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A SIS model

Consider a disease that confers no immunity. In this case, individuals are either
▶ susceptible to the disease, with the number of such individuals at time t denoted

by S(t),
▶ or infected by the disease (and are also infective in the sense that they propagate

the disease), with the number of such individuals at time t denoted by I (t).

We want to model the evolution with time of S and I (t is omitted unless necessary).

p. 2 – SIS model without vital dynamics



Hypotheses

▶ Individuals recover from the disease at the per capita rate γ.
▶ The disease does not confer immunity.
▶ There is no birth or death.
▶ Infection is of standard incidence type, β = SI/N.

(for details, see slides on residence time)
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Flow diagram of the model

S I

 SI
N

 I
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The evolution of I (t) is described by the following equation (see slides on residence
time):

I ′ = β
(N − I )I

N
− γI .

Develop and reorder the terms, giving

I ′ = (β − γ)I − β

N
I 2 (1)

This is a logistic-type equation. It can be solved as a Bernoulli equation or as a
separable equation, giving, for an initial number of infectives I (0) = I0,

I (t) =
(β − γ)NI0

(β − γ)Ne−(β−γ)t + βI0
(
1 − e−(β−γ)t

)
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From S = N − I , we deduce that the solution (S(t), I (t)) for the complete system,
with initial condition S(0) + I (0) = S0 + I0 = N is, for t ≥ 0,

S(t) = N − (β − γ)NI0

(β − γ)Ne−(β−γ)t + βI0
(
1 − e−(β−γ)t

)
and

I (t) =
(β − γ)NI0

(β − γ)Ne−(β−γ)t + βI0
(
1 − e−(β−γ)t

)
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Behavior of the solutions
Consider only I for the moment.

I (t) =
(β − γ)NI0

(β − γ)Ne−(β−γ)t + βI0
(
1 − e−(β−γ)t

)
So
▶ If β − γ > 0, then e−(β−γ)t → 0 as t → ∞, and therefore

lim
t→∞

I (t) =
(β − γ)NI0

βI0
=

β − γ

β
N =

(
1 − γ

β

)
N.

▶ If β − γ < 0, then e−(β−γ)t → ∞ at t → ∞. This implies that the denominator in
I (t) tends to −∞ as t → ∞, and so

lim
t→∞

I (t) = 0, with I (t) > 0 for all t.

▶ If β = γ, then I (t) = 0 for all t.
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The basic reproduction number

Define the basic reproduction number (the average number of people that an infectious
individual will infect, when introduced in a population of susceptibles) as

R0 =
β

γ

We have
(R0 < 1 ⇔ (β − γ) < 0) and (R0 > 1 ⇔ (β − γ) > 0) .

Therefore, previous cases can be rewritten
▶ If R0 < 1, then limt→∞ I (t) = 0.
▶ If R0 > 1, then

limt→∞I (t) =

(
1 − 1

R0

)
N.

(the case R0 = 1 is usually omitted)
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Plotting this in Maple
> f:=R->piecewise(R<1,0,R>1,(1-1/R)*1000);
> plot(f(R),R=0..10);
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Kermack and McKendrick

In 1927, Kermack and McKendrick started publishing a series of papers on epidemic
models. In the first of their papers, they have this model as a particular case:

S ′ = −βSI

I ′ = βSI − γI

R ′ = γI

(2)
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Analyzing the system

First, note (as KMK) that the total population in the system is constant. This is
deduced from the fact that

N ′ = (S + I + R)′ = −βSI + βSI − γI + γI = 0.

Since this is true for all values of t, we have N constant.

p. 15 – SIR model of Kermack and McKendrick



Let us ignore the R equation for now. We can compute

dI

dS
=

dI

dt

dt

dS
=

I ′

S ′ =
γ

βS
− 1

This gives
I (S) = S − γ

β
lnS + K ,

which, considering the initial condition (S0, I0), is,

I (S) = S − γ

β
lnS + I0 − (S0 −

γ

β
lnS0).

This gives a curve in the (S , I ) plane.
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I (S) = S − γ

β
lnS + I0 − (S0 −

γ

β
lnS0).

Typically, assume S ≈ N and I > 0 small. Let us denote S∞ = limt→∞ S(t).
We want to find the value of S when I → 0. Then

I0 −
γ

β
lnS0 = S∞ − γ

β
lnS∞

p. 17 – SIR model of Kermack and McKendrick



SIS model without vital dynamics

SIR model of Kermack and McKendrick

SIRS model with demography



The SIRS model – Assumptions (1/2)

▶ Like KMK, individuals are S, I or R.
▶ Infection is βSI (mass action) or βSI/N (proportional incidence).
▶ Different interpretation of the R class: R stands for “recovered”, individuals who

are immune to the disease following recovery.
▶ Recovery from the disease (movement from I class to R class) occurs at the per

capita rate γ.
(Time spent in I before recovery is exponentially distributed.)

▶ Immunity can be lost: after some time, R individuals revert back to S individuals.
▶ Time spent in R class before loss of immunity is exponentially distributed, with

mean 1/ν.
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The SIRS model – Assumptions (2/2)

▶ There is birth and death of individuals:
▶ No vertical transmission of the disease (mother to child) or of immunity, so all birth

is into the S class.
Birth occurs at the rate Π.

▶ Individuals in all classes die of at the per capita rate d , i.e., the average life duration
is exponentially distributed with mean 1/d .

▶ The disease is lethal: infected individuals are subject to additional mortality at the
per capita rate δ.

Note that birth and death can have different interpretations:
▶ birth and death in the classical sense,
▶ but also, entering the susceptible population and leaving it.
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Flow diagrams for the models

Mass action

S I R SI  I

R



dS dRd I

Standard incidence

S I R

SI
N  I

R



dS dRd I
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SIRS models

Mass action

S ′ = Π+ νR − βSI − dS (3a)
I ′ = βSI − (d + δ + γ)I (3b)
R ′ = γI − (d + ν)R (3c)

Proportional incidence

S ′ = Π+ νR − βSI − dS (4a)
I ′ = βSI − (d + δ + γ)I (4b)
R ′ = γI − (d + ν)R, (4c)

where N = S + I + R .
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SIRS model with mass action incidence

Consider (3):

S ′ = Π+ νR − βSI − dS

I ′ = βSI − (d + δ + γ)I

R ′ = γI − (d + ν)R
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Steps of the analysis

1. Assess well-posedness of the system:
1.1 Determine whether solutions exist and are unique.
1.2 Determine whether solutions remain in a realistic region and are bounded.

2. Find the equilibria of the system.
3. Determine the local stability properties of the equilibria.
4. Determine the global stability properties of the equilibria (much harder, often not

possible).
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Existence and uniqueness of solutions

Theorem 1 (Cauchy-Lipschitz)

Consider the equation x ′ = f (x), with x ∈ Rn, and suppose that f ∈ C 1. Then there
exists a unique solution of x ′ = f (x) such that x(t0) = x0, where t0 ∈ R and x0 ∈ Rn,
defined on the largest interval J ∋ t0 on which f ∈ C 1.
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Equilibria

Definition 2 (Equilibrium point)

Consider a differential equation
x ′ = f (x), (5)

with x ∈ Rn and f : Rn → Rn. Then x∗ is an equilibrium (solution) of (5) if f (x∗) = 0.
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Linearization

Consider x∗ an equilibrium of (5). For simplicity, assume here that x∗ = 0 (it is always
possible to do this, by considering y = x − x∗).

Taylor’s theorem:

f (x) = Df (0)x +
1
2
D2f (0)(x , x) + · · · ,

where Df (0) is the Jacobian matrix of f evaluated at 0.
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Stability of equilibria
Definition 3 (Stable and unstable EP)

Let ϕt be the flow of (5), assumed to be defined for all t ∈ R. An equilibrium x∗ of (5)
is (locally) stable if for all ε > 0, there exists δ > 0 such that for all x ∈ Nδ(x

∗) and
t ≥ 0, there holds

ϕt(x) ∈ Nε(x
∗).

The equilibrium point is unstable if it is not stable.

Definition 4 (Asymptotically stable EP)

Let ϕt be the flow of (5) is (locally) asymptotically stable if there exists δ > 0 such
that for all x ∈ Nδ(x

∗) and t ≥ 0, there holds

lim
t→∞

ϕt(x) = x∗.

Clearly, Asymtotically Stable ⇒ Stable.
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Hyperbolic EPs, sinks, sources

Definition 5 (Sink)

An equilibrium point x∗ of (5) is hyperbolic if none of the eigenvalues of the matrix
Df (x∗) (Jacobian matrix of f evaluated at x∗) have zero real parts.

Definition 6 (Sink)

An equilibrium point x∗ of (5) is a sink if all the eigenvalues of the matrix Df (x∗) have
negative real parts.

Definition 7 (Source)

An equilibrium point x∗ of (5) is a source if all the eigenvalues of the matrix Df (x∗)
have positive real parts.
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Theorem 8
If x∗ is a sink of (5) and for all the eigenvalues λj of the matrix Df (x∗)

Re (λj) < −α < 0,

where Re (λ) denotes the real part of λ, then for a given ε > 0, there exists δ > 0 such
that for all x ∈ Nδ(x

∗), the flow ϕt(x) of (5) satisfies

∥ϕt(x)− x∗∥ ≤ εe−αt

for all t ≥ 0.

Theorem 9
If x∗ is a stable equilibrium point of (5), no eigenvalue of Df (x∗) has positive real part.
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