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Some probability theory

We suppose that a system can be in two states, S1 and S2.

▶ At time t = 0, the system is in state S1.

▶ An event happens at some time t = τ , which triggers the switch from state S1 to

state S2.

A random variable is a variable that takes random values, that is, a mapping from

random experiments to numbers.

Let us call T the random variable
�time spent in state S1 before switching into state S2�
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These states can be anything:

▶ S1: working, S2: broken;

▶ S1: infected, S2: recovered;

▶ S1: alive, S2: dead;

▶ . . .

We take a collection of objects or individuals that are in state S1 and want some law for

the distribution of the times spent in S1, i.e., a law for T .

For example, we make light bulbs and would like to tell our customers that on average,

our light bulbs last 200 years..

For this, we conduct an in�nite number of experiments, and observe the time that it

takes, in every experiment, to switch between S1 and S2.

From this, we deduce a model, which in this context is called a probability

distribution.
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Discrete versus continuous random variables

We assume that T is a continuous random variable, that is, T takes continuous

values. Examples of continuous r.v.:

▶ height or age of a person (if measured very precisely)

▶ distance

▶ time

Another type of random variables are discrete random variables, which take values in a

denumerable set. Examples of discrete r.v.:

▶ heads or tails on a coin toss

▶ the number rolled on a dice

▶ height of a person, if expressed rounded without subunits, age of a person in years

(without subunits)
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Probability

A probability is a function P, from a probability space to [0, 1].

Formally: (Ω,F ,P) is a probability space, with Ω the sample space, F a σ-algebra of

subsets of Ω whose elements are the events, and P a measure from F to [0, 1] such
that P(E ) ≥ 0, ∀E ⊂ Ω, P(Ω) = 1 and P(E1 ∪ E2 ∪ · · · ) =

∑
i P(Ei ).

Gives the likelihood of an event occurring, among all the events that are possible, in

that particular setting. For example, Pgetting heads when tossing a coin = 1/2 and

Pgetting tails when tossing a coin = 1/2.
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Probability density function
Since T is continuous, it has a continuous probability density function, f .
▶ f ≥ 0,
▶

∫ +∞
−∞ f (s)ds = 1.

▶ Pa ≤ T ≤ b =
∫ b
a f (t)dt.

t

f(t)

a b
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Cumulative distribution function
The cumulative distribution function (c.d.f.) is a function F (t) that characterizes the
distribution of T , and de�ned by

F (s) = PT ≤ s =

∫ s

−∞
f (x)dx .

t

f(t)

s
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Properties of the c.d.f.
▶ Since f is a nonnegative function, F is nondecreasing.
▶ Since f is a probability density function,

∫ +∞
−∞ f (s)ds = 1, and thus

limt→∞ F (t) = 1.

t

f(t)

F(t)
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Mean value

For a continuous random variable T with probability density function f , the mean

value of T , denoted T̄ or E (T ), is given by

E (T ) =

∫ +∞

−∞
tf (t)dt.
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Survival function

Another characterization of the distribution of the random variable T is through the

survival (or sojourn) function.

The survival function of state S1 is given by

S(t) = 1− F (t) = PT > t (1)

This gives a description of the sojourn time of a system in a particular state (the time

spent in the state).

S is a nonincreasing function (since S = 1− F with F a c.d.f.), and S(0) = 1 (since T
is a positive random variable).
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The average sojourn time τ in state S1 is given by

τ = E (T ) =

∫ ∞

0

tf (t)dt

Assuming that limt→∞ tS(t) = 0 (which is veri�ed for most probability distributions),

τ =

∫ ∞

0

S(t)dt
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The exponential distribution

The random variable T has an exponential distribution if its probability density

function takes the form

f (t) =

{
0 if t < 0,

θe−θt if t ≥ 0,
(2)

with θ > 0. Then the survival function for state S1 is of the form S(t) = e−θt , for

t ≥ 0, and the average sojourn time in state S1 is

τ =

∫ ∞

0

e−θtdt =
1

θ
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If on the other hand, for some constant ω > 0,

S(t) =
{

1, 0 ≤ t ≤ ω
0, ω < t

which means that T has a Dirac delta distribution δω(t), then the average sojourn time

is a constant, namely

τ =

∫ ω

0

dt = ω

These two distributions can be regarded as extremes.
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A model for a cohort with one cause of death

We consider a population consisting of individuals born at the same time (a cohort),

for example, the same year.

We suppose

▶ At time t = 0, there are initially N0 > 0 individuals.

▶ All causes of death are compounded together.

▶ The time until death, for a given individual, is a random variable T , with

continuous probability density distribution f (t) and survival function P(t).
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The model

Denote N(t) the population at time t ≥ 0. Then

N(t) = N0P(t). (3)

▶ N0P(t) gives the proportion of N0, the initial population, that is still alive at time

t.
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Case where T is exponentially distributed

Suppose that T has an exponential distribution with mean 1/d (or parameter d),
f (t) = de−dt . Then the survival function is P(t) = e−dt , and (3) takes the form

N(t) = N0e
−dt . (4)

Now note that

d

dt
N(t) = −dN0e

−dt

= −dN(t),

with N(0) = N0.

⇒ The ODE N ′ = −dN makes the assumption that the life expectancy at birth is

exponentially distributed.
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Case where T has a Dirac delta distribution

Suppose that T has a Dirac delta distribution at t = ω, giving the survival function

P(t) =

{
1, 0 ≤ t ≤ ω,

0, t > ω.

Then (3) takes the form

N(t) =

{
N0, 0 ≤ t ≤ ω,

0, t > ω.
(5)

All individuals survive until time ω, then they all die at time ω.

Here, we have N ′ = 0 everywhere except at t = ω, where it is unde�ned.
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Models of diseases

Consider

▶ a disease,

▶ a population of individuals who can be infected by this disease.

Both can be anything:

▶ a human population subject to in�uenza,

▶ an animal population subject to foot and mouth disease,

▶ a rumor spreading in a human population,

▶ inovation spreading through businesses,

▶ a computer virus spreading on the internet,

▶ . . .
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Status of individuals

Suppose that individuals can be identi�ed with respect to their epidemiological status:

▶ susceptible to the disease,

▶ infected by the disease,

▶ recovered from the disease,

▶ . . .

These states are clearly of the type we were discussing before.
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An SIS model

Consider a disease that confers no immunity. In this case, individuals are either

▶ susceptible to the disease, with the number of such individuals at time t denoted

by S(t),

▶ or infected by the disease (and are also infective in the sense that they propagate

the disease), with the number of such individuals at time t denoted by I (t).

We want to model the evolution with time of S and I (t is omitted unless necessary).

Extremely important: State all your hypotheses.
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Hypotheses

▶ Individuals typically recover from the disease.

▶ The disease does not confer immunity.

▶ There is no birth or death.

▶ Infection is of standard incidence type

Once your hypotheses are stated, detail them if need be.
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Recovery and No immunity

Individuals recover from the disease: the infection is not permanent.

Upon recovery from the disease, an individual becomes susceptible again immediately.

Good description for diseases that confer no immunity, e.g.,

▶ the cold,

▶ gonorrhea,

▶ . . .
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No birth or death

Suppose that

▶ the time period of interest is short,

▶ the population is large enough,

then it is reasonable to assume that the total population is constant, in the absence of

disease.

For mild diseases (cold, etc.), there are very little risks of dying from the disease. We

assume no disease-induced death.

Hence N ≡ N(t) = S(t) + I (t) is the (constant) total population.
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Standard incidence

New infectives result from random contacts between susceptible and infective

individuals, described using standard incidence:

β
SI

N
,

▶ βSI/N is a rate (per unit time),

▶ β is the transmission coe�cient, giving probability of transmission of the disease

in case of a contact, times the number of such contacts made by an infective per

unit time.
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Recovery

We have not yet stated our hypotheses on the recovery process..

Traditional epidemiological models assume recovery from disease with a rate constant γ.

Here, assume that, of the individuals who have become infective at time t0, a fraction

P(t − t0) remain infective at time t ≥ t0.

Thus, considered for t ≥ 0, the function P(t) is a survival function.
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A �ow diagram for the model

This is the �ow diagram of our model:

S I


SI
N

Pt 

It details the �ows of individuals between the compartments in the system.

It is extremely useful to rapidly understand what processes are modelled.
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Reducing the dimension of the problem

To formulate our model, we would in principle require an equation for S and an

equation for I .

But we have

S(t) + I (t) = N, or equivalently, S(t) = N − I (t).

N is constant (equal total population at time t = 0), so we can deduce the value of

S(t), once we know I (t), from the equation S(t) = N − I (t).

We only need to consider 1 equation. Do this when possible! (nonlinear systems are

hard, one less equation can make a lot of di�erence)
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Model for infectious individuals

Integral equation for the number of infective individuals:

I (t) = I0(t) +

∫ t

0

β
(N − I (u))I (u)

N
P(t − u)du (6)

▶ I0(t) number of individuals who were infective at time t = 0 and still are at time t.

▶ I0(t) is nonnegative, nonincreasing, and such that limt→∞ I0(t) = 0.

▶ P(t − u) proportion of individuals who became infective at time u and who still are

at time t.

▶ β(N − I (u))S(u)/N is βS(u)I (u)/N with S(u) = N − I (u), from the reduction of

dimension.
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Expression under the integral

Integral equation for the number of infective individuals:

I (t) = I0(t) +

∫ t

0

β
(N − I (u))I (u)

N
P(t − u)du (6)

The term

β
(N − I (u))I (u)

N
P(t − u)

▶ β(N − I (u))I (u)/N is the rate at which new infectives are created, at time u,

▶ multiplying by P(t − u) gives the proportion of those who became infectives at

time u and who still are at time t.

Summing over [0, t] gives the number of infective individuals at time t.

p. 32 � Sojourn times in an SIS disease transmission model



Case of an exponentially distributed time to recovery

Suppose that P(t) is such that the sojourn time in the infective state has an

exponential distribution with mean 1/γ, i.e., P(t) = e−γt .

Then the initial condition function I0(t) takes the form

I0(t) = I0(0)e
−γt ,

with I0(0) the number of infective individuals at time t = 0. This is obtained by

considering the cohort of initially infectious individuals, giving a model such as (3).

Equation (6) becomes

I (t) = I0(0)e
−γt +

∫ t

0

β
(N − I (u))I (u)

N
e−γ(t−u)du. (7)
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Taking the time derivative of (7) yields

I ′(t) = −γI0(0)e
−γt − γ

∫ t

0

β
(N − I (u))I (u)

N
e−γ(t−u)du

+ β
(N − I (t))I (t)

N

= −γ

(
I0(0)e

−γt +

∫ t

0

β
(N − I (u))I (u)

N
e−γ(t−u)du

)
+ β

(N − I (t))I (t)

N

= β
(N − I (t))I (t)

N
− γI (t),

which is the classical logistic type ordinary di�erential equation (ODE) for I in an SIS

model without vital dynamics (no birth or death).
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Case of a step function survival function

Consider case where the time spent infected has survival function

P(t) =

{
1, 0 ≤ t ≤ ω,

0, t > ω.

i.e., the sojourn time in the infective state is a constant ω > 0.

In this case (6) becomes

I (t) = I0(t) +

∫ t

t−ω
β
(N − I (u))I (u)

N
du. (8)

Here, it is more di�cult to obtain an expression for I0(t). It is however assumed that

I0(t) vanishes for t > ω.
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When di�erentiated, (8) gives, for t ≥ ω,

I ′(t) = I ′0(t) + β
(N − I (t))I (t)

N
− β

(N − I (t − ω)) I (t − ω)

N
.

Since I0(t) vanishes for t > ω, this gives the delay di�erential equation (DDE)

I ′(t) = β
(N − I (t))I (t)

N
− β

(N − I (t − ω))I (t − ω)

N
.
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Conclusion

▶ The time of sojourn in classes (compartments) plays an important role in

determining the type of model that we deal with.

▶ All ODE models, when they use terms of the form κX , make the assumption that

the time of sojourn in compartments is exponentially distributed.

▶ At the other end of the spectrum, delay delay di�erential with discrete delay make

the assumption of a constant sojourn time, equal for all individuals.

▶ Both can be true sometimes.. but reality is often somewhere in between.
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Survival function, S(t) = PT > t, for an exponential distribution with mean 80 years.
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A.k.a. if the Math Dept was less #$%&, you'd know this

The following are a brief extract from MATH 2740 slides...

p. 39 � Least squares problems



The least squares problem (simplest version)

De�nition 1

Given a collection of points (x1, y1), . . . , (xn, yn), �nd the coe�cients a, b of the line

y = a+ bx such that

∥e∥ =
√
ε2
1
+ · · ·+ ε2n =

√
(y1 − ỹ1)2 + · · ·+ (yn − ỹn)2

is minimal, where ỹi = a+ bxi for i = 1, . . . , n

We just saw how to solve this by brute force using a genetic algorith to minimise ∥e∥,
let us now see how to solve this problem �properly�
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For a data point i = 1, . . . , n

εi = yi − ỹi = yi − (a+ bxi )

So if we write this for all data points,

ε1 = y1 − (a+ bx1)

...

εn = yn − (a+ bxn)

In matrix form

e = b − Ax

with

e =

ε1
...

εn

 ,A =

1 x1
...

...

1 xn

 , x =

(
a
b

)
and b =

y1
...

yn
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The least squares problem (reformulated)

De�nition 2 (Least squares solutions)

Consider a collection of points (x1, y1), . . . , (xn, yn), a matrix A ∈ Mmn, b ∈ Rm. A

least squares solution of Ax = b is a vector x̃ ∈ Rn s.t.

∀x ∈ Rn, ∥b − Ax̃∥ ≤ ∥b − Ax∥
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Needed to solve the problem

De�nition 3 (Best approximation)

Let V be a vector space, W ⊂ V and v ∈ V . The best approximation to v in W is

ṽ ∈ W s.t.

∀w ∈ W ,w ̸= ṽ, ∥v − ṽ∥ < ∥v − w∥

Theorem 4 (Best approximation theorem)

Let V be a vector space with an inner product, W ⊂ V and v ∈ V . Then projW (v) is

the best approximation to v in W
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Let us �nd the least squares solution

∀xRn, Ax is a vector in the column space of A (the space spanned by the vectors

making up the columns of A)

Since x ∈ Rn, Ax ∈ col(A)

=⇒ least squares solution of Ax = b is a vector ỹ ∈ col(A) s.t.

∀y ∈ col(A), ∥b − ỹ∥ ≤ ∥b − y∥

This looks very much like Best approximation and Best approximation theorem
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Putting things together

We just stated: The least squares solution of Ax = b is a vector ỹ ∈ col(A) s.t.

∀y ∈ col(A), ∥b − ỹ∥ ≤ ∥b − y∥

We know (reformulating a tad):

Theorem 5 (Best approximation theorem)

Let V be a vector space with an inner product, W ⊂ V and v ∈ V . Then

projW (v) ∈ W is the best approximation to v in W, i.e.,

∀w ∈ W ,w ̸= projW (v), ∥v − projW (v)∥ < ∥v − w∥

=⇒ W = col(A), v = b and ỹ = projcol(A)(b)
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So if x̃ is a least squares solution of Ax = b, then

ỹ = Ax̃ = projcol(A)(b)

We have

b − Ax̃ = b − projcol(A)(b) = perpcol(A)(b)

and it is easy to show that

perpcol(A)(b) ⊥ col(A)

So for all columns ai of A
ai · (b − Ax̃) = 0

which we can also write as aTi (b − Ax̃) = 0
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For all columns ai of A,
aTi (b − Ax̃) = 0

This is equivalent to saying that

AT (b − Ax̃) = 0

We have

AT (b − Ax̃) = 0 ⇐⇒ ATb − ATAx̃ = 0

⇐⇒ ATb = ATAx̃

⇐⇒ ATAx̃ = ATb

The latter system constitutes the normal equations for x̃
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Least squares theorem

Theorem 6 (Least squares theorem)

A ∈ Mmn, b ∈ Rm. Then

1. Ax = b always has at least one least squares solution x̃

2. x̃ least squares solution to Ax = b ⇐⇒ x̃ is a solution to the normal equations

ATAx̃ = ATb

3. A has linearly independent columns ⇐⇒ ATA invertible.

In this case, the least squares solution is unique and

x̃ =
(
ATA

)−1

ATb

We have seen 1 and 2, we will not show 3 (it is not hard)
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Suppose we want to �t something a bit more complicated..

For instance, instead of the a�ne function

y = a+ bx

suppose we want to do the quadratic

y = a0 + a1x + a2x
2

or even

y = k0e
k1x

How do we proceed?

p. 49 � Fitting something more complicated



Fitting the quadratic

We have the data points (x1, y1), (x2, y2), . . . , (xn, yn) and want to �t

y = a0 + a1x + a2x
2

At (x1, y1),
ỹ1 = a0 + a1x1 + a2x

2
1

...

At (xn, yn),
ỹn = a0 + a1xn + a2x

2
n
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In terms of the error

ε1 = y1 − ỹ1 = y1 − (a0 + a1x1 + a2x
2
1 )

...

εn = yn − ỹn = yn − (a0 + a1xn + a2x
2
n )

i.e.,

e = b − Ax

where

e =

ε1
...

εn

 ,A =

1 x1 x2
1

...
...

...

1 xn x2n

 , x =

a0
a1
a2

 and b =

y1
...

yn


Theorem 6 applies, with here A ∈ Mn3 and b ∈ Rn
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Fitting the exponential

Things are a bit more complicated here

If we proceed as before, we get the system

y1 = k0e
k1x1

...

yn = k0e
k1xn

ek1xi is a nonlinear term, it cannot be put in a matrix

However: take the ln of both sides of the equation

ln(yi ) = ln(k0e
k1xi ) = ln(k0) + ln(ek1xi ) = ln(k0) + k1xi

If yi , k0 > 0, then their ln are de�ned and we're in business..
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ln(yi ) = ln(k0) + k1xi

So the system is

y = Ax + b

with

A =

x1
...

xn

 , x =
(
k1
)
,b =

(
ln(k0)

)
and y =

ln(y1)
...

ln(yn)
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