
, 0

)

. (31)

Similarly to Sects. 2.1 and 2.2, the basic reproduction number associated to the
model (2) can be determined through the matrices F and V given by
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F =

⎡

⎢
⎢
⎢
⎢
⎣

βz 0 βz 0 βm

0 βh βh 0 0
0 0 βzβh 0 0
0 0 0 0 0

αmΛmμ
Λμm

0 αmΛmμ
Λμm

0 0

⎤

⎥
⎥
⎥
⎥
⎦

,

V =

⎡

⎢
⎢
⎢
⎢
⎣

κ1 0 0 0 0
0 κ2 −εδz 0 0
0 0 εδz + κ3 0 0
0 −σ1 −σ2 κ4 0
0 0 0 0 μm

⎤

⎥
⎥
⎥
⎥
⎦

and V−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
κ1

0 0 0 0

0 1
κ2

εδz
κ2(εδz+κ3)

0 0

0 0 1
εδz+κ3

0 0

0 σ11
κ2κ4

εδaσ1+κ2σ2
κ2κ4(εδz+κ3)

1
κ4

0

0 0 0 0 1
μm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Here, the matrix FV−1 is given by

FV−1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

βz

κ1
0

βz

εδz + κ3
0

βm

μm

0
βh

κ2

βh(εδz + κ2)

κ2(εδz + κ3)
0 0

0 0
βzβh

εδz + κ3
0 0

0 0 0 0 0
αmΛmμ

κ1Λμm
0

αmΛmμ

Λ(εδz + κ3)μm
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The above matrix has as eigenvalues: λ1 = 0, λ2 = βzβh

εδz + k3
=

βzβh

εδz + σ2 + μhz + μ
, and λ3 = βh

κ2
= Rh , whereas the other two eigenvalues are

λ4,5 = βz

2κ1
±
√
(

βz

2κ1

)2

+ αmβmΛmμ

Λμ2
mκ1

= Rz1 ± Rz2 ,

with the positive eigenvalues being

λ4 = βz

2κ1
+
√
(

βz

2κ1

)2

+ αmβmΛmμ

Λμ2
mκ1

= Rz1 + Rz2 = Rz .

Thus, the basic reproduction number for the model (2) is given by

R0 = ρ(FV−1) = max{Rh,R∗
z ,Rhz}, (32)

where

Rhz := βzβh

εδz + σ2 + μhz + μ
, (33)
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Rh is the basic reproduction number for the HIV model defined in the equation (6)
and Rz = Rz1 + Rz2 is the basic reproduction number of the ZIKV model, which is
defined in the equation (17). From the calculation ofR0, the local asymptotic stability
of the DFE follows.

Proposition 3 If R0 = max{Rh,Rz,Rhz} < 1, then E0 defined in (31) is LAS in Ω

defined in (30).

Techniques similar to those used in Sects. 2.1 and 2.2 can be applied to confirm the
presence of endemic solutions and assess their local and global stability.

3.2 Local Sensitivity Analysis of the Parameters

The local sensitivity analysis of R0 with respect to the model parameters allows
quantifying parameter variations’ effect on the value ofR0. The sign of the sensitivity
index denotes the direction of the change, where a positive index for a particular
parameter indicates that increasing that parameter will increase R0 and vice-versa.
In addition, the sensitivity index’s magnitude provides insight into each parameter’s
impact on the predictions (Saltelli et al. 2008).

The normalized sensitivity index of a variable concerning a parameter is a measure
of how much the variable relatively changes to the change in the parameter (Chitnis
et al. 2008) and is defined as:

Γ X
p = ∂X

∂ p

p

X
. (34)

Because R0 is defined as max{Rh,Rz,Rhz}, the sensitivity indices of R0 with
respect to the eleven parameters {βh,Λ,μ, σ1, βz, μz, δz, βm, αm,Λm, μm, ε, μhz}
in the expression of R0 in (32), can be determined for the sensitivity indices of Rh ,
Rz and Rhz , respectively. A calculation example of the sensitivity index of Rz with
respect to the parameter βz can be found in Appendix A.2.

4 The Control Problem Analysis

In this section, we present an optimal control problem (OCP) by including three
interventions to manage how HIV/ZIKV co-infection spreads within our model (2).
The proposed approach mitigates HIV and Zika infections by implementing personal
protection measures (such as the use of repellents) using control η1, ART with control
η2, and preventive sexual contact (such as the use of condoms) with control η3 (see
Table 1). The control functions η1, η2 and η3 are defined in the interval [0, T ], where
T denotes the final time of the controls, 0 ≤ ηi (t) ≤ 1 and t ∈ [0, T ] for i = 1, 2, 3.
Furthermore, depending on the nature of the problem, different types of cost function
may be appropriate. In general, the forms used in the cost function depend on the
specific context and characteristics of the problem, allowing a balance in terms of the
benefits of disease control and the costs associated with interventions. For example,
an exponential cost function, due to its concave nature, is suitable in situations of
high uncertainty because it reflects a greater concern for unfavorable events (see, e.g.,
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Avusuglo et al. 2023; Grandits et al. 2019). Conversely, a quadratic cost function,
due to its convex nature, is useful when seeking to ensure that the solutions found
are globally optimal, which simplifies the optimization process and is particularly
valuable in problems where precision and certainty are crucial (see, e.g., Romero-
Leiton et al. 2019). Therefore, the following OCP is formulated by a hybrid cost
function combining linear and quadratic terms, where the controls are shown in red
for emphasis.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minJ (η) = ∫ T0
(

c1 Iz + c2 Ih + c3 Ihz + c4 Im + c5A + d1
η21
2

+ d2
η22
2

+ d3
η23
2

)

dt

dS

dt
= Λ − (1 − η1)β̃mS − (1 − η3)(β̃c + β̃z + β̃h)S − μS

d Iz
dt

= (1 − η1)β̃mS + (1 − η3)β̃z S − ω2(1 − η3)β̃h Iz − (μz + δz + μ)Iz
d Ih
dt

= εδz Ihz + (1 − η3)β̃h S − ω1[(1 − η1)β̃m + (1 − η3)β̃z]Ih − (1 − η2)σ1 Ih − μIh
d Ihz
dt

= (1 − η3)β̃cS + ω2(1 − η3)β̃h Iz + ω1[(1 − η3)β̃z + (1 − η1)β̃m ]Ih
−εδz Ihz − (1 − η2)σ2 Ihz − (μhz + μ)Ihz

d A

dt
= (1 − η2)σ1 Ih + (1 − η2)σ2 Ihz − (μh + μ)A

dR

dt
= δz Iz − μR

dSm
dt

= Λm − (1 − η1)α̃mSm − μmSm
d Im
dt

= (1 − η1)α̃mSm − μm Im

X(0) = (S0, Iz0, Ih0, Ihz0, A0, R0, Sm0, Im0) = X0
X(T ) = (S f , Iz f , Ih f , Ihz f , A f , R f , Sm f , Im f ) = X f .

(35)
In the above formulation η = (η1(t), η2(t), η3(t)), and c1, c2, c3, c4, c5, d1, d2, and
d3 are positive weights. Therefore, we seek an optimal control η∗(t) determined as

J (η∗(t)) = min {J (η(t)|η ∈ A)} , (36)

with a set A of controls defined as

A = {η(t) = (η1(t), η2(t), η3(t))|0 ≤ η1(t) ≤ ηmax
1 , 0 ≤ η2(t) ≤ ηmax

2 , 0 ≤ η3(t) ≤ ηmax
3
}
,

where ηmax
i ≤ 1, i = {1, 2, 3} and η is Lebesgue measurable. In order to define the

formulation of our OCP using Pontryagin’s Maximum Principle (PMP) (Pontryagin
et al. 2018), we have the Lagrangian as

L = c1 Iz(t)+c2 Ih(t)+c3 Ihz(t)+c4 Im(t)+c5A(t)+d1
η21(t)

2
+d2

η22(t)

2
+d3

η23(t)

2
,

(37)
and we determine the Hamiltonian function as

H = L(Iz, Ih, Ihz, Im, A, η) + p1
dS

dt
+ p2

d Iz
dt

+ p3
d Ih
dt

+ p4
d Ihz
dt

+ p5
d A

dt
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+p6
dR

dt
+ p7

dSm
dt

+ p8
d Im
dt

. (38)

In the remainder, we investigate the minimum value of Lagrangian (37). Firstly, we
must prove the existence of the optimal control η∗ according to the controlled system
(35).

Proposition 4 There exists an optimal control η∗ such that

J (η∗(t)
) = min

η∈A
(J (η(t))),

subject to the control system (35) with initial conditions as X0.

The proof of the above proposition can be found in Appendix A.3.
In the following, we apply PMP (Pontryagin et al. 2018) to provide a characteriza-

tion of an optimal control solution to the Hamiltonian (38) subject to the OCP (35). If
(X∗, η∗) is an optimal solution for the controlled system (35), then there exists a non
trivial vector function p = (p1, p2, p3, p4, p5, p6, p7, p8), such that

∂H

∂ηi
= 0, i = 1, 2, 3 and ṗi = dpi

dt
= − ∂H

∂Xi
, i = 1, . . . , 8. (39)

Proposition 5 Let (S∗, I ∗
z , I ∗

h , I ∗
hz, A

∗, R∗, S∗
m, I ∗

m) be the optimal state variables
solution associated to the optimal control variable η∗ subject to the control prob-
lem (36). Then, there exists an adjoint vector p that satisfies the controlled system
(35), with transversality conditions pi (T ) = 0, for i = 1, . . . , 8, where the optimal
controls are

η∗
1 = (p2 − p1)β̃mS + (p4 − p3)ω1β̃m Ih + (p8 − p7)α̃mSm

d1

η∗
2 = (p5 − p3) σ1 Ih + (p5 − p4) σ2 Ihz

d2

η∗
3 = (p2 − p1)β̃z S + (p3 − p1)β̃h S + (p4 − p1)β̃c S + (p4 − p3)ω1β̃z Ih + (p4 − p2)ω2β̃h Iz

d3
.

(40)

The proof is in Appendix A.4.

5 HIV/ZIKV Co-infection in Brazil and Colombia

As said before, in 2015, there was a concerning event in Brazil and Colombia associ-
atedwith the co-infection of Zika andHIV/AIDS (Calvet et al. 2016; Brasil et al. 2016;
Smith and Mackenzie 2016). Due to the absence of temporal records on HIV/ZIKV
co-infection to date, it was not possible to estimate the parameters of the model (2) in
this section. However, the values of specific parameters were derived from available
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demographic information, previous research on Zika and HIV/AIDS in Colombia and
Brazil, and epidemiological assumptions. When there were insufficient data available,
these values were estimated based on specific assumptions or adapted from research
conducted in different regions or diseases. The following outlines the main assump-
tions for extracting these parameter values: (1) The precise ratio between humans
infected population and population densities of Aedes aegypti is difficult to assess. In
fact, the entomological and biological characteristics of these mosquitoes, including
their population size and geographical location or distribution, are impacted bymeteo-
rological factors, including but not limited to temperature and precipitation (Heinisch
et al. 2019). Therefore, to facilitate our numerical experiments and to not lose gener-
ality, we assume that during 2015, there existed an approximate ratio of one human
to three female Aedes aegypti mosquitoes (1:3) in Colombia and Brazil; (2) The scale
parameter ε, which modifies the mean duration of Zika infection 1/δz in co-infected
individuals, was estimated to range from 0.77−0.88. This suggests that if the mean
duration of Zika infection typically ranges between 8 and 15 days, in a co-infected
individual, this interval could vary by approximately two days. This estimate is based
on research showing that people co-infected with HIV/ZIKV tend to recover more
slowly than those infected only with Zika (Rothan et al. 2018; Aschengrau et al. 2021;
Bidokhti et al. 2018). In fact, a previous study on HIV-infected pregnant women in
Brazil (Hainzl et al. 2022) revealed that although the overall proportion of Zika infec-
tions was approximately 5%, the rate of neurological complications in newborns was
significantly higher. This rate reached 12% among those co-infected with both viruses,
suggesting that a lower scale parameter value is associated with a higher likelihood
of neurological problems in the infants of co-infected women; (3) In 2015, only a few
cases were reported in Colombia and Brazil (Calvet et al. 2016; Smith and Mackenzie
2016), leading us to assume that the parameters related to the co-infection probability,
ω1 and ω2, were sufficiently small. Furthermore, we assumed that the probability that
an HIV-infected individual contracting Zika is higher than that of a Zika-infected indi-
vidual contracting HIV. This assumption is based on the fact that the immune system
of an HIV-infected person is generally weaker than that of a ZIKV-infected person
(Rothan et al. 2018). To explore the impact of varying co-infection probabilities, we
also present a hypothetical scenario in which these parameters are increased, illustrat-
ing the correlation between higher co-infection probabilities and the resultant increase
in the number of co-infected individuals; (4) According to demographic statistics for
2015, Colombia had approximately a population size of 47,630,000 inhabitants, while
for Brazil was 206,900,000. It was assumed that 0.8% of the population in both coun-
tries had Zika infection, with 0.6% effectively recovered. In addition, 0.4% of the
population had HIV and 0.3% progressed to AIDS due to untreated conditions. It was
assumed that 0.01% of the population contracted co-infection with both diseases. For
mosquitoes population, we assumed that for 2015, 15% were ZIKV-carrier. Finally,
some parameter values on HIV/AIDS were conveniently adjusted at the population
level, using estimates obtained from Luxembourg, the Czech Republic, Japan, Croa-
tia, the United Kingdom and Mexico (Prieto and Romero-Leiton 2021). Finally, we
suppose that Colombia and Brazil share some common parameter values (see Table 3),
particularly excluding those related to the magnitude of the nation’s population and its
initial conditions (see Tables 4 and 5). Due to the dispersion of the units of measure-
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Fig. 2 Possible values for the thresholds using the extreme parameter values given in Tables 3 and 4 for
Colombia (blue bars) and Brazil (green bars). In each case, R0 = max{Rh ,Rz ,Rhz}. The vertical red
line represents Rh,z,hz = 1 (Color figure online)

ment of the parameters in the different sources consulted, all parameter values were
adapted to day as the standard unit of measurement.

Therefore, our case study is organized into three separate stages: (1) In the initial
stage, we seek to numerically determine the basic reproduction number associated
with the co-infection epidemic model (2), and we determine the numerical values of
the sensitivity indices determined analytically in Sect. 3.2. (2) Next, we numerically
simulate the uncontrolled model defined by (2). We then compare the incidence of
infectious compartments in a range of parameter values for different scenarios ofR0.
(3) In this stage, we explore hypothetical scenarios for the co-infected compartment
by varying the parameters ε, δz , ω1, and ω2. (4) Finally, we focus on numerically
simulating the control problem described in (35).

5.1 The Basic Reproduction Number and its Sensitivity Indices

In Sect. 3.1, we calculated the basic reproduction number (32) for the model (2).
Figure2 shows the possible values for the basic reproduction number using the values
of extreme parameters given in Tables 3 and 4 for Colombia and Brazil, which result
in the minimum or maximum value ofR0, respectively. Figure2 shows that Brazil has
the highest basic reproduction numbers compared to Colombia, which could be due
to Brazil’s much larger population. In both countries, the basic reproduction number
for individuals infected only with HIV is higher than for those infected only with
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Fig. 3 Normalized sensitivity index of Rh to the parameters {βh , μ, σ1}, Rz to the parameters
{Λ,μ, βz , μz , δz , βm , αm ,Λm , μm } and Rhz to the parameters {βh , βz , δz , ε, μhz , σ2, μ}. Thus, the red
dot line represents a sensitivity of zero. An example of calculation using Equation (34) can be found in
Appendix A.2 (Color figure online)

ZIKV. Additionally, the basic reproduction number for only co-infected individuals is
the lowest, which aligns with the small number of co-infection cases reported in both
countries in 2015.

The normalized sensitivity indices of Rh , Rz and Rhz are summarized in Fig. 3
and obtained using the values of the parameters in Tables 3 and 4.

For Rh , the most significant parameters are the probability of HIV transmission
through sexual contact βh , followed by the average duration of the immunodeficiency
period 1/σ1. For Rz , the results indicate that the most important parameter is the
mosquito death rate μm . In contrast, forRhz , the most critical parameters are the rates
of Zika and HIV transmission through sexual contact βz and βh , and the average dura-
tion of Zika infection 1/δz . These results suggest that when developing strategies to
combat HIV, Zika and co-infection, efforts should focus on parameters that reduce the
risk of sexual transmission, such as the use of condoms, increasing mosquito mortality
rates through insecticides, strengthening personal protection to avoid mosquito bites,
improving Zika cure rates and reducing the transition to AIDS through antiretroviral
therapy (ART).

5.2 Evaluation of Uncontrolled Population Behaviour Over Time

We numerically simulate the uncontrolled model defined by (2) by comparing the
behaviour of the infectious compartments for different scenarios of R0. From Fig. 4,
we observed a trend of increasing numbers of infectious individuals (those infected
only with Zika, only with HIV, co-infected, and ZIKV-carrying mosquitoes) with the
increase in the basic reproduction numberR0 in Colombia and Brazil during the first
year (approximately 360 days). However, after the first year and up to approximately
two years (2017) from the initial observation (2015), the behaviour of the number of
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Fig. 4 Simulations of the infectious compartments for different values ofR0.We used the parameter values
from Tables 4 and 5 that produce the minimum, medium and maximum basic reproduction numbers. For
Colombia, the minimum values are Rh = 0.81, Rz = 0.15, and Rhz = 1.29 × 10−6; the intermediate
values are Rh = 1.50, Rz = 0.57, and Rhz = 7.65 × 10−6; and the maximum values are Rh = 2.35,
Rz = 2.23, and Rhz = 2.69 × 10−5. For Brazil, the minimum values are Rh = 0.87, Rz = 0.29, and
Rhz = 1.65 × 10−6; the average values are Rh = 1.65, Rz = 0.95, and Rhz = 9.08 × 10−6; and the
maximum values are Rh = 2.67,Rz = 3.44, and Rhz = 3.19 × 10−5 (Color figure online)

infectious individuals changed. For instance, the number of individuals infected only
with Zika tends to decrease, regardless of the value of the basic reproduction number,
and shows a peak during the first 30-150 days, reaching approximately 6 million
infections in Colombia by day 60 and 50 million in Brazil by day 50. In the case of
people infected solely with HIV, higherR0 values lead to a greater burden of HIV-only
infections in both countries; however, this is only true forR0 values less than two; for
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Fig. 5 Hypothetical scenario of ZIKV/HIV co-infection for different values of the co-infection probabilities
ω1 and ω2 (high, medium, and low). The initial conditions are in Table 5 (population sizes in 2015) and
the set of values of the parameters for the maximum vale ofR0 (Color figure online)

higher values, the number of people infected solelywithHIV decreases, perhaps due to
the influence of people infected with Zika or co-infected. People whowere co-infected
had a profile similar to that of people infected with Zika alone, but to a lesser extent; in
Colombia, the number of co-infected people fell after day 150, and in Brazil, after day
100. Additionally, a peakwas also observed during these days, reaching approximately
3,200 co-infected individuals in Colombia by day 140 and 39,000 in Brazil by day
90. It is important to note that Zika-carrying mosquitoes exhibited similar behaviour
across the threeR0 values used as examples in our simulations, although their density
increased by more than 10% in each case. These results are consistent, as no control
measures were applied to the mosquito population.

These results can be explained by the fact that R0 represented in each case the
maximum value among the basic reproduction numbers for Zika, HIV and co-infected
individuals. In all three scenarios,Rh was the highest, indicating that primary control
efforts should focus on reducing sexual transmission. For large values of R0, the
populations of individuals infected only with Zika and co-infected individuals showed
peaks, unlike those infected only with HIV. This indicates that Zika outbreaks occur
only in certain seasons, whereas HIV cases remain constant over time.

In the actual context of co-infection cases in Colombia and Brazil, the probabilities
of co-infection ω1 and ω2 were low, and the mean duration of Zika infection 1/δz as
well as the scaling factor for Zika cure ε were fixed.We therefore consider three hypo-
thetical scenarios for people co-infected with HIV and ZIKV, as shown in Figs. 5, 6
and 7. In these cases, we used the initial conditions described in Table 5 (population
sizes in 2015) and the set of parameter values for the maximum value ofR0.

In Fig. 5, we contrast three different possibilities for the probability of co-infection:
Low probability (ω1=0.063, ω2=0.01), medium probability (ω1=0.075, ω2=0.04) and
high probability (ω1=0.09, ω2=0.06). We can see that for higher values of this pair
of parameters, the size of the population of individuals co-infected with ZIKV and
HIV is larger. Clearly, an increase in these two probabilities increases the number of
co-infected individuals.

Figure 6 shows the behaviour of co-infected individuals for different values of the
mean duration of Zika virus infection 1/δz and the scaling factor on Zika virus cure
in co-infected individuals ε. It is generally estimated that a person recovers from Zika
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Fig. 6 Simulations of the system (2) for different values of the parameters δz and ε, using the parameter
values from Tables 3 and 4, where R0 reaches its maximum value and the co-infection probabilities are
ω1 = 0.09 and ω2 = 0.06. For variations in δz , ε = 0.77 is fixed; for variations in ε, 1/δz = 15 is fixed
(Color figure online)

Fig. 7 Simulations of the basic reproduction number associated to co-infected individualsRhz for different
values of ε and δz using the parameter values from Tables 3 and 4, where R0 reaches its maximum value
and the co-infection probabilities are ω1 = 0.09 and ω2 = 0.06 (Color figure online)

within 8 to 15 days of the onset of symptoms (Patterson et al. 2016). However, for
people infected with HIV, recovery time can be prolonged. We then considered a
scenario in which the recovery times were 17, 21, and 25 days, keeping the parameter
ε fixed at 0.77. We observed that, as the mean duration of Zika increased, the burden
of co-infected individuals also increased. In fact, the more a person is infected with the
Zika virus, the greater the risk of contractingHIV. The graphs showing the variations in
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ε reinforce these findings. Indeed, by varying the parameter ε to 0.1, 0.5, and 0.6, while
keeping the parameter 1/δz fixed at 15 days, we observed that the lower the scaling
parameter, the greater the number of co-infected individuals. In otherwords, increasing
the recovery rate from Zika in co-infected individuals results in a higher number of
co-infected individuals in the population. Although the parameters ε and δz did not
have a significant impact onR0 in our results because their importance lied primarily
in Rhz , this hypothetical scenario suggests that varying these parameters in different
contexts could make them highly influential when studying the dynamics of Zika and
HIV co-infection. Therefore, in Fig. 7, we observe how the basic reproduction number
associated with co-infected individuals Rhz varies as the parameters 0 < ε < 1 and
8 < 1/δz < 25 (0.04 < δz < 0.13) remain within its real range, resulting in values
of 0 < Rhz < 0.0004 for Colombia and 0 < Rhz < 0.00045 in Brazil. It is clear
that lower values of both parameters lead to a considerable increase in Rhz , with a
particularly rapid increase when ε < 0.2. Therefore, we can conclude that the critical
values ε < 0.2 increase considerably Rhz , which means that when the duration of
Zika virus infection in co-infected people 1/εδz > 40 days, there could be a sharp
increase in the number of co-infected people.

5.3 Evaluation of Controlled Population Behaviour Over Time

To reduce the spread of ZIKV and HIV in Colombia, targeted intervention strategies
were implemented. In fact, this was a priority for the Colombian government’s Zika
strategic plan in 2016, when several measures were taken to improve surveillance
and mitigate the burden of disease ([37], Forero-Martínez et al. 2020) such as health
campaigns and funding for insecticides, larvicides and mosquito nets. In addition, to
ensure that people living with HIV in Colombia receive the care they need to stay
healthy and to reduce the risk of transmitting the virus to others, it was imperative to
improve access to laboratory tests and HIV treatment (Galindo-Quintero et al. 2014).
The use of condoms andothermethods of reducing infection should also be encouraged
as part of public health campaigns, particularly among high-risk groups. (Donoghoe
et al. 2006). Brazil has also implemented a nationwide strategy to manage Aedes
mosquito populations and to stop the spread of ZIKV. This effort includes activities
such as the use of insecticides, the elimination of stagnant water and educative public
health campaigns (Bancroft et al. 2022), which are incorporated as η1 in the epidemic
model (35). Additionally, given that it has been noted that Zika can be transmitted
sexually; condom use has been advised as a preventative measure. Brazil has also
implemented a complete strategy for HIV prevention and care (Benzaken et al. 2019).
This has involved administeringART to all HIV-positive individuals since 2013. Brazil
started a campaign to distribute condoms, encouraging condom use among vulnerable
populations. As a result, the number of deaths from AIDS in Brazil has significantly
dropped (Bastos et al. 2009; Pereira et al. 2019).

Hence, we established the hypothetical scenario depicted in Figs. 5 and 6, the set of
parameter values for whichR0 > 1 (see Fig. 2) and initial conditions stated in Table 5
(population sizes for 2015). Specifically, we assume high probabilities of co-infection
with ω1 = 0.09, ω2 = 0.06 and a recovery scale factor of ε = 0.1. The balancing
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Fig. 8 Simulations of controlling infectious population in Colombia and Brazil (Color figure online)

parameter values were taken as ci = 0.5 for i = 1, . . . , 5, and the weighting constant
values were set as di = 105 for i = 1, . . . , 3. This scenario was chosen to illustrate the
results of the control problem because it represents an extreme case where the basic
reproductive number (R0) is greater than one, indicating an outbreak of the infections.
This allows us to assess the effectiveness of control measures under conditions of high
transmission and provides a robust test of the intervention strategies.

Figure 8 shows the behaviour of the infectious compartments Iz, Ih and Ihz from
2015 to mid-2016, with and without the implementation of the three control strategies.
Overall, the implementation of the three control strategies is effective in reducing the
load of infectious individuals in both countries. However, the reduction was more
notable in individuals infected only with HIV. In the case of people infected only with
ZIKV, there was a considerable reduction in the first 100 days of activation of the
controls, which prevented the appearance of infection peaks in early 2015.

The number of people infectedwithHIV alone has been almost eliminated inBrazil,
while in Colombia there has been a substantial reduction, although less spectacular
than in Brazil. Patients infected with both HIV and ZikV were kept to minimal levels,
as the size of this group naturally decreases, whatever the intervention, due to the
limited number of individuals in this compartment.
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Fig. 9 Simulations of the behaviour of the controls in Colombia and Brazil (Color figure online)

It is interesting to observe the behaviour of the controls over the 500 days of their
implementation (see Fig. 9). In both countries, the strategy that should remain almost
100% active throughout this period is the use ofmosquito nets or repellents (protection
against Zika). Another key strategy is the use of condoms, which must be maintained
at a high level. By using condoms as the main sexual protection measure, the need for
ART is reduced because it is more cost-effective to use condoms than to administer
ART. Therefore, the implementation of the three controls proved to be an effective
strategy to reduce the burden of Zika and HIV infections in Brazil and Colombia, with
more pronounced results in HIV cases. The rapid decrease in Zika cases during the first
100 days of the measures highlighted the effectiveness of early control in preventing
outbreaks. Controls are used for co-infected individuals in both countries, but due to
their low prevalence, the impact of the strategies is less visible.

6 Discussion

The first documented cases of HIV/ZIKV co-infection in Colombia and Brazil in
2015 underscored the importance of investigating the interaction between these two
viruses. The co-circulation of both viruses in the South American and Caribbean
countries presented a significant burden for public health authorities. In this study, we
used mathematical modelling to theoretically capture the transmission dynamics of
co-infected individuals during the 2015 Zika outbreak in Colombia and Brazil. These
findings were particularly relevant given the context of the Zika outbreak coinciding
with a chronic HIV epidemic in those regions. Through a qualitative analysis and
numerical simulations of our uncontrolled mathematical model, we found that Brazil
had higher basic reproduction numbers compared to Colombia, which could be due to
its significantly larger population size compared to Colombia. In both countries, the
basic reproduction number associated with individuals infected only with HIV was
higher than for those infected only with ZIKV, while the basic reproduction number
for co-infected individuals was the lowest. The evidence indicates that controllingHIV
outbreaks may be more complex than managing Zika outbreaks. This aligns with the
fact that Zika transmission follows a seasonal pattern, whereas HIV remains persis-
tent throughout the year. Additionally, the low basic reproduction number observed
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for co-infected individuals is consistent with the limited number of co-infection cases
reported in both countries during 2015. Using sensitivity indices of the basic repro-
ductive number to parameters, it was found that for HIV transmission (Rh), the most
significant parameters were the rates of HIV transmission through sexual contact (βh)
and the average duration of the immunodeficiency period (1/σ1). ForZika transmission
(Rz), the most important parameter was the mosquito mortality rate (μm). Regard-
ing co-infection (Rhz), the critical parameters were the rates of sexual transmission
of Zika and HIV (βz and βh), and the average duration of the Zika infection (1/δz).
These results suggest that control strategies should focus on reducing the risk of sex-
ual transmission and increasing mosquito mortality. Examination of actual cases of
co-infection in Colombia and Brazil revealed that the probabilities of co-infection, ω1
and ω2, were low, while the average duration of Zika infection (1/δz) and the Zika
recovery scaling factor (ε) remained stable. However, exploration of theoretical sce-
narios showed that increasing these probabilities led to an increase in the number of
people co-infected.

Moreover, extending the duration of Zika infection increases the co-infection bur-
den, implying that a longer Zika infection period increases the chances of HIV
acquisition. Furthermore, reducing the scaling parameter ε, which denotes a slower
Zika recovery in co-infected individuals, resulted in a substantial increase in co-
infection cases. This suggests that these parameters, despite not significantly impacting
the overall basic reproduction number (R0), could play a crucial role in various con-
texts. Consequently, it is essential to account for the variability of these parameters
when investigating Zika and HIV co-infection dynamics, as critical values, such as
ε < 0.2, might cause a dramatic surge in co-infection cases, particularly when Zika
infection lasts over 40 days in immunocompromised individuals.

Regarding the implementation of three control strategies: bed nets, ART, and the
use of condoms, the study revealed that in both countries, the use of bed nets or
repellents was crucial, requiring nearly 100% activation throughout, as it effectively
prevented mosquito bites and was cost-efficient as a personal preventive measure.
Additionally, condomuse needed to bemaintained at high levels, particularly inBrazil.
In contrast, ART required less effort, as the use of condoms reduced the need for
antiretroviral medication, making it a more cost-effective strategy. Implementation of
the three controls effectively reduced the burden of Zika and HIV infections, with
more significant results in HIV cases. The sharp decline in Zika cases within the first
100 days emphasized the importance of early control to prevent outbreaks. Although
co-infected individuals were managed in both countries, their low prevalence made
the impact of these strategies less visible.

Although this study has provided valuable information, it is crucial to recognize
some limitations of its methodology. First, the study’s reliance on numerical simula-
tions with specific parameter values for Colombia and Brazil limits the generalization
of the findings to other geographic locations. Different epidemiological landscapes,
variable healthcare practices, and demographic differences between regionsmay result
in distinct patterns of Zika andHIV co-infection dynamics. Second, this study’s depen-
dence on limited historical data and assumptions about intervention effectiveness may
not fully capture the dynamic nature of evolving public health strategies. Current devel-
opments inmedical interventions, changes in public health policies, and the emergence
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of new viral variants can significantly affect the effectiveness of proposed intervention
measures. These limitations emphasize the need for caution when extending the study
findings. Further research is required to improve the applicability of mathematical
models in different scenarios and challenges in terms of public health.

This study highlighted the need for ongoing research on ZIKV and HIV/AIDS
transmission dynamics and the development of effective intervention strategies to
control and prevent their spread. Future work in this field plans to incorporate compart-
ments for women giving birth to babies with and without congenital malformations
to better understand the impact of co-infection on children. Including these com-
partments would allow for a more detailed assessment of the long-term effects of
co-infection on child health outcomes, including developmental delays, neurological
deficits, and other complications. This approach could also facilitate the development
of more specific prevention and treatment strategies for the affected children and their
families. Ultimately, this research is crucial for improving our understanding of the
complex interactions between HIV and Zika and for developing effective public health
interventions to mitigate their impact on affected individuals and communities.

A Appendices

A.1 Proof of Lemma 1 item i.

From the definition of R∗
z , we have that R∗

z = 2Rz1 + R̄z2 < 1. This immediately
implies that 2Rz1 < 1. Now, consider the alternate form ofR∗

z :R∗
z = R2

z +2Rz1(1−
Rz). Given thatR∗

z < 1, we haveR2
z + 2Rz1(1−Rz) < 1. Rewriting the inequality,

we get Rz(1 − 2Rz1) + 2Rz1 < 1.
Since 2Rz1 < 1, we can isolate Rz as

Rz(1 − 2Rz1) < 1 − 2Rz .

Because 1 − 2Rz1 > 0, dividing both sides by 1 − 2Rz1 yields Rz < 1, which
completes the proof.

A.2 Sensitivity index ofRz with respect toˇz

We provide the derivative ofRz with respect to βz , denoted as
∂Rz

∂βz
, and subsequently

computes the sensitivity index. We start with the expression for
∂Rz

∂βz
:

∂Rz

∂βz
= ∂

∂βz

⎛

⎝
βz

2μκ1
+
√
(

βz

2μκ1

)2
+ αmβmΛmμ

Λμ2
mκ1

⎞

⎠

= 1

2μ(δz + μ + μz)
+ βz

4μ2(δz + μ + μz)2

√
β2
z

4μ2(δz + μ + μz)2
+ αmβmΛmμ

Λμ2
m (δz + μ + μz)

.
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After computing this derivative, we proceed to calculate the sensitivity index:

∂Rz

∂βz

βz

Rz
= ∂Rz

∂βz

βz
.

This approach provides a quantitative measure of howRz responds to changes in βz ,
considering its relationship with other parameters in the model.

A.3 Proof of Proposition 4

All state variables and controls are non-negative and, for i = {1, 2, 3}, the set of control
variablesηi ∈ A is also convex and closed.Wenote that the boundedness of the optimal
system (35) determines the compactness for the existence of the optimal control.
Moreover, there exists a constant ν > 1, ω1 = min(d1, d2, d3), and ω2 > 0 such that

J (η) ≥ ω1||η||ν − ω2. (A.1)

Therefore, according to (Roxin and Lukes 1985), the controlled system (35) admits
an optimal control solution η∗.

A.4 Proof of Proposition 5

We have

p1
dt

= − ∂H

∂S
= p1

[
(1 − η1)β̃m + (1 − η3)(β̃c + β̃z + β̃h) + μ

]

−p2
[
(1 − η1)β̃m + (1 − η3)β̃z

]

−p3(1 − η3)β̃h − p4(1 − η3)β̃c,

p2
dt

= − ∂H

∂ Iz
= −c1 + p1(1 − η3)

βz

N
S − p2

[

(1 − η3)
βz

N
S − ω2(1 − η3)β̃h − (μz + δz + μ)

]

−p3

[

ω1(1 − η3)βz
Ih
N

]

−p4

[

ω2(1 − η3)β̃h + ω1(1 − η3)
βz

N
Ih

]

−p6δz + p7(1 − η1)αm
Sm
N

− p8(1 − η1)αm
Sm
N

,

p3
dt

= − ∂H

∂ Ih
= −c2 + p1(1 − η3)

βh

N
S + p2ω2(1 − η3)

βh

N
Iz

−p3

[

(1 − η3)
βh

N
S − ω1[(1 − η1)β̃m + (1 − η3)β̃z ]

−(1 − η2)σ1 − μ] − p4

[

ω1[(1 − η1)β̃m + (1 − η3)β̃z ] + ω2(1 − η3)
βh

N
Iz

]

−p5(1 − η2)σ1,

p4
dt

= − ∂H

∂ Ihz
= −c3 + p1(1 − η3)

(
βcβh

N
+ βz

N
+ βh

N

)

S
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−p2

(

(1 − η3)S
βz

N
− ω2(1 − η3)

βh

N
Iz

)

−p3

(

εδz + (1 − η3)
βh

N
S − ω1(1 − η3)

βz

N
Iz

)

+p4

(

ω2(1 − η3)
βh

N
Iz + ω1(1 − η3)

βz

N
Iz − εδz + (1 − η1)σ2 + μhz + μ

)

−p5(1 − η2)σ2 + p7(1 − η1)
αm

N
Sm − p8(1 − η1)

αm

N
Sm ,

p5
dt

= − ∂H

∂A
= −c5 + p5(μh + μ),

p6
dt

= − ∂H

∂R
= p6μ,

p7
dt

= − ∂H

∂Sm
= p7 ((1 − η1)α̃m + μm ) − p8(1 − η1)α̃m ,

p8
dt

= − ∂H

∂ Im
= −c4 + p1(1 − η1)

βm

N
S − p2(1 − η1)

βm

N
S

+p3ω1(1 − η1)
βm

N
Ih − p4ω1(1 − η1)

βm

N
Ih + p8μm ,

with transversality conditions pi (T ) = 0, for i = {1, 2, 3, 4, 5, 6, 7, 8}. According to
PMP, the optimal conditions are

∂H

∂η1
= d1η1 − (p2 − p1)β̃mS + (p4 − p3)ω1β̃m Ih − (p8 − p7)α̃mSm = 0,

∂H

∂η2
= d2η2 − (p5 − p3) σ1 Ih − (p5 − p4) σ2 Ihz = 0,

∂H

∂η3
= d3η3 − (p2 − p1)β̃z S − (p3 − p1)β̃h S − (p4 − p1)β̃cS

−(p4 − p3)ω1β̃z Ih − (p4 − p2)ω2β̃h Iz = 0.

Hence, we get assertions (5). This completes the proof.
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