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Problem formulation

Want to model

▶ N cars

▶ on a straight road

▶ no overtaking

▶ adjustment of speed on driver in front
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Hypotheses

▶ N cars in total.

▶ Road is the x-axis.

▶ xn(t) position of the nth car at time t.

▶ vn(t)
∆
= x ′n(t) velocity of the nth car at time t.

xx3x2x1

v1 v2 v3

0

▶ All cars start with the same initial speed v0 before time t = 0.
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Moving frame coordinates

To make computations easier, express velocity of cars in a reference frame moving at
speed u0.

Remark that here, speed=velocity, since movement is 1-dimensional.

Let
un(t) = vn(t)− u0.

Then un(t) = 0 for t ≤ 0, and un is the speed of the nth car in the moving frame
coordinates.
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Modeling driver behavior
Assume that

▶ Driver adjusts his/her speed according to relative speed between his/her car and
the car in front.

▶ This adjustment is a linear term, equal to λ for all drivers.

▶ First car: evolution of speed remains to be determined.

▶ Second car:
u′2 = λ(u1 − u2).

▶ Third car:
u′3 = λ(u2 − u3)

▶ Thus, for n = 1, . . . ,N − 1,

u′n+1 = λ(un − un+1). (1)

p. 5 � Tra�c �ow � ODE model



This can be solved using linear cascades: if u1(t) is known, then

u′2 = λ(u1(t)− u2)

is a linear �rst-order nonhomogeneous equation. Solution (integrating factors, or
variation of constants) is

u2(t) = λe−λt

∫ t

0

u1(s)e
λsds

Then use this function u2(t) in u′
3
to get u3(t),

u3(t) = λe−λt

∫ t

0

u2(s)e
λsds
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Thus

u3(t) = λe−λt

∫ t

0

u2(s)e
λsds

= λe−λt

∫ t

0

(
λe−λs

∫ s

0

u1(q)e
λqdq

)
ds

= λ3e−λt

∫ t

0

e−λs

∫ s

0

u1(q)e
λqdqds

Continue the process to get the solution.
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Example
Suppose driver of car 1 follows this function

u1(t) = α sin(ωt)

that is, ω-periodic, 0 at t = 0 (we want all cars to start with speed relative to the
moving reference equal to 0), and with amplitude α.

Then

u2(t) = λαe−λt

∫ t

0

sin(ωs)eλsds

= λαe−λt

(
ω − ωeλt cos(ωt) + λeλt sin(ωt)

λ2 + ω2

)
=

λα

λ2 + ω2

(
ωe−λt + λ sin(ωt)− ω cos(ωt)

)
.

When t → ∞, �rst term goes to 0, we are left with a ω-periodic term.
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Continuing the process,

u3(t) =
λ2α

λ2 + ω2
e−λt× ∫ t

0

(
ωe−λs + λ sin(ωs)− ω cos(ωs)

)
eλsds

that is,

u3(t) =
λ2α

λ2 + ω2
e−λt

(
ωt +

∫ t

0

(λ sin(ωs)− ω cos(ωs)) eλsds

)
=

λ2α

λ2 + ω2

(
ωt +

2λω

λ2 + ω2

)
e−λt

− λ2α

(λ2 + ω2)2
(
2λω cos(ωt)− λ2 sin(ωt) + ω2 sin(ωt)

)
Once again, the terms in e−λt vanishes for large t, and we are left with 3 ω-periodic
terms.
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Linear ODEs

De�nition 1 (Linear ODE)

A linear ODE is a di�erential equation taking the form

d

dt
x = A(t)x + B(t), (LNH)

where A(t) ∈ Mn(R) with continuous entries, B(t) ∈ Rn with real valued, continuous
coe�cients, and x ∈ Rn. The associated IVP takes the form

d

dt
x = A(t)x + B(t)

x(t0) = x0.
(2)
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Types of systems

▶ x ′ = A(t)x + B(t) is linear nonautonomous (A(t) depends on t) nonhomogeneous
(also called a�ne system).

▶ x ′ = A(t)x is linear nonautonomous homogeneous.

▶ x ′ = Ax + B , that is, A(t) ≡ A and B(t) ≡ B , is linear autonomous
nonhomogeneous (or a�ne autonomous).

▶ x ′ = Ax is linear autonomous homogeneous.

▶ If A(t + T ) = A(t) for some T > 0 and all t, then linear periodic.
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Existence and uniqueness of solutions

Theorem 2 (Existence and Uniqueness)

Solutions to (2) exist and are unique on the whole interval over which A and B are

continuous.

In particular, if A,B are constant, then solutions exist on R.
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Autonomous linear systems

Consider the autonomous a�ne system

d

dt
x = Ax + B, (A)

and the associated homogeneous autonomous system

d

dt
x = Ax . (L)
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Exponential of a matrix

De�nition 3 (Matrix exponential)

Let A ∈ Mn(K) with K = R or C. The exponential of A, denoted eAt , is a matrix in
Mn(K), de�ned by

eAt = I+
∞∑
k=1

tk

k!
Ak ,

where I is the identity matrix in Mn(K).
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Properties of the matrix exponential

▶ eAt1eAt2 = eA(t1+t2) for all t1, t2 ∈ R. 1
▶ AeAt = eAtA for all t ∈ R.
▶ (eAt)−1 = e−At for all t ∈ R.
▶ The unique solution ϕ of (L) with ϕ(t0) = x0 is given by

ϕ(t) = eA(t−t0)x0.
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Computing the matrix exponential
Let P be a nonsingular matrix in Mn(R). We transform the IVP

d

dt
x = Ax

x(t0) = x0

(L_IVP)

using the transformation x = Py or y = P−1x .

The dynamics of y is

y ′ = (P−1x)′

= P−1x ′

= P−1Ax

= P−1APy

The initial condition is y0 = P−1x0.
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We have thus transformed IVP (L_IVP) into

d

dt
y = P−1APy

y(t0) = P−1x0

(L_IVP_y)

From the earlier result, we then know that the solution of (L_IVP_y) is given by

ψ(t) = eP
−1AP(t−t0)P−1x0,

and since x = Py , the solution to (L_IVP) is given by

ϕ(t) = PeP
−1AP(t−t0)P−1x0.

So everything depends on P−1AP .
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Diagonalizable case

Assume P nonsingular in Mn(R) such that

P−1AP =

λ1 0
. . .

0 λn


with all eigenvalues λ1, . . . , λn di�erent.
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We have

eP
−1AP = I+

∞∑
k=1

tk

k!

λ1 0
. . .

0 λn


k
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For a (block) diagonal matrix M of the form

M =

m11 0
. . .

0 mnn


there holds

Mk =

mk
11

0
. . .

0 mk
nn
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Therefore,

eP
−1AP = I+

∞∑
k=1

tk

k!

λ
k
1

0
. . .

0 λkn


=


∑∞

k=0

tk

k!λ
k
1

0
. . .

0
∑∞

k=0

tk

k!λ
k
n


=

eλ1t 0
. . .

0 eλnt
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And so the solution to (L_IVP) is given by

ϕ(t) = P

eλ1t 0
. . .

0 eλnt

P−1x0.
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Nondiagonalizable case

The Jordan canonical form is

P−1AP =

J0 0
. . .

0 Js


so we use the same property as before (but with block matrices now), and

eP
−1APt =

eJ0t 0
. . .

0 eJs t
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The �rst block in the Jordan canonical form takes the form

J0 =

λ0 0
. . .

0 λk


and thus, as before,

eJ0t =

eλ0t 0
. . .

0 eλk t
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Other blocks Ji are written as
Ji = λk+i I+ Ni

with I the ni × ni identity and Ni the ni × ni nilpotent matrix

Ni =


0 1 0 0

. . .

1
0 0


λk+i I and Ni commute, and thus

eJi t = eλk+i teNi t
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Since Ni is nilpotent, N
k
i = 0 for all k ≥ ni , and the series eNi t terminates, and

eJi t = eλk+i t


1 t · · · tni−1

(ni−1)!

0 1 · · · tni−2

(ni−2)!

0 1
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Theorem 4

For all (t0, x0) ∈ R× Rn, there is a unique solution x(t) to (L_IVP) de�ned for all

t ∈ R. Each coordinate function of x(t) is a linear combination of functions of the form

tkeαt cos(βt) and tkeαt sin(βt)

where α+ iβ is an eigenvalue of A and k is less than the algebraic multiplicity of the

eigenvalue.
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Generalized eigenvectors

De�nition 5 (Generalized eigenvectors)

Let A ∈ Mr (R). Suppose λ is an eigenvalue of A with multiplicity m ≤ n. Then, for
k = 1, . . . ,m, any nonzero solution v of

(A− λI)kv = 0

is called a generalized eigenvector of A.
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Nilpotent matrix

De�nition 6 (Nilpotent matrix)

Let A ∈ Mn(R). A is nilpotent (of order k) if Aj ̸= 0 for j = 1, . . . , k − 1, and Ak = 0.
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Jordan normal form

Theorem 7 (Jordan normal form)

Let A ∈ Mn(R) have eigenvalues λ1, . . . , λn, repeated according to their multiplicities.

▶ Then there exists a basis of generalized eigenvectors for Rn.

▶ And if {v1, . . . , vn} is any basis of generalized eigenvectors for Rn, then the matrix

P = [v1 · · · vn] is invertible, and A can be written as

A = S + N,

where

P−1SP = diag(λj),

the matrix N = A− S is nilpotent of order k ≤ n, and S and N commute, i.e.,

SN = NS .
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Theorem 8

Under conditions of the Jordan normal form Theorem, the linear system x ′ = Ax with

initial condition x(0) = x0, has solution

x(t) = Pdiag
(
eλj t

)
P−1

(
I+ Nt + · · · t

k

k!
Nk

)
x0.

The result is particularly easy to apply in the following case.

Theorem 9 (Case of an eigenvalue of multiplicity n)

Suppose that λ is an eigenvalue of multiplicity n of A ∈ Mn(R). Then S = diag(λ),
and the solution of x ′ = Ax with initial value x0 is given by

x(t) = eλt
(
I+ Nt + · · · t

k

k!
Nk

)
x0.

In the simpli�ed case, we do not need the matrix P (the basis of generalized
eigenvectors).
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A variation of constants formula

Theorem 10 (Variation of constants formula)

Consider the IVP

x ′ = Ax + B(t) (3a)

x(t0) = x0, (3b)

where B : R → Rn a smooth function on R, and let eA(t−t0) be matrix exponential

associated to the homogeneous system x ′ = Ax . Then the solution ϕ of (3) is given by

ϕ(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)B(s)ds. (4)
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Computation in our case

Consider the case of 3 cars. Let

X =

(
u2
u3

)
Then the system can be written as

X ′ =

(
−λ 0
λ −λ

)
U +

(
λu1(t)

0

)
which we write for short as X ′ = AX + B(t).
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The matrix A has the eigenvalue −λ with multiplicity 2. Its Jordan form is obtained by
using the maple function JordanForm:

> with(LinearAlgebra)

> A := <<-lambda, lambda> | <0, -lambda>>:

> J := JordanForm(A)

giving

J =

(
−λ 1
0 −λ

)
To get the matrix of change of basis,

> P := JordanForm(A,output='Q')

giving

P =

(
0 1
λ 0

)
which is such that P−1AP = J.
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Because −λ is an eigenvalue with multiplicity 2 (same as the size of the matrix), we
can use the simpli�ed theorem, and only need N.

We have

N = A− S

=

(
−λ 0
λ −λ

)
−
(
−λ 0
0 −λ

)
=

(
0 0
λ 0

)
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Clearly, N2 = 0, so, by the theorem in the simpli�ed case,

x(t) = e−λt (I+ Nt) x0

But we know that solutions are unique, and that the solution to the di�erential
equation is given by x(t) = eAtx0. This means that

eAt = e−λt (I+ Nt)

= e−λt

((
1 0
0 1

)
+

(
0 0
λt 0

))
= e−λt

(
1 0
λt 1

)
=

(
e−λt 0
λte−λt e−λt

)
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Now notice that the solution to
X ′ = AX

is trivially established here, since

X (0) =

(
u2(0)
u3(0)

)
=

(
0
0

)
,

and thus
X (t) = eAt0 = 0.

eAt does however play a role in the solution (fortunately), since it is involved in the
variation of constants formula:

X (t) = eAtX0 +

∫ t

0

eA(t−s)B(s)ds
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Thus we need to compute eA(t−s)B(s), and then the integral.

eA(t−s)B(s) =

(
e−λ(t−s) 0

λ(t − s)e−λ(t−s) e−λ(t−s)

)(
λu1(s)

0

)
=

(
λe−λ(t−s)u1(s)

λ2e−λ(t−s)(t − s)u1(s)

)
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and thus∫ t

0

eA(t−s)B(s)ds =

∫ t

0

(
λe−λ(t−s)u1(s)

λ2e−λ(t−s)(t − s)u1(s)

)
ds

=

( ∫ t
0
λe−λ(t−s)u1(s)ds∫ t

0
λ2e−λ(t−s)(t − s)u1(s)ds

)
=

(
λe−λt

∫ t
0
eλsu1(s)ds

λ2e−λt
∫ t
0
eλs(t − s)u1(s)ds

)
=

(
λe−λt

∫ t
0
eλsu1(s)ds

λ2e−λt
(
t
∫ t
0
eλsu1(s)ds −

∫ t
0
seλsu1(s)ds

) )
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Let

Ψ(t) =

∫ t

0

eλsu1(s)ds

and

Φ(t) =

∫ t

0

seλsu1(s)ds

These can be computed when we choose a function u1(t). Then, �nally, we have

X (t) =

∫ t

0

eA(t−s)B(s)ds

=

(
λe−λtΨ(t)
λ2e−λt (tΨ(t)− Φ(t))

)

p. 42 � Linear systems � Our case



Case of the α sin(ωt) driver

We set
u1(t) = α sin(ωt).

Then

Ψ(t) =
α(ω − ωeλt cos(ωt) + λeλt sin(ωt))

λ2 + ω2

and

Φ(t) =
α(λ3t + λtω2 − λ2 + ω2) sin(ωt)eλt

(λ2 + ω2)2

− αω cos(ωt)(tλ2 + tω2 − 2λ)eλt + 2αλω

(λ2 + ω2)2
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A delay di�erential equations model

▶ In the previous model, reaction time is instantaneous.

▶ In practice, this is known to be incorrect: re�exes and psychology play a role.

▶ It takes at least a few instants to acknowledge a change of speed in the car in front.

▶ If the change of speed is not threatening, then you may not want to react right
away.

▶ When you press the accelerator or the brake, there is a delay between the action
and the reaction..
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A delayed model of tra�c �ow

We consider the same setting as previously, except that now, for t > 0,

u′n+1(t) = λ(un(t − τ)− un+1(t − τ)), (5)

for n = 1, . . . ,N − 1. Here, τ ≥ 0 is called the time delay (or time lag), or for short,
delay (or lag).

If τ = 0, we are back to the previous model.
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Initial data

For a delay equation such as (5), the initial conditions become initial data. This initial
data must be speci�ed on an interval of length τ , left of zero.

This is easy to see by looking at the terms: u(t − τ) involves, at time t, the state of u
at time t − τ . So if t < τ , we need to know what happened for t ∈ [−τ, 0].

So, normally, we specify initial data as

un(t) = ϕ(t) for t ∈ [−τ, 0],

where ϕ is some function, that we assume to be continuous. We assume u1(t) is known.

Here, we assume, for n = 1, . . . ,N,

un(t) = 0, t ≤ (n − 1)τ
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Important remark

Although (5) looks very similar to (1), you must keep in mind that it is in fact much
more complicated.

▶ A solution to (1) is a continuous function from R to R (or to Rn if we consider the
system).

▶ A solution to (5) is a continuous function in the space of continuous functions.

▶ The space Rn has dimension n. The space of continuous functions has dimension
∞.

We can use the Laplace transform to get some understanding of the nature of the
solutions.
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The Laplace transform

De�nition 11 (Laplace transform)

Let f (t) be a function de�ned for t ≥ 0. The Laplace transform of f is the function
F (s) de�ned by

F (s) = L{f (t)} =

∫ ∞

0

e−st f (t)dt.

The Laplace transform is a linear operator:

L{af (t) + bg(t)} = aL{f (t)}+ bL{g(t)}.
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Rules of transformation

t-domain s-domain

af (t) + bg(t) aF (s) + bG (s)
tf (t) −F ′(s)

tnf (t) (−1)nF (n)(s)
f ′ sF (s)− f (0)
f ′′ s2F (s)− sf (0)− f ′(0)

f (n) snF (s)− sn−1f (0)− · · · − f (n−1)(0)
f (t)
t

∫∞
s F (u)du∫ t

0
f (u)du = u(t) ∗ f (t) 1

s F (s)
f (at) 1

|a|F
(
s
a

)
eat f (t) F (s − a)
f (t − a)u(t − a) e−asF (s)
f (t) ∗ g(t) F (s)G (s)

Here f (n) represents the nth derivative, not the nth iterate. ∗ is the convolution
product.
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Dirac delta � Heaviside function

In the table on the following slide,

▶ δ(t) is the Dirac delta,

δ(t) =

{
∞ if t = 0

0 if t ̸= 0.

▶ H(t) is the Heaviside function,

H(t) =

{
0 if t < 0

1 if t > 0

Note that H(t) =
∫ t
−∞ δ(s)ds.
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Transforms of common functions

t-domain s-domain

δ(t) 1
δ(t − τ) e−τs

H(t) 1

s

H(t − τ) e−τs

s
tn

n!H(t) 1

sn+1

e−αtH(t) 1

s+α

sin(ωt)H(t) ω
s2+ω2

cos(ωt)H(t) s
s2+ω2
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Inverse Laplace transform

De�nition 12

Given a function F (s), if there exists f (t), continuous on [0,∞) and such that

L{f } = F ,

then f (t) is the inverse Laplace transform of F (s), and is denoted f = L−1{F}.

Theorem 13

The inverse Laplace transform is a linear operator. Assume that L−1{F1} and L−1{F2}
exist, then

L−1{aF1 + bF2} = aL−1{F1}+ bL−1{F2}.
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Solving di�erential equations using the Laplace transform

1. Take the Laplace transform of both sides of the equation.

2. Using the initial conditions, deduce an algebraic system of equations in s-space.

3. Solve the algebraic system in s-space.

4. Take the inverse Laplace transform of the solution in s-space, to obtain the
solution of the di�erential equation in t-space.

p. 59 � The Laplace transform
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Let

Uk+1(s) = L{uk+1(t)} =

∫ ∞

0

e−stuk+1(t)dt.

Since we have assumed initial data of the form

un(t) = 0 for t ≤ (n − 1)τ,

we have

Uk+1(s) =

∫ ∞

kτ
e−stuk+1(t)ds.

p. 61 � Laplace transform of our DDE tra�c �ow model



Since un+1(t) = 0 for t ≤ nτ ,∫ ∞

0

e−stu′n+1(t)dt =
[
uk+1(t)e

−st
]∞
kτ

+ s

∫ ∞

kτ
e−stuk+1(t)dt

= sUk+1(s)

and ∫ ∞

0

e−stuk+1(t − τ)dt =

∫ ∞

(k−1)τ
e−stuk+1(t − τ)dt

=

∫ ∞

(k−2)τ
e−s(t+τ)uk(τ)dτ

= e−sτUk(s),

since e−stuk+1(t) → 0 for the improper integral to exist.
Note that we could have obtained this directly using the properties of the Laplace
transform.

p. 62 � Laplace transform of our DDE tra�c �ow model



Multiply
u′n+1(t) = λ(un(t − τ)− un+1(t − τ))

by e−st ,
e−stu′n+1(t) = λe−st(un(t − τ)− un+1(t − τ))

integrate over (0,∞) (using the expressions found above),

sUn+1(s) = λ(e−sτUn(s)− e−sτUn+1(s))

which is equivalent to

Un+1(s) =
λUn(s)

λ+ sesτ

Thus, when U1(s) is known, we can deduce the values for all Un.

p. 63 � Laplace transform of our DDE tra�c �ow model



Suppose
u1(t) = α sin(ωt)

From the table of Laplace transforms, it follows that

U1(s) = α
ω

s2 + ω2

Therefore,

U2 =
λU1(s)

λ+ sest
= α

λ

λ+ sest
ω

s2 + ω2

and we can continue..

However, even though we know the solution in s-space, it is di�cult to get the behavior
in t-space, by hand, and maple does not help us either.

p. 64 � Laplace transform of our DDE tra�c �ow model
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