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Objective of this part

In this set of slides, we introduce some of the basic concepts of population growth
models

We introduce some of the basic concepts of mathematical modelling and some of the
questions that will be considered during the course
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Objective

We are given a table with the population census at different time intervals between a
date a and a date b, and want to get an expression for the population. This allows us
to:

▶ compute a value for the population at any time between the date a and the date b
(interpolation)

▶ predict a value for the population at a date before a or after b (extrapolation)
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USA census from 1790 to 1910

Although we have data up to 2020, we use the data up to 1910 like Pearl & Reed (note
that there were some corrections to the census since the paper of Pearl & Reed)

Year Population

1790 3,929,326
1800 5,308,483
1810 7,239,881
1820 9,638,453
1830 12,866,020

Year Population

1840 17,069,458
1850 23,191,876
1860 31,443,321
1870 39,818,449
1880 50,189,209

Year Population

1890 62,947,714
1900 76,212,168
1910 92,228,496

p. 5 – The data – US census



Plot the data !!!

It is always a good idea to plot the data before trying to do anything with it

plot_USA_census_to_1910 =
ggplot(USA_census_to_1910, aes(x=Year, y=Population)) +
geom_line() +
geom_point() +
labs(title="US␣population␣from␣1790␣to␣1910",

x="Year",
y="Population") +

theme_minimal()
print(plot_USA_census_to_1910)
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0

25,000,000

50,000,000

75,000,000

1800 1840 1880
Year

P
op

ul
at

io
n

US population from 1790 to 1910



The data – US census

Fitting a curve to the data

Least squares problems

Population growth – The logistic equation & friends

The continuous-time Markov chain logistic “equation”

The delayed logistic equation

The logistic map



Fitting a curve to the data
Fitting a quadratic curve to the data
Some similar curves
Population curves – Gompertz



First idea – This looks quadratic!

The curve looks like a piece of a parabola. So let us “fit” a curve of the form

P(t) = a+ bt + ct2

This means we want to find coefficients a, b, c such that the curve P(t) is as close as
possible to the data points
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The data points

Year Population

1790 3,929,326
1800 5,308,483
1810 7,239,881
1820 9,638,453
1830 12,866,020

Year Population

1840 17,069,458
1850 23,191,876
1860 31,443,321
1870 39,818,449
1880 50,189,209

Year Population

1890 62,947,714
1900 76,212,168
1910 92,228,496

We have 13 data points (tk ,Pk), k = 1, . . . , 13, e.g., (t1,P1) = (1790, 3929214),
(t2,P2) = (1800, 5308483), etc.
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Some of you are familiar with this problem

If you have taken MATH 2740 (Math of Data Science), you have seen this before!

See the notes on the course website for a refresher on this problem here and the
corresponding videos here, here, here, here and here

(Sorry about the number of videos, I need to reorganize them!)

p. 10 – Fitting a curve to the data

https://julien-arino.github.io/math-of-data-science/SLIDES/MATH2740-slides-04-Canada-census.html
https://youtu.be/c8MCbAL0NFs?si=e2Q8ZgkKEyooHpo3
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https://youtu.be/v-z-QaUwdEo?si=RQ6dZYAXz_68Vi-9


To do this, we want to minimize

S =
13∑
k=1

(P(tk)− Pk)
2

where tk are the known dates, Pk are the known populations, and P(tk) = a+ btk + ct2k

The tk and Pk are known, a, b, c are to be found, so we write S as a function of a, b, c :
S(a, b, c)
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Recall your multivariable calculus:

S = S(a, b, c) =
13∑
k=1

(
a+ btk + ct2k − Pk

)2
is maximal if (necessary condition) ∂S/∂a = ∂S/∂b = ∂S/∂c = 0
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We have

∂S

∂a
= 2

13∑
k=1

(a+ btk + ct2k − Pk)

∂S

∂b
= 2

13∑
k=1

(a+ btk + ct2k − Pk)tk

∂S

∂c
= 2

13∑
k=1

(a+ btk + ct2k − Pk)t
2
k

p. 13 – Fitting a curve to the data



Thus, we want

∂S

∂a
= 0 ⇐⇒ 2

∑
13
k=1(a+ btk + ct2k − Pk) = 0

∂S

∂b
= 0 ⇐⇒ 2

∑
13
k=1(a+ btk + ct2k − Pk)tk = 0

∂S

∂c
= 0 ⇐⇒ 2

∑
13
k=1(a+ btk + ct2k − Pk)t

2
k = 0

that is ∑
13
k=1(a+ btk + ct2k − Pk) = 0∑

13
k=1(a+ btk + ct2k − Pk)tk = 0∑
13
k=1(a+ btk + ct2k − Pk)t

2
k = 0
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Rearranging the system ∑
13
k=1(a+ btk + ct2k − Pk) = 0∑

13
k=1(a+ btk + ct2k − Pk)tk = 0∑
13
k=1(a+ btk + ct2k − Pk)t

2
k = 0

we get ∑
13
k=1(a+ btk + ct2k ) =

∑
13
k=1Pk∑

13
k=1(atk + bt2k + ct3k ) =

∑
13
k=1Pktk∑

13
k=1(at

2
k + bt3k + ct4k ) =

∑
13
k=1Pkt

2
k
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∑
13
k=1(a+ btk + ct2k ) =

∑
13
k=1Pk∑

13
k=1(atk + bt2k + ct3k ) =

∑
13
k=1Pktk∑

13
k=1(at

2
k + bt3k + ct4k ) =

∑
13
k=1Pkt

2
k

after a bit of tidying up, takes the form(
13∑
k=1

1

)
a+

(
13∑
k=1

tk

)
b +

(
13∑
k=1

t2k

)
c =

13∑
k=1

Pk(
13∑
k=1

tk

)
a+

(
13∑
k=1

t2k

)
b +

(
13∑
k=1

t3k

)
c =

13∑
k=1

Pktk(
13∑
k=1

t2k

)
a+

(
13∑
k=1

t3k

)
b +

(
13∑
k=1

t4k

)
c =

13∑
k=1

Pkt
2
k
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So the aim is to solve the linear system
13

13∑
k=1

tk
13∑
k=1

t2k

13∑
k=1

tk
13∑
k=1

t2k
13∑
k=1

t3k

13∑
k=1

t2k
13∑
k=1

t3k
13∑
k=1

t4k


a
b
c

 =



13∑
k=1

Pk

13∑
k=1

Pktk

13∑
k=1

Pkt
2
k


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With R, this is easy to solve..?
> t = as.double(USA_census_to_1910$Year)
> pop = as.double(USA_census_to_1910$Population)
> A = matrix(c(13, sum(t), sum(t^2),
+ sum(t), sum(t^2), sum(t^3),
+ sum(t^2), sum(t^3), sum(t^4)),
+ nrow=3,byrow=TRUE)
> b = c(sum(pop),
+ sum(pop * t),
+ sum(pop * t^2))
> sol = try(solve(A,b))
> writeLines(sol)

Error in solve.default(A, b) :
system is computationally singular: reciprocal condition number = 1.11839e-20

p. 18 – Fitting a curve to the data



So we need to do some “time shifting”: the problem is that some of the entries are too
large
> t = t - 1790
> A = matrix(c(13, sum(t), sum(t^2),
+ sum(t), sum(t^2), sum(t^3),
+ sum(t^2), sum(t^3), sum(t^4)),
+ nrow=3,byrow=TRUE)
> b = c(sum(pop),
+ sum(pop * t),
+ sum(pop * t^2))
> sol = try(solve(A,b))
> print(sol)

[1] 5544964.000 -109242.513 6849.346
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Thus
P(t) = 5544964 − 109243t + 6849t2

(keeping in mind that time is here shifted and starts at 0)

So we define the function
> sol_plot = function(t, sol) {
+ t = t - 1790
+ return(sol[1] + sol[2]*t + sol[3]*t^2)
+ }
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Form the vector of errors, and compute sum of errors squared:
> t = USA_census_to_1910$Year
> P = USA_census_to_1910$Population
> E = sum((P - sol_plot(t, sol))^2)

Quite a large error (9,256,979,482,173), which is normal since we have used actual
numbers, not thousands or millions of individuals, and we are taking the square of the
error
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Now for the big question...

How does our formula do for present times?

> format(sol_plot(2024, sol), big.mark = ",")

[1] "355,024,999"

Actually, quite well: 355,024,999, compared to the 345,786,196 September 2024
estimate, overestimates the population by 9,238,803, a relative error of 2.67%
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The US population from 1790 to 2020 (revised numbers)

Year Population

1790 3,929,326
1800 5,308,483
1810 7,239,881
1820 9,638,453
1830 12,866,020

1840 17,069,458
1850 23,191,876
1860 31,443,321
1870 39,818,449
1880 50,189,209

Year Population

1890 62,947,714
1900 76,212,168
1910 92,228,496
1920 106,021,537
1930 122,775,046

1940 132,164,569
1950 150,697,361
1960 179,323,175
1970 203,302,031
1980 226,545,805

Year Population

1990 248,709,873
2000 281,421,906
2010 308,745,538
2020 331,449,281
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How does our formula do for present times?

> format(sol_plot(2024, sol_full), big.mark = ",")

[1] "345,749,152"

Actually, quite well: 345,749,152, compared to the 345,786,196 September 2024
estimate, underestimates the population by -37,043.51, a relative error of -0.01%
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Other similar approaches

Pritchett, 1891:
P = a+ bt + ct2 + dt3

(we have done this one, and found it to be quite good too)

Pearl, 1907:
P(t) = a+ bt + ct2 + d ln t

Finds
P(t) = 9, 064, 900 − 6, 281, 430t + 842, 377t2 + 19, 829, 500 ln t.
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The logistic curve

Pearl and Reed try

P(t) =
beat

1 + ceat

or
P(t) =

b

e−at + c

p. 30 – Fitting a curve to the data



What is wrong with the logistic equation here?

▶ The carrying capacity is constant

▶ The model does not take immigration into account (for the US, this is an
important component)

p. 31 – Fitting a curve to the data
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A.k.a. if the Math Dept was less #$%&, you’d know this

The following are a brief extract from MATH 2740 slides...
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The least squares problem (simplest version)

Definition 1
Given a collection of points (x1, y1), . . . , (xn, yn), find the coefficients a, b of the line
y = a+ bx such that

∥e∥ =
√
ε2
1 + · · ·+ ε2

n =
√
(y1 − ỹ1)2 + · · ·+ (yn − ỹn)2

is minimal, where ỹi = a+ bxi for i = 1, . . . , n

We just saw how to solve this by brute force using a genetic algorith to minimise ∥e∥,
let us now see how to solve this problem “properly”

p. 35 – Least squares problems



For a data point i = 1, . . . , n

εi = yi − ỹi = yi − (a+ bxi )

So if we write this for all data points,

ε1 = y1 − (a+ bx1)

...
εn = yn − (a+ bxn)

In matrix form
e = b − Ax

with

e =

ε1
...
εn

 ,A =

1 x1
...

...
1 xn

 , x =

(
a
b

)
and b =

y1
...
yn


p. 36 – Least squares problems



The least squares problem (reformulated)

Definition 2 (Least squares solutions)

Consider a collection of points (x1, y1), . . . , (xn, yn), a matrix A ∈ Mmn, b ∈ Rm. A
least squares solution of Ax = b is a vector x̃ ∈ Rn s.t.

∀x ∈ Rn, ∥b − Ax̃∥ ≤ ∥b − Ax∥

p. 37 – Least squares problems



Needed to solve the problem

Definition 3 (Best approximation)

Let V be a vector space, W ⊂ V and v ∈ V . The best approximation to v in W is
ṽ ∈ W s.t.

∀w ∈ W ,w ̸= ṽ, ∥v − ṽ∥ < ∥v − w∥

Theorem 4 (Best approximation theorem)

Let V be a vector space with an inner product, W ⊂ V and v ∈ V . Then projW (v) is
the best approximation to v in W

p. 38 – Least squares problems



Let us find the least squares solution

∀xRn, Ax is a vector in the column space of A (the space spanned by the vectors
making up the columns of A)

Since x ∈ Rn, Ax ∈ col(A)

=⇒ least squares solution of Ax = b is a vector ỹ ∈ col(A) s.t.

∀y ∈ col(A), ∥b − ỹ∥ ≤ ∥b − y∥

This looks very much like Best approximation and Best approximation theorem
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Putting things together

We just stated: The least squares solution of Ax = b is a vector ỹ ∈ col(A) s.t.

∀y ∈ col(A), ∥b − ỹ∥ ≤ ∥b − y∥

We know (reformulating a tad):

Theorem 5 (Best approximation theorem)

Let V be a vector space with an inner product, W ⊂ V and v ∈ V . Then
projW (v) ∈ W is the best approximation to v in W, i.e.,

∀w ∈ W ,w ̸= projW (v), ∥v − projW (v)∥ < ∥v − w∥

=⇒ W = col(A), v = b and ỹ = projcol(A)(b)

p. 40 – Least squares problems



So if x̃ is a least squares solution of Ax = b, then

ỹ = Ax̃ = projcol(A)(b)

We have
b − Ax̃ = b − projcol(A)(b) = perpcol(A)(b)

and it is easy to show that
perpcol(A)(b) ⊥ col(A)

So for all columns ai of A
ai · (b − Ax̃) = 0

which we can also write as aT
i (b − Ax̃) = 0
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For all columns ai of A,
aT
i (b − Ax̃) = 0

This is equivalent to saying that

AT (b − Ax̃) = 0

We have

AT (b − Ax̃) = 0 ⇐⇒ ATb − ATAx̃ = 0

⇐⇒ ATb = ATAx̃

⇐⇒ ATAx̃ = ATb

The latter system constitutes the normal equations for x̃
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Least squares theorem

Theorem 6 (Least squares theorem)

A ∈ Mmn, b ∈ Rm. Then
1. Ax = b always has at least one least squares solution x̃
2. x̃ least squares solution to Ax = b ⇐⇒ x̃ is a solution to the normal equations

ATAx̃ = ATb
3. A has linearly independent columns ⇐⇒ ATA invertible.

In this case, the least squares solution is unique and

x̃ =
(
ATA

)−1
ATb

We have seen 1 and 2, we will not show 3 (it is not hard)
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Suppose we want to fit something a bit more complicated..

For instance, instead of the affine function

y = a+ bx

suppose we want to do the quadratic

y = a0 + a1x + a2x
2

or even
y = k0e

k1x

How do we proceed?

p. 44 – Least squares problems



Fitting the quadratic

We have the data points (x1, y1), (x2, y2), . . . , (xn, yn) and want to fit

y = a0 + a1x + a2x
2

At (x1, y1),
ỹ1 = a0 + a1x1 + a2x

2
1

...
At (xn, yn),

ỹn = a0 + a1xn + a2x
2
n

p. 45 – Least squares problems



In terms of the error

ε1 = y1 − ỹ1 = y1 − (a0 + a1x1 + a2x
2
1 )

...

εn = yn − ỹn = yn − (a0 + a1xn + a2x
2
n )

i.e.,
e = b − Ax

where

e =

ε1
...
εn

 ,A =

1 x1 x2
1

...
...

...
1 xn x2

n

 , x =

a0
a1
a2

 and b =

y1
...
yn


Theorem 6 applies, with here A ∈ Mn3 and b ∈ Rn
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Fitting the exponential

Things are a bit more complicated here

If we proceed as before, we get the system

y1 = k0e
k1x1

...

yn = k0e
k1xn

ek1xi is a nonlinear term, it cannot be put in a matrix

However: take the ln of both sides of the equation

ln(yi ) = ln(k0e
k1xi ) = ln(k0) + ln(ek1xi ) = ln(k0) + k1xi

If yi , k0 > 0, then their ln are defined and we’re in business..
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ln(yi ) = ln(k0) + k1xi

So the system is

y = Ax + b

with

A =

x1
...
xn

 , x =
(
k1
)
,b =

(
ln(k0)

)
and y =

ln(y1)
...

ln(yn)



p. 48 – Least squares problems
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Ordinary differential equations

Let t be an independent variable (often time) and x(t) ∈ Rn a dependent variable

An ordinary differential equation (ODE) is an equation of the form

d

dt
x(t) = f (t, x(t))

where f : R× Rn → Rn is a given function that describes how x(t) changes with t

Some equations involve higher order derivatives, but we will not consider any here so we
do not present them

p. 49 – Population growth – The logistic equation & friends



Initial value problems

An initial value problem (IVP) is an ODE with an initial condition (IC)

d

dt
x(t) = f (t, x(t)) (1a)

x(t0) = x0 (1b)

where t0 ∈ R is the initial time and x0 ∈ Rn is the initial value

In practice, solutions to (1a) form families of curves and the initial condition (1b) allows
to pick one of these curves
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Classification of ODEs

If f (t, x(t)) = f (x(t)), i.e., the function f does not depend on t, the ODE is
autonomous

Most of what we consider here will be autonomous, so assume that for now

If f (x(t)) is linear in x(t), the ODE is linear
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Simplifying notation

We often drop the time dependence of x on t and write ′ for d/dt. Further taking into
account that f is autonomous, we write (1) as

x ′ = f (x) (2a)
x(t0) = x0 (2b)
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Existence and uniqueness of solutions

There is a theory that studies the existence and uniqueness of solutions to (2); see, e.g.,
MATH 3440 (Ordinary Differential Equations)

Here, we take a shortcut and use one of the easiest forms

Theorem 7 (Existence and uniqueness of solutions to IVPs)

If f is C 1 (has continuous first-order partials) in x , then there exists a unique solution
to (2) in some interval [t0 − ε, t0 + ε] for some ε > 0

(Also works for nonautonomous equations)
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Studying ODE/IVP

In short, there are three non-mutually exclusive ways to tackle an IVP such as (1) or (2)

1. Analytically: find a formula for x(t)

2. Numerically: approximate x(t)

3. Qualitatively: study the behaviour of x(t) without finding x(t)

Don’t expect to be able to do 1 more than a few times in this course (or anywhere for
that matter!); so we mention it but focus on 2 and 3
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Solutions to scalar autonomous ODE are monotone

Theorem 8
Consider an IVP of the form (2) where f : R → R, i.e., where the ODE is scalar
autonomous.

Then solutions to (2) are monotone, in the sense that if we denote ϕ1(t) and ϕ2(t) the
solutions through (t0, x(t0) = x1) and (t0, x(t0) = x2), respectively, with x1 ≤ x2, then

ϕ1(t) ≤ ϕ2(t), t ≥ t0

This is useful in the present slide set, since the ODEs we consider are scalar autonomous
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Our goal: the logistic ODE

The logistic curve mentioned by Pearl and Reed is the solution to the logistic ODE

d

dt
N(t) = rN(t)

(
1 − N(t)

K

)
often denoted without the time dependence and using ′ for d/dt

N ′ = rN

(
1 − N

K

)
(3)

r is the intrinsic growth rate, K is the carrying capacity

This equation was introduced by Pierre-François Verhulst (1804-1849) in 1844
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Deriving the logistic equation

Our aim here is to derive (3) from first principles

This illustrates the mathematical modelling process when using a differential equations
approach
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The birth-death process

The simplest model for population growth is the birth-death process

Let N(t) (N for short if unambiguous) be the total number of individuals in an isolated
population at time t

Neglecting all other sources of change, N is
▶ positively influenced (increases) because of births into the population
▶ negatively influenced (decreases) because of deaths in the population
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Where ODEs come in

We said N increases/decreases because of births/deaths...

This sounds a lot like what derivatives do. Remember first-year calculus: if f (x) is a
function R → R, then f is increasing at x if f ′(x) > 0 and decreasing at x if f ′(x) < 0

Returning to N(t), we thus should have N ′(t) > 0 because of births and N ′(t) < 0
because of deaths

Intuitively, if births happen more often than deaths, the population should increase,
while if deaths are more frequent than births, it should decrease
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The birth-death equation

Assume that

▶ birth happens at the per capita rate b

▶ death happens at the per capita rate d
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Rates constant per capita versus “just” constant

Birth increases the population, so

N ′ = b(N)

with b(N) : R+ → R+ the birth rate function

Two easiest choices, for b ∈ R+ \ {0}:
1. b(N) = b, a constant
2. b(N) = bN, a linear function of N (a per capita rate, for which N ′/N is constant)
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An example (2022-06-01 to 2023-06-01)

Suppose time units are years. Consider data from regional health authorities and assume
that the number of kids under 1 year old is a good proxy for the number of births

Portage la Prairie Winnipeg

Population 16,389 832,214
Births (raw number) 176 7,574
Births (per capita) 0.0107 0.0091

If b(N) = b, we should use b = 176 for PlP and b = 7, 574 for Winnipeg. On the other
hand, if b(N) = bN, we should use b = 0.0107 for PlP and b = 0.0091 for Winnipeg..
so could get by with b = 0.01 for both
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Per capita is typically more realistic

It is more realistic to assume that the birth rate is proportional to the population size,
because that means that the parameter b is a property of the species more so than of
where they are located

Note that there are important differences, though: birth rates are generally consistent
across a country (and even that varies), but differ from country to country

We will see later in the course that using a constant birth rate can be feasible as well,
once we understand its role on the model behaviour
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Modelling assumptions

Modelling is all about making assumptions and understanding the consequences of
these assumptions

Use the per capita rate bN for births and the per capita rate dN for deaths

This gives the birth-death model

N ′ = bN − dN

This model must be “equiped” with an initial condition, e.g. N(t0) = N0 ≥ 0
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The birth-death model

All things considered, the model for the population with only birth and death is
therefore

N ′ = bN − dN (4a)
N(t0) = N0 (4b)
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Compartmental models and flow diagrams

The birth-death equation is a compartmental model using a single compartment N(t)

A compartment is defined as a kinetically homogeneous group of individuals

A flow diagram is a graphical representation of a compartmental model

N
bN dN
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What can we say about model (4)?
(4a) is a scalar first-order linear autonomous ODE ⇒ we easily find the explicit solution

N(t) = N(t0)e
(b−d)(t−t0), t ≥ t0 (5)

To check that (5) is a solution to (4), we differentiate it and check it satisfies (4a); we
also check it satisfies (4b):

N ′(t) =
d

dt

(
N(t0)e

(b−d)(t−t0)
)

= N(t0)
d

dt

(
e(b−d)(t−t0)

)
= N(t0)(b − d)e(b−d)(t−t0)

= (b − d)N(t0)e
(b−d)(t−t0)

= (b − d)
(
N(t0)e

(b−d)(t−t0)
)

= (b − d)N(t)

N(t0) = N(t0)e
(b−d)(t0−t0) = N(t0)e

0 = N0
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So the behaviour is easy to understand

N(t) = N(t0)e
(b−d)(t−t0), t ≥ t0 (5)

For t > t0, t − t0 > 0, so the behaviour of (5) is determined by the sign of b − d

▶ If b > d , then N(t) grows exponentially
▶ If b = d , then N(t) remains constant (and equal to N(t0))
▶ If b < d , then N(t) decays exponentially to 0

This analysis is possible because we have the explicit solution (5). That is almost never
the case, so what can we do?
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Qualitative analysis

As remarked earlier, (4a) is a scalar first-order linear autonomous ODE, so the
qualitative analysis is also super easy, but the ideas that follow are general and are used
later in more complex models

▶ Check that the model “makes sense” (we sometimes say that the model is
well-posed)

▶ Seek an equilibrium solution (an equilibrium for short), i.e., a constant solution
N(t) = N∗ such that N ′ = 0 when N(t) = N∗

▶ Consider the sign of N ′ for N < N∗ and N > N∗ to determine the stability of the
equilibrium solution
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First, a remark – The model makes sense

The model (4) makes sense only if its solutions exist uniquely and N(t) ≥ 0 for all
t ≥ t0

The existence and uniqueness of solutions is guaranteed by Theorem 7, since the
function f (N) = bN − dN is C 1 (it is actually C∞)

Now remark that if N(t0) = 0, then N(t) = 0 for all t ≥ t0 because
N ′ = bN − dN = 0 for N = 0

Now suppose that N(t0) > 0. Then there does not exist t⋆ > t0 such that N(t⋆) = 0.
If there were, then at t⋆ we would have two solutions such that N(t⋆) = 0: the one that
is identically 0 and the one that starts with N(t0) > 0, contradicting uniqueness of
solutions
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N(t)

t0 t⋆
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Equilibrium

An equilibrium solution N∗ satisfies N∗ ′ = 0, i.e.,

bN∗ − dN∗ = 0

This gives N∗ = 0 or b = d

If b = d , then (4a) reduces to N ′ = 0, which has the general solution N(t) = C (C the
integration constant), so, with the initial condition (4b), we have N(t) = N0 for all
t ≥ t0

So let us now consider the case b ̸= d and N∗ = 0
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Stability of the equilibrium N∗ = 0

Write the ODE (4a) as
N ′ = f (N)

to emphasise that f (N) = bN − dN is the right-hand side of the ODE

We have seen that if we start with N(t0) = 0, then N(t) = 0 for all t ≥ t0 so assume
N(t0) > 0. This means that N(t) > 0 for all t ≥ t0

As a consequence, the sign of f (N) is the same as the sign of b − d

▶ If b > d , then f (N) > 0
▶ If b = d , then f (N) = 0
▶ If b < d , then f (N) < 0

p. 73 – Population growth – The logistic equation & friends



The situation

▶ If b > d , then f (N) > 0 ⇒ N(t) is increasing for all t ≥ t0 ⇒ N(t) → ∞ as
t → ∞

▶ If b = d , then f (N) = 0 ⇒ N(t) = N0 for all t ≥ t0

▶ If b < d , then f (N) < 0 ⇒ N(t) is decreasing for all t ≥ t0 ⇒ N(t) → 0 as
t → ∞, since we have also seen that N(t) > 0 for all t ≥ t0 when N(t0) > 0
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Deriving the logistic equation

The birth-death model does not account for the fact that (competitive) interactions
between individuals reduces their ability to survive, potentially resulting in death

For instance, resources are limited

This gives
N ′ = bN − dN − competition
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Accounting for competition

Competition describes the mortality that occurs when two individuals meet
▶ In chemistry, if there is a concentration X of one product and Y of another

product, then XY , called mass action, describes the number of interactions of
molecules of the two products

▶ Here, we assume that X and Y are of the same type (individuals). So there are N2

contacts
▶ These N2 contacts lead to death of one of the individuals at the rate c

Therefore, the logistic equation is

N ′ = bN − dN − cN2 (6)
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Flow diagram(s) of the logistic equation

N ′ = bN − dN − cN2 (6)

N
bN dN + cN2

N
bN

dN

cN 2

(Left is more compact. Right emphasises that there are two different ways to leave the
compartment)
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Reinterpreting the logistic equation

The equation
N ′ = bN − dN − cN2 (6)

is rewritten as
N ′ = (b − d)N − cN2

▶ b − d represents the rate at which the population increases (or decreases) in the
absence of competition. It is called the intrinsic growth rate of the population

▶ c is the rate of intraspecific competition. The prefix intra refers to the fact that
the competition is occurring between members of the same species, that is, within
the species
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Yet aother interpretation of the logistic equation

We have
N ′ = (b − d)N − cN2

Factor out an N:
N ′ =

(
(b − d)− cN

)
N

This gives us another interpretation of the logistic equation. Writing

N ′

N
= (b − d)− cN

we have the per capita growth rate N ′/N given by a constant b − d minus a density
dependent inhibition factor cN
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Obtaining the well-known form (3)

N ′ = (b − d)N − cN2

=
(
(b − d)− cN

)
N

=
(
r − r

r
cN
)
N with r = b − d the growth rate

= rN
(
1 − c

r
N
)

= rN

(
1 − N

K

)
with c/r = 1/K

K = r/c is the carrying capacity
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Another interpretation of the logistic equation (3)

Think in terms of the per capita growth rate and rewrite slightly the equation

N ′ = rN

(
1 − N

K

)
as

N ′

N
= r

K − N

K

This gives a more intuitive understanding of the role of K in regulating the population:
when N is smaller than K , the population grows, when N is larger than K , the
population decreases

The parameter r sets how fast this regulation occurs
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Units

It is important, especially later when we look at numerics, to understand the units of
the parameters

On the left, dN(t)/dt has units of N/t (or #/t), i.e., population per unit time

Consider three potential right hand sides, e.g., for death

N ′ = −d , N ′ = −dN & N ′ = −dN2

First case: d has units of #/t. Second case, d has units of 1/t (since dN has units #/t
with N having units #). Third case, d has units of 1/(t#) (since N2 has units of ##)
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Several ways to tackle this equation

1. The equation is separable [explicit method]

2. The equation is a Bernoulli equation [explicit method]

3. Use qualitative analysis

4. Use numerical methods
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Studying the logistic equation qualitatively

We study

N ′ = rN

(
1 − N

K

)
(3)

For this, write

f (N) = rN

(
1 − N

K

)
Consider the initial value problem consisting of (3) and an initial condition

N ′ = f (N), N(0) = N0 > 0 (7)

▶ f is C 1 so solutions to (7) exist and are unique
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Equilibria of the logistic equation

Equilibria of (3) are points such that f (N) = 0. So we solve f (N) = 0 for N:

rN

(
1 − N

K

)
= 0 ⇐⇒ rN = 0 or 1 − N

K
= 0

So we find two points:
▶ N = 0
▶ N = K

By uniqueness of solutions to (7), solutions cannot cross the lines (solutions) N(t) = 0
and N(t) = K
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Several cases

▶ N = 0 for some t, then N(t) = 0 for all t ≥ 0, by uniqueness of solutions

▶ N ∈ (0,K ), then rN > 0 and N/K < 1 so 1 − N/K > 0, which implies that
f (N) > 0. As a consequence, N(t) increases if N ∈ (0,K )

▶ N = K , then rN > 0 but N/K = 1 so 1−N/K = 0, which implies that f (N) = 0.
As a consequence, N(t) = K for all t ≥ 0, by uniqueness of solutions

▶ N > K , the rN > 0 and N/K > 1, implying that 1 − N/K < 0 and in turn,
f (N) < 0. As a consequence, N(t) decreases if N ∈ (K ,+∞)
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Stability of the equilibria

N

N ′
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Theorem 9
Consider the initial value problem (7). Then
▶ If N0 = 0, then N(t) = 0 for all t ≥ t0
▶ If N0 > 0, then N(t) is such that

lim
t→∞

N(t) = K

so that K is the number of individuals that the environment can support, the
carrying capacity of the environment

We could be more precise and break up the second case depending on whether N0 < K ,
N0 = K or N0 > K , but the end result is the same
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Including an Allee effect

Logistic equation assumes that when the population is less than the carrying capacity,
the population grows. But what if the population is too small?

There may not be enough individuals to find mates, or to find food, or to protect
themselves from predators. This is an Allee effect
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Logistic equation with an Allee effect

N ′ = rN

(
N

A
− 1
)(

1 − N

K

)
(8)

▶ r > 0 growth rate
▶ K > 0 carrying capacity
▶ A > 0 Allee threshold
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Stability of the equilibria

N

N ′
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Deriving the Gompertz growth model – Assumptions

Let us think for instance about the growth of a tumour

Solid tunours grow by cell division, and the rate of cell division is proportional to the
number of cells present

Solid tumours do not grow exponentially with time

As the tumour becomes larger, the doubling time of total tumour volume increases
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The Gompertz growth model – V1.0

Let x(t) be the volume of dividing cells at time t, with α, k > 0 constants

x ′ = ke−αtx (9)

This is a nonautonomous ODE, harder to study than autonomous ODEs

p. 93 – Population growth – The logistic equation & friends



Eliminating time-dependence

Remember what you have probably heard about General Relativity: time is just another
dimension. Any nonautonomous ODE can be transformed into an autonomous one, just
with one more dimension

Let τ be the “new time”, then (9) becomes

d

dτ
x = ke−αtx

d

dτ
t = 1
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Another method

Let a(t) = ke−αt , then (9) becomes

d

dt
x = a(t)x (10a)

d

dt
a = −αa(t) (10b)
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Gompertz growth model

N ′ = rN ln

(
K

N

)
(11)
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Stability of the equilibria

N

N ′
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Tumor growth

N ′ = rNe−bN (12)

▶ r > 0 growth rate
▶ > 0
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Stability of the equilibria

N

N ′
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Solutions are always increasing, so N(t) → ∞ as t → ∞

However, the rate of growth decreases as N increases
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Logistic model with harvesting

N ′ = rN

(
1 − N

K

)
− H (13)

▶ r > 0 growth rate
▶ K > 0 carrying capacity
▶ H > 0 harvest rate

p. 101 – Population growth – The logistic equation & friends



Stability of the equilibria

N

N ′

p. 102 – Population growth – The logistic equation & friends



Solutions can become negative, so to make the model realistic, we want to ensure that
the lower equilibrium (left red point in the plot) is nonpositive

Solving for equilibria, we get

N⋆ =
Kr ±

√
rK (rK − 4H)

2r

So we want rK − 4H ≥ 0 and rK −
√

rK (rK − 4H) ≤ 0
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However

rK −
√
rK (rK − 4H) ≤ 0 ⇐⇒ rK ≤

√
rK (rK − 4H)

⇐⇒ r2K 2 ≤ rK (rK − 4H)

⇐⇒ rK ≤ rK − 4H

which is only true for H = 0 when H ≥ 0

So the model always has some solutions that go to −∞ as t → ∞, even with positive
initial conditions, when H > 0 and N(0) < N⋆

min (the smallest of the two equilibria)
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Motivation of the problem

Qualitative methods provide us with an understanding of the behaviour of an ODE
model

Typically, we obtain information about what happens as t → ∞

What happens during transients? Much (much much!) harder mathematical problem.
Even for such simple objects as ODEs, we don’t know much

⇒ It is useful to be able to approximate solutions numerically
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Guiding principle

Let x(t) be a solution to the IVP

d

dt
x(t) = f (t, x(t)) (1a)

x(t0) = x0 (1b)

By construction, at each (t, x) ∈ R× Rn, x(t) is tangent to f (t, x), since x ′ = f (t, x)

Use this to construct an approximation to the solution
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Euler’s method

Suppose x(t) ∈ R and f : R× R → R, i.e., we have a scalar ODE. Then the derivative
of x(t) takes the form

x ′(t) =
d

dt
x(t) = lim

h→0

x(t + h)− x(t)

h

This equals the right hand side, i.e.,

lim
h→0

x(t + h)− x(t)

h
= f (t, x(t))

Instead of letting h → 0, consider a set value of h > 0

x(t + h)− x(t)

h
= f (t, x(t)) ⇐⇒ x(t + h) = x(t) + h f (t, x(t))
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Example for birth-death model

Model (4) is autonomous, so f (t, x) ≡ f (x) for all t

For simplicity, let t0 = 0. Consider an IC N(0) = N0. Fix h > 0

Solution is then a sequence of times t0, t1 = t0 + h, t2 = t1 + h = t0 + 2h, . . . , and, for
i = 0, 1, . . ., of states

N1+1 = Ni + h f (Ni )

= Ni + h(bNi − dNi )

= (1 + hb − hd)Ni
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Example for birth-death model

t = c(0)
N = c(1)
b = 0.1
d = 0.05
h = 0.2
t_f = 50
while (t[length(t)] <= t_f) {

N = c(N, (1+h*b-h*d)*N[length(N)])
t = c(t, t[length(t)]+h)

}
plot(t,N,

type = "l", lwd = 2,
main = "Solution␣of␣the␣birth-death␣ODE␣using␣Euler’s␣method",
xlab = "Time␣(days)")
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The step-size is important

Clearly, we have the “true” solution if we let h → 0. To show the influence of the step
size, let us make a function that allows us to easily change all parameters involved in
the numerical solution

We will then call it with different values of h
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Example for birth-death model

Euler_approximation_Malthus = function(p,
t_0 = 0, N_0 = 1,
h = 0.5, t_f = 50) {

t = c(t_0)
N = c(N_0)
while (t[length(t)] <= t_f) {

N = c(N, (1+h*p$b-h*p$d)*N[length(N)])
t = c(t, t[length(t)]+h)

}
OUT = data.frame(t = t, N = N)
return(OUT)

}
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Default values of function arguments in R

Note what we did when defining the function

Euler_approximation_Malthus = function(p,
t_0 = 0, N_0 = 1,
h = 0.5, t_f = 50) {

...
}

This means that we have indicated default values for some of the parameters. If such a
default value is provided, then unless a value is specified, the default value is used
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Using lists in R

At this point, it not super important to do that, but when things become more
complicated later in the course, it will be useful to pass parameters to the differential
equation solvers using R lists

p = list()
p$b = 0.1
p$d = 0.05
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Plotting a few cases

sol1 = Euler_approximation_Malthus(p, h = 0.01)
sol2 = Euler_approximation_Malthus(p)
sol3 = Euler_approximation_Malthus(p, h = 1)
sol4 = Euler_approximation_Malthus(p, h = 5)
plot(sol1$t, sol1$N,

type = "l", lwd = 2,
main = "Solution␣of␣the␣birth-death␣ODE␣using␣Euler’s␣method",
xlab = "Time␣(days)")

lines(sol2$t, sol2$N, type = "l", lwd = 2, col = "red")
lines(sol3$t, sol3$N, type = "l", lwd = 2, col = "darkgreen")
lines(sol4$t, sol4$N, type = "l", lwd = 2, col = "blue")
legend("topleft",

legend = c("h=0.01", "h=0.5", "h=1", "h=5"),
lty = 1, lwd = 2,
col = c("black", "red", "darkgreen", "blue"))
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There are more complex algorithms

Here, we have considered one of the simplest possible ODEs: a scalar linear
autonomous one

If there is more than one equation or if the equations are nonlinear, then the situation is
more complex

Euler often performs poorly in this case (see Logistic map later in these slides)

There are many other algorithms that are more efficient and accurate

The “philosophy” of the algorithms is the same, though: approximate the solution by
taking small steps using the vector field
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Numerical ODE “solvers” in R

There are many packages in R that can solve ODEs

The most popular one is deSolve. Among other reasons:

Functions that solve initial value problems of a system of first-order ordinary
differential equations (’ODE’), of partial differential equations (’PDE’), of dif-
ferential algebraic equations (’DAE’), and of delay differential equations. The
functions provide an interface to the FORTRAN functions ’lsoda’, ’lsodar’,
’lsode’, ’lsodes’ of the ’ODEPACK’ collection, to the FORTRAN functions
’dvode’, ’zvode’ and ’daspk’ and a C-implementation of solvers of the ’Runge-
Kutta’ family with fixed or variable time steps.

This means you are using very efficient and well-tested algorithms. E.g., ODEPACK is
LLNL’s library for ODEs from ... 1982!

p. 118 – Population growth – The logistic equation & friends



Side note – Old ̸= bad (for numerics at least)

The fact that the algorithms are old does not mean they are bad. In fact, the opposite
is true

In days of yore, computers were much slower, had less memory, and were less reliable.
This means that the algorithms had to be very efficient and robust

Apollo Guidance Computer (Lunar lander, 1966–1975): ran on a 2.048 MHz computer
with 2,048 16-bits words RAM & 36,864 16-bits words ROM

Voyager 1 & 2 (1977): now in interstellar space, still running on a computer with
250,000 instructions per second, 8 KB of RAM, and 64 KB of ROM
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Using a numerical ODE solver

Process is almost always the same

1. Write a function that returns the value of f (t, x , p) (where p are the parameters of
the model) at a given point (t, x , p)

2. Set initial conditions and interval of time on which the solution (approximation) is
desired

3. Call solver with reference to the function, time interval and parameters

Additionally, some solvers work better or faster if you also provide the Jacobian of your
system (see later in the course)
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Some considerations that will make more sense later

Type of time step –
▶ Fixed time step
▶ Variable (adaptive) time step

If you come from the MatLab world, you are used to adaptive time step: time output of
ode45 and other methods is usually the vector at which the solution was computed ̸=
deSolve in R, where time (and resulting solution) is interpolated to desired output
time points

Nonstiff versus stiff methods – Some problems are stiff (roughly: they don’t handle
numerical imprecision well) and require specific (and more computationally costly)
methods. lsoda, the default method in deSolve, automatically switches between
nonstiff and stiff algorithms
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The birth-death model

if (!require(deSolve)) {
install.packages("deSolve")
library(deSolve)

}
rhs_Malthus <- function(t, N, p) {

with(as.list(p), {
dN <- (b-d) * N
return(list(dN))

})
}
p = list()
p$b = 0.1
p$d = 0.05
IC = c(N = 1)
tspan = 0:100
sol = ode(y = IC, times = tspan, func = rhs_Malthus, parms = p)
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Explanation (1)

if (!require(deSolve)) {
install.packages("deSolve")
library(deSolve)

}

This loads the deSolve package. Another command could be library(deSolve)

require is a little bit more flexible: it returns a logical value indicating whether the
package was successfully loaded or not. This is useful in scripts, as used here: if the
package is not installed, it will be installed and loaded
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Explanation (2)

rhs_Malthus <- function(t, N, p) {
with(as.list(p), {

dN <- (b-d) * N
return(list(dN))

})
}

The right hand side function. For a given point (t,N, p), returns (b − d)N, i.e., N ′

Note the as.list(p) command. We could instead use p$b and p$d, but this
“unpacks” the variable p into its components that can then be used without the $ sign

Note also that in this case, the return command must occur within the with command
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Explanation (3)

p = list()
p$b = 0.1
p$d = 0.05
IC = c(N = 1)
tspan = 0:100

Here, we setup the list of parameters, set initial conditions and the time span over
which we want to solve the ODE

Note that the initial condition is a named vector, even if it is a single value. This is
useful: if passed a named vector as IC, the solver will return a named matrix with the
solution
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Explanation (4)

sol = ode(y = IC, times = tspan, func = rhs_Malthus, parms = p)

Finally, a call to the solver itself. There are many options to the call, but the most
basic are those here: initial conditions, the time span, the function and the parameters
(the latter is optional)

> head(sol, 5)

time N
[1,] 0 1.000000
[2,] 1 1.051273
[3,] 2 1.105172
[4,] 3 1.161835
[5,] 4 1.221404
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RHS – logistic equation(s)

rhs_logistic <- function(t, N, p) {
with(as.list(p), {

dN <- r * N * (1 - N/K)
return(list(dN))

})
}
rhs_logistic_Allee <- function(t, N, p) {

with(as.list(p), {
dN <- r * N * (N/A - 1) * (1 - N/K)
return(list(dN))

})
}
rhs_logistic_harvesting <- function(t, N, p) {

with(as.list(p), {
dN <- r * N * (1 - N/K) - H
return(list(dN))

})
}
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RHS – the other two

rhs_Gompertz <- function(t, N, p) {
with(as.list(p), {

dN <- r * N * log(K/N)
return(list(dN))

})
}
rhs_tumor_growth <- function(t, N, p) {

with(as.list(p), {
dN <- r * N * exp(-b * N)
return(list(dN))

})
}
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Parameters

p = list(
r = 0.1,
K = 100,
A = 50,
b = 0.1,
H = 0.05

)
IC = c(N = 1)
tspan = 0:100
sol = ode(y = IC, times = tspan, func = rhs_Malthus, parms = p)
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Run a few models
sol_Malthus =

ode(y = IC, times = tspan, func = rhs_Malthus, parms = p)
sol_logistic =

ode(y = IC, times = tspan, func = rhs_logistic, parms = p)
sol_logistic_Allee =

ode(y = IC, times = tspan, func = rhs_logistic_Allee, parms = p)
sol_Gompertz =

ode(y = IC, times = tspan, func = rhs_Gompertz, parms = p)
sol_tumor_growth =

ode(y = IC, times = tspan, func = rhs_tumor_growth, parms = p)
sol_logistic_harvesting =

ode(y = IC, times = tspan, func = rhs_logistic_harvesting, parms = p)
max_y = max(c(

max(sol_Malthus[,"N"]),
max(sol_logistic[,"N"]),
max(sol_logistic_Allee[,"N"]),
max(sol_Gompertz[,"N"]),
max(sol_tumor_growth[,"N"]),
max(sol_logistic_harvesting[,"N"])))
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Investigating the logistic with harvesting

Let us dig a little deeper into the logistic model with harvesting..

First of all, note that with the parameters we chose, we find the equilibria 0.5 and 99.5.
That’s why in the previous plot, where the initial condition was 1, there were no
problems

Let us raise the value of H a little, see what happens
> p$H = 0.15
> print(EPs_logistic_harvesting(p))

$low
[1] 1.523201

$high
[1] 98.4768
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With this value of N⋆
min, we can expect things to go bad when we use the initial

condition N(0) = 1
> sol_logistic_harvesting_bad = ode(y = IC, times = tspan,
+ func = rhs_logistic_harvesting, parms = p)
DLSODA- Warning..Internal T (=R1) and H (=R2) are

such that in the machine, T + H = T on the next step
(H = step size). Solver will continue anyway.

In above message, R1 = 53.9164, R2 = 3.13622e-15

DLSODA- Warning..Internal T (=R1) and H (=R2) are
such that in the machine, T + H = T on the next step

(H = step size). Solver will continue anyway.
In above message, R1 = 53.9164, R2 = 3.13622e-15

DLSODA- Warning..Internal T (=R1) and H (=R2) are
such that in the machine, T + H = T on the next step

(H = step size). Solver will continue anyway.
In above message, R1 = 53.9164, R2 = 3.13622e-15

DLSODA- Warning..Internal T (=R1) and H (=R2) are
such that in the machine, T + H = T on the next step

(H = step size). Solver will continue anyway.
In above message, R1 = 53.9164, R2 = 2.50709e-15

DLSODA- Warning..Internal T (=R1) and H (=R2) are
such that in the machine, T + H = T on the next step

(H = step size). Solver will continue anyway.
In above message, R1 = 53.9164, R2 = 2.50709e-15

DLSODA- Warning..Internal T (=R1) and H (=R2) are
such that in the machine, T + H = T on the next step

(H = step size). Solver will continue anyway.
In above message, R1 = 53.9164, R2 = 2.07672e-15

DLSODA- Warning..Internal T (=R1) and H (=R2) are
such that in the machine, T + H = T on the next step

(H = step size). Solver will continue anyway.
In above message, R1 = 53.9164, R2 = 2.07672e-15

DLSODA- Warning..Internal T (=R1) and H (=R2) are
such that in the machine, T + H = T on the next step

(H = step size). Solver will continue anyway.
In above message, R1 = 53.9164, R2 = 2.07672e-15

DLSODA- Warning..Internal T (=R1) and H (=R2) are
such that in the machine, T + H = T on the next step

(H = step size). Solver will continue anyway.
In above message, R1 = 53.9164, R2 = 1.66013e-15

DLSODA- Warning..Internal T (=R1) and H (=R2) are
such that in the machine, T + H = T on the next step

(H = step size). Solver will continue anyway.
In above message, R1 = 53.9164, R2 = 1.66013e-15

DLSODA- Above warning has been issued I1 times.
It will not be issued again for this problem.

In above message, I1 = 10

DLSODA- At T (=R1), too much accuracy requested
for precision of machine.. See TOLSF (=R2)

In above message, R1 = 53.9164, R2 = nan
> tail(sol_logistic_harvesting_bad)

time N
[50,] 49.00000 -157.2355
[51,] 50.00000 -208.3942
[52,] 51.00000 -295.1653
[53,] 52.00000 -473.3032
[54,] 53.00000 -1041.9128
[55,] 53.91642 NaN
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Continuous-time Markov chains

CTMC are roughly equivalent to ODE
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Converting your compartmental ODE model to CTMC

Easy as π :)

▶ Compartmental ODE model focuses on flows into and out of compartments
▶ ODE model has as many equations as there are compartments
▶ Compartmental CTMC model focuses on transitions
▶ CTMC model has as many transitions as there are arrows between (or into or out

of) compartments
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ODE to CTMC : focus on different components
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Gillespie algorithm for Malthus – Setup

t0 = 0
N0 = 100
tf = 200
b = 0.05
d = 0.05
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Gillespie algorithm for Malthus – The main loop

t = c(t0)
N = c(N0)

while(t[length(t)] <= tf) {
xi_t = N[length(N)] * (b+d)
if (xi_t<1e-12) {

break
}
tau_t = rexp(1, rate = xi_t)
t = c(t, t[length(t)] + tau_t)
pi_t = runif(1)
if(pi_t <= b/(b+d)) {

N = c(N, N[length(N)] + 1)
} else {

N = c(N, N[length(N)] - 1)
}

}
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Gillespie algorithm for the logistic – Setup

t0 = 0
N0 = 100
tf = 200
b = 0.05
d = 0.02
r = b-d
K = 100
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Gillespie algorithm for the logistic – The main loop

t = c(t0)
N = c(N0)

while(t[length(t)] <= tf) {
xi_t = r*N[length(N)] + r*N[length(N)]^2/K
if (xi_t<1e-12) {

break
}
tau_t = rexp(1, rate = xi_t)
t = c(t, t[length(t)] + tau_t)
pi_t = runif(1)
if(pi_t <= 1/(1+N[length(N)]/K)) {

N = c(N, N[length(N)] + 1)
} else {

N = c(N, N[length(N)] - 1)
}

}
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The delayed logistic equation

Consider the equation as
N ′

N
= (b − d)− cN

that is, the per capita rate of growth of the population depends on the net growth rate
b − d , and some density dependent inhibition cN (resulting of competition)

Suppose that instead of instantaneous inhibition, there is some delay τ between the
time the inhibiting event takes place and the moment when it affects the growth rate

For example, two individuals fight for food, and one later dies of the injuries sustained
during this fight
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The delayed logistic equation

In the case of a time τ between inhibiting event and inhibition, the equation would be
written as

N ′

N
= (b − d)− cN(t − τ)

Using the change of variables introduced earlier, this is written

N ′(t) = rN(t)

(
1 − N(t − τ)

K

)
(15)

Such an equation is called a delay differential equation (DDE). It is much more
complicated to study than (3). In fact, some things remain unknown about (15)
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Delayed initial value problem

The IVP takes the form

N ′(t) = rN(t)

(
1 − N(t − τ)

K

)
N(t) = ϕ(t) for t ∈ [−τ, 0]

(16)

where ϕ(t) is some continuous function

Hence, initial conditions (called initial data in this case) must be specified on an
interval, instead of being specified at a point, to guarantee existence and uniqueness of
solutions

We will not learn how to study this type of equation (this is graduate level
mathematics). I will give a few results
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To find equilibria, remark that delay should not play a role, since N should be constant.
Thus, equilibria are found by considering the equation with no delay, which is (3)

Theorem 10
Suppose that rτ < π/2. Then solutions of (16) with positive initial data ϕ(t) starting
close enough to K tend to K . If rτ < 37/24, then all solutions of (16) with positive
initial data ϕ(t) tend to K . If rτ > π/2, then K is an unstable equilibrium and all
solutions of (16) with positive initial data ϕ(t) on [−τ, 0] are oscillatory

There is a gray zone between 37/24 (≃ 1.5417) and π/2 (≃ 1.5708). The global
aspect was proved for rτ < 37/24 in 1945 by Wright. Although there is very strong
numerical evidence that this is in fact true up to π/2, nobody has yet managed to
prove it [Edit: now done!]
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Discrete-time systems

So far, we have seen continuous-time models, where t ∈ R+. Another way to model
natural phenomena is by using a discrete-time formalism, that is, to consider equations
of the form

xt+1 = f (xt)

where t ∈ N or Z, that is, t takes values in a discrete valued (countable) set

Time could for example be days, years, etc.
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The logistic map

The logistic map is, for t ≥ 0,

Nt+1 = rNt

(
1 − Nt

K

)
(17)

To transform this into an initial value problem, we need to provide an initial condition
N0 ≥ 0 for t = 0
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Some mathematical analysis

Suppose we have a system in the form

xt+1 = f (xt)

with initial condition given for t = 0 by x0. Then,

x1 = f (x0)

x2 = f (x1) = f (f (x0))
∆
= f 2(x0)

...

xk = f k(x0)

The f k = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

are the iterates of f
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Fixed points

Definition 11 (Fixed point)

Let f be a function. A point p such that f (p) = p is called a fixed point of f

Theorem 12
Consider the closed interval I = [a, b]. If f : I → I is continuous, then f has a fixed
point in I

Theorem 13
Let I be a closed interval and f : I → R be a continuous function. If f (I ) ⊃ I , then f
has a fixed point in I .
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Periodic points

Definition 14 (Periodic point)

Let f be a function. If there exists a point p and an integer n such that

f n(p) = p, but f k(p) ̸= p for k < n,

then p is a periodic point of f with (least) period n (or a n-periodic point of f ).

Thus, p is a n-periodic point of f iff p is a 1-periodic point of f n.
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Stability of fixed points, of periodic points

Theorem 15
Let f be a continuously differentiable function (that is, differentiable with continuous
derivative, or C 1), and p be a fixed point of f .

1. If |f ′(p)| < 1, then there is an open interval I ∋ p such that limk→∞ f k(x) = p
for all x ∈ I.

2. If |f ′(p)| > 1, then there is an open interval I ∋ p such that if x ∈ I, x ̸= p, then
there exists k such that f k(x) ̸∈ I.

Definition 16
Suppose that p is a n-periodic point of f , with f ∈ C 1.
▶ If | (f n)′ (p)| < 1, then p is an attracting periodic point of f .
▶ If | (f n)′ (p)| > 1, then p is an repelling periodic point of f .
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Parametrized families of functions

Consider the equation (17), which for convenience we rewrite as

Nt+1 = rNt(1 − Nt) (18)

where r is a parameter in R+, and N will typically be taken in [0, 1]. Let

fr (x) = rx(1 − x).

The function fr is called a parametrized family of functions.
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Bifurcations

Definition 17 (Bifurcation)

Let fµ be a parametrized family of functions. Then there is a bifurcation at µ = µ0 (or
µ0 is a bifurcation point) if there exists ε > 0 such that, if µ0 − ε < a < µ0 and
µ0 < b < µ0 + ε, then the dynamics of fa(x) are “different” from the dynamics of fb(x).

An example of “different” would be that fa has a fixed point (that is, a 1-periodic point)
and fb has a 2-periodic point.
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Back to the logistic map

Consider the simplified version (18),

Nt+1 = rNt(1 − Nt)
∆
= fr (Nt).

Are solutions well defined?
Suppose N0 ∈ [0, 1], do we stay in [0, 1]? fr is continuous on [0, 1], so it has a extrema
on [0, 1]. We have

f ′r (x) = r − 2rx = r(1 − 2x),

which implies that fr increases for x < 1/2 and decreases for x > 1/2, reaching a
maximum at x = 1/2.

fr (0) = fr (1) = 0 are the minimum values, and f (1/2) = r/4 is the maximum. Thus, if
we want Nt+1 ∈ [0, 1] for Nt ∈ [0, 1], we need to consider r ≤ 4.

p. 155 – The logistic map



▶ Note that if N0 = 0, then Nt = 0 for all t ≥ 1.
▶ Similarly, if N0 = 1, then N1 = 0, and thus Nt = 0 for all t ≥ 1.
▶ This is true for all t: if there exists tk such that Ntk = 1, then Nt = 0 for all

t ≥ tk .
▶ This last case might occur if r = 4, as we have seen.
▶ Also, if r = 0 then Nt = 0 for all t.

For these reasons, we generally consider

N ∈ (0, 1)

and
r ∈ (0, 4).
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Fixed points: existence

Fixed points of (18) satisfy N = rN(1 − N), giving:
▶ N = 0;

▶ 1 = r(1 − N), that is, p ∆
=

r − 1
r

.

Note that limr→0+ p = 1 − limr→0+ 1/r = −∞, ∂
∂r p = 1/r2 > 0 (so p is an increasing

function of r), p = 0 ⇔ r = 1 and limr→∞ p = 1. So we come to this first conclusion:
▶ 0 always is a fixed point of fr .
▶ If 0 < r < 1, then p takes negative values so is not relevant.
▶ If 1 < r < 4, then p exists.
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Stability of the fixed points
Stability of the fixed points is determined by the (absolute) value f ′r at these fixed
points. We have

|f ′r (0)| = r ,

and

|f ′r (p)| =
∣∣∣∣r − 2r

r − 1
r

∣∣∣∣
= |r − 2(r − 1)|
= |2 − r |

Therefore, we have
▶ if 0 < r < 1, then the fixed point N = p does not exist and N = 0 is attracting,
▶ if 1 < r < 3, then N = 0 is repelling, and N = p is attracting,
▶ if r > 3, then N = 0 and N = p are repelling.
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Another bifurcation
Thus the points r = 1 and r = 3 are bifurcation points. To see what happens when
r > 3, we need to look for period 2 points.

f 2
r (x) = fr (fr (x))

= rfr (x)(1 − fr (x))

= r2x(1 − x)(1 − rx(1 − x)). (19)

0 and p are points of period 2, since a fixed point x∗ of f satisfies f (x∗) = x∗, and so,
f 2(x∗) = f (f (x∗)) = f (x∗) = x∗.
This helps localizing the other periodic points. Writing the fixed point equation as

Q(x)
∆
= f 2

r (x)− x = 0,

we see that, since 0 and p are fixed points of f 2
µ , they are roots of Q(x). Therefore, Q

can be factorized as
Q(x) = x(x − p)(−r3x2 + Bx + C ),
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Substitute the value (r − 1)/r for p in Q, develop Q and (19) and equate coefficients
of like powers gives

Q(x) = x

(
x − r − 1

r

)(
−r3x2 + r2(r + 1)x − r(r + 1)

)
. (20)

We already know that x = 0 and x = p are roots of (20). So we search for roots of

R(x) := −r3x2 + r2(r + 1)x − r(r + 1).

Discriminant is

∆ = r4(r + 1)2 − 4r4(r + 1)

= r4(r + 1)(r + 1 − 4)

= r4(r + 1)(r − 3).

Therefore, R has distinct real roots if r > 3. Remark that for r = 3, the (double) root
is p = 2/3. For r > 3 but very close to 3, it follows from the continuity of R that the
roots are close to 2/3.
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Descartes’ rule of signs

Theorem 18 (Descartes’ rule of signs)

Let p(x) =
∑m

i=0 aix
i be a polynomial with real coefficients such that am ̸= 0. Define

v to be the number of variations in sign of the sequence of coefficients am, . . . , a0. By
’variations in sign’ we mean the number of values of n such that the sign of an differs
from the sign of an−1, as n ranges from m down to 1. Then
▶ the number of positive real roots of p(x) is v − 2N for some integer N satisfying

0 ≤ N ≤ v

2
,

▶ the number of negative roots of p(x) may be obtained by the same method by
applying the rule of signs to p(−x).
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Example of use of Descartes’ rule

Example 19

Let
p(x) = x3 + 3x2 − x − 3.

Coefficients have signs ++−−, i.e., 1 sign change. Thus v = 1. Since 0 ≤ N ≤ 1/2,
we must have N = 0. Thus v − 2N = 1 and there is exactly one positive real root of
p(x).
To find the negative roots, we examine p(−x) = −x3 + 3x2 + x − 3. Coefficients have
signs −++−, i.e., 2 sign changes. Thus v = 2 and 0 ≤ N ≤ 2/2 = 1. Thus, there are
two possible solutions, N = 0 and N = 1, and two possible values of v − 2N.
Therefore, there are either two or no negative real roots. Furthermore, note that
p(−1) = (−1)3 + 3 · (−1)2 − (−1)− 3 = 0, hence there is at least one negative root.
Therefore there must be exactly two.
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Back to the logistic map and the polynomial R ..

We use Descartes’ rule of signs.
▶ R has signed coefficients −+−, so 2 sign changes imlying 0 or 2 positive real

roots.
▶ R(−x) has signed coefficients −−−, so no negative real roots.
▶ Since ∆ > 0, the roots are real, and thus it follows that both roots are positive.

To show that the roots are also smaller than 1, consider the change of variables
z = x − 1. The polynomial R is transformed into

R2(z) = −r3(z + 1)2 + r2(r + 1)(z + 1)− r(r + 1)

= −r3z2 + r2(1 − r)z − r .

For r > 1, the signed coefficients are −−−, so R2 has no root z > 0, implying in turn
that R has no root x > 1.
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Summing up

▶ If 0 < r < 1, then N = 0 is attracting, p does not exist and there are no period 2
points.

▶ At r = 1, there is a bifurcation (called a transcritical bifurcation).
▶ If 1 < r < 3, then N = 0 is repelling, N = p is attracting, and there are no period

2 points.
▶ At r = 3, there is another bifurcation (called a period-doubling bifurcation).
▶ For r > 3, both N = 0 and N = p are repelling, and there is a period 2 point.
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The period-doubling cascade to chaos

The logistic map undergoes a sequence of period doubling bifurcations, called the
period-doubling cascade, as r increases from 3 to 4.
▶ Every successive bifurcation leads to a doubling of the period.
▶ The bifurcation points form a sequence, {rn}, that has the property that

lim n → ∞ rn − rn−1

rn+1 − rn

exists and is a constant, called the Feigenbaum constant, equal to 4.669202. . .
▶ This constant has been shown to exist in many of the maps that undergo the same

type of cascade of period doubling bifurcations.
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Chaos

After a certain value of r , there are periodic points with all periods. In particular, there
are periodic points of period 3.

By a theorem (called Sarkovskii’s theorem), the presence of period 3 points implies
the presence of points of all periods.

At this point, the system is said to be in a chaotic regime, or chaotic.
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Conclusion – A word of caution

We have used four different modelling paradigms to describe the growth of a population
in a logistic framework:
▶ The ODE version has monotone solutions converging to the carrying capacity K

▶ The CTMC version behaves like the ODE version, but with a stochastic component

▶ The DDE version has oscillatory solutions, either converging to K or, if the delay is
too large, periodic about K

▶ The discrete time version has all sorts of behaviours, including chaotic

The choice of modelling method is almost as important in the outcome of the
model as the precise formulation/hypotheses of the model

p. 173 – The logistic map
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