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A chemostat
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Principle

▶ One main chamber (vessel), in which some microorganisms (bacteria, plankton),
typically unicellular, are put, together with liquid and nutrient.

▶ Contents are stirred, so nutrient and organisms are well-mixed.
▶ Organisms consume nutrient, grow, multiply.
▶ Two major modes of operation:

▶ Batch mode: let the whole thing sit.
▶ Continuous flow mode: there is an input of fresh water and nutrient, and an outflow

the comprises water, nutrient and organisms, to keep the volume constant.
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A very popular tool

▶ Study of the growth of micro-organisms as a function of nutrient, in a very
controlled setting.

▶ Very good reproducibility of experiments.
▶ Used in all sorts of settings. Fundamental science, but also, for production of

products.
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Modelling principles – Batch mode

▶ Organisms (concentration denoted x) are in the main vessel.
▶ Limiting substrate (concentration in the vessel denoted S).
▶ Homogeneous mixing.
▶ Organisms uptake nutrient at the rate µ(S), a function of the concentration of

nutrient around them.
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Model for batch mode – No organism death

First, assume no death of organisms. Model is

S′ = −µ(S)x (1a)
x′ = µ(S)x (1b)

with initial conditions S(0) ≥ 0 and x(0) > 0, and where µ(S) is such that
▶ µ(0) = 0 (no substrate, no growth)
▶ µ(S) ≥ 0 for all S ≥ 0
▶ µ(S) bounded for S ≥ 0
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The Michaelis-Menten curve
Typical form for µ(S) is the Monod curve,

µ(S) = µmax
S

KS + S (2)

▶ µmax maximal growth rate
▶ KS half-saturation constant

(µ(KS) = µmax/2).
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From now on, assume Michaelis-Menten function.
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Equilibria

To compute the equilibria, suppose S′ = x′ = 0, giving

µ(S)x = −µ(S)x = 0

This implies µ(S) = 0 or x = 0. Note that µ(S) = 0 ⇔ S = 0, so the system is at
equilibrium if S = 0 or x = 0.

This is a complicated situation, as it implies that there are lines of equilibria (S = 0
and any x, and x = 0 and any S), so that the equilibria are not isolated (arbitrarily
small neighborhoods of one equilibrium contain other equilibria), and therefore,
studying the linearization is not possible.
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Here, some analysis is however possible. Consider
dx
dS =

dx
dt

dt
dS = −µ(S)x

µ(S)x = −1

This implies that we can find the solution
x(S) = C − S,

or, supposing the initial condition is (S(0), x(0)) = (S0, x0), that is, x(S0) = x0,
x(S) = S0 + x0 − S
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Model for batch mode – Organism death

Assume death of organisms at per capita rate d. Model is

S′ = −µ(S)x (3a)
x′ = µ(S)x − dx (3b)
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Equilibria

S′ = 0 ⇔ µ(S)x = 0
x′ = 0 ⇔ (µ(S)− d)x = 0.
So we have x = 0 or µ(S) = d. So x = 0 and any value of S, and S such that µ(S) = d
and x = 0. One such particular value is (S, x) = (0, 0).

This is once again a complicated situation, since there are lines of equilibria. Intuitively,
most solutions will go to (0, 0). This is indeed the case (we will not show it).
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Modelling principles – Continuous flow mode

▶ Organisms (concentration denoted x) are in the main vessel
▶ Limiting substrate (concentration in the vessel denoted S) is input (at rate D and

concentration S0)
▶ There is an outflow of both nutrient and organisms (at same rate D as input)
▶ Homogeneous mixing
▶ Residence time in device is assumed small compared to lifetime (or time to

division) ⇒ no death considered
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Schematic representation
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Model for continuous flow mode

Model is

S′ = D(S0 − S)− µ(S)x (4a)
x′ = µ(S)x − Dx (4b)

with initial conditions S(0) ≥ 0 and x(0) ≥ 0, and D, S0 > 0
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Seeking equilibria

Setting S′ = x′ = 0, we get

0 = D(S0 − S)− µmax
S

KS + Sx

0 =

(
µmax

S
KS + S − D

)
x
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Phase plane analysis
▶ In R2, nullclines are curves
▶ Nullclines are the level set 0 of the vector field. If we have

x′1 = f1(x1, x2)

x′2 = f2(x1, x2)

then the nullclines for x1 are the curves defined by

{(x1, x2) ∈ R2 : f1(x1, x2) = 0}

those for x2 are
{(x1, x2) ∈ R2 : f2(x1, x2) = 0}

▶ On the nullcline associated to one state variable, this state variable has zero
derivative

▶ Equilibria lie at the intersections of nullclines for both state variables (in R2)
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Nullclines for x
Nullclines are given by

0 = D(S0 − S)− µmax
S

KS + Sx (5a)

0 =

(
µmax

S
KS + S − D

)
x (5b)

From (5b), nullclines for x are x = 0 and

µmax
S

KS + S − D = 0

Write the latter as

µmax
S

KS + S − D = 0 ⇔ µmaxS = D(KS + S)

⇔ (µmax − D)S = DKS

⇔ S =
DKS

µmax − D
p. 22 – Continous flow mode



Nullcline for x

So, for x, there are two nullclines:
▶ The line x = 0
▶ The line S =

DKS
µmax − D

For the line S = DKS/(µmax − D), we deduce a condition:
▶ If µmax − D > 0, that is, if µmax > D, i.e., the maximal growth rate of the cells is

larger than the rate at which they leave the chemostat due to washout, then the
nullcline intersects the first quadrant

▶ If µmax < D, then the nullcline does not intersect the first quadrant
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Nullclines for S

Nullclines are given by

0 = D(S0 − S)− µmax
S

KS + Sx (5a)

0 =

(
µmax

S
KS + S − D

)
x (5b)

Rewrite (5a),

D(S0 − S)− µmax
S

KS + Sx = 0 ⇔ µmaxSx = D(S0 − S)(KS + S)

⇔ x =
D(S0 − S)(KS + S)

µmaxS
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Nullcline for S: S intercept
The equation for the nullcline for S is

x = Γ(S) ∆
=

D
µmax

(
S0K

S − S + S0 − K
)

We look for the intercepts. First, S intercept:

Γ(S) = 0 ⇔ S0KS
S − S + S0 − KS = 0

⇔ S0K
S = S − S0 + K

⇔ S0KS = S2 + (KS − S0)S
⇔ S2 + (K − S0)S − S0KS = 0

Roots of this degree 2 polynomial are −KS (< 0) and S0
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Nullcline for S: x intercept

x intercept is found at Γ(0). But this is not defined (division by S = 0), so consider

lim
S→0+

Γ(S) = lim
S→0+

D
µmax

(
S0K

S − S + S0 − K
)

=
D

µmax

(
lim

S→0+
S0K

S − S + S0 − K
)

=
D

µmax

(
lim

S→0+

(
S0K

S

)
+ lim

S→0+
(
−S + S0 − K

))
=

D
µmax

(
+∞+ S0 − K

)
= +∞
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Maple for help

Maple has a plot function, implicitplot (part of the plots library), that is very
useful for nullclines (d is used instead of D, because maple does not allow to change D
without using unprotect)

> with(plots):
> d := 0.4; S0 := 1; mu := 0.7; K := 2;
> implicitplot(d*(S0-S)-mu*S/(K+S)*x=0,S=0..10,x=0..10)
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Stability of the equilibria

In R2, global stability can be proved more often than in R≥3. This is summarized in
the well known
Theorem 1 (Poincaré-Bendixson)
If for t ≥ t0, a trajectory is bounded and does not approach any equilibrium point, then
it is either a closed periodic orbit or approaches a closed periodic orbit as

In other words: a system in R2 with bounded solutions either approaches an equilibrium
point (a constant solution) or approaches a periodic orbit (a periodic solution)
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Conservation of mass
Summing the equations in (4), we get

(S + x)′ = D
(
S0 − (S + x)

)
Denote M = S + x the total organic mass in the chemostat. Then

M′ = D(S0 − M)

This is a linear equation in M. Solving it (e.g., integrating factor), we find

M(t) = S0 − e−Dt (S0 − M(0)
)

and so
lim

t→∞
M(t) = S0

This is called the mass conservation principle
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Implication of mass conservation

Not as strong as what we had in the SIS epidemic model, where the total number of
individuals was constant. Here, the mass is asymptotically constant

But we can still use it, using the theory of asymptotically autonomous differential
equations. Too complicated for here, just remember that often, it is allowed to use the
limit of a variable rather than the variable itself, provided you know that the
convergence occurs
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