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Spatial domain
We consider the motion of a body of water that is in�nite in the z direction, with or

without boundary in the x direction, and the vertical direction of gravity taken as the y
direction.
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From now on, suppose z direction uniform (the same for all z), so ignore z except for

the sake of argument.

p. 2 � Model formulation



▶ Water depth at rest, H, small compared to distance L0 over which signi�cant

changes can occur in the x direction.

▶ Undisturbed water surface, y = 0.

▶ Moving upper free surface y = η, measured from y = 0.

▶ Sea �oor y = −H.
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p. 3 � Model formulation



▶ u velocity in the x direction. Assume independent of depth y .

▶ ρ mass density of water.

▶ p(x , y , t) pressure in �uid at point (x , y) at time t. In water, magnitude at any

(x , y) is same in all directions.

Fluid motion independent of z , so

▶ u = u(x , t)

▶ η = η(x , t).

p. 4 � Model formulation



Take a cylindrical water column, with base area A, between y1 and y2 > y1.
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Force equilibrium in the y direction in this cylinder requires balance of weight of water

column and pressure di�erential between bottom face y = y1 and top face y = y2.

p. 5 � Model formulation



Weight of water column: ∫∫
A

y2∫
y1

(−ρg) dydxdz

Pressure di�erential: ∫∫
A

(p(x , y2, t)− p(x , y1, t)) dxdz

So we must have∫∫
A

y2∫
y1

(−ρg) dydxdz =

∫∫
A

(p(x , y2, t)− p(x , y1, t)) dxdz

p. 6 � Model formulation



∫∫
A

y2∫
y1

(−ρg) dydxdz =

∫∫
A

(p(x , y2, t)− p(x , y1, t)) dxdz

is equivalent to ∫∫
A

y2∫
y1

(
∂p

∂y
+ ρg

)
dydxdz = 0

This must be true for any water column, i.e., any A, y1, y2. Therefore,

∂p

∂y
+ ρg = 0

(otherwise, we would be able to �nd a water column where the integrand is positive,

leading to a positive value of the integral on that column).

p. 7 � Model formulation



Water is incompressible

If you force a body of water to deform, the volume of that body of water remains

constant, i.e., water is an incompressible �uid.

⇒ ρ, the density, is a constant, and from

∂p

∂y
+ ρg = 0

we get

p = −ρgy + C ,

so if p is measured relative to the pressure above the free upper surface y = η,

p = ρg(η − y)

p. 8 � Model formulation



Water accumulation
Consider a �xed volume V ,

V = {z1 ≤ z ≤ z2, x1 ≤ x ≤ x2,−H ≤ y ≤ η}
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p. 9 � Model formulation



Water enters V through x1 face and leaves V through x2 face.
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Rate of water accumulation in V is

d

dt

∫ z2

z1

∫ x2

x1

∫ η

−H
ρ dydxdz = ∆z

d

dt

∫ x2

x1

ρh dx ,

with ∆z = z2 − z1, and h(x , t) = η + H the height of water at time t at spatial

location x .

p. 10 � Model formulation



Water �ux
Net �ux of water entering V through its faces x = x1 and x = x2 is
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[∫ z2

z1

∫ η

−H
u dydz

]
x=x1

−
[∫ z2

z1

∫ η

−H
u dydz

]
x=x2

= −∆z [ρuh]x2x1

There is no �ux through y = −H and y = η, and no net �ux through z = z1 and

z = z2.

p. 11 � Model formulation



Conservation of mass

Of course, the mass must conserve in V , so the two expressions must be equal, i.e.,

d

dt

x2∫
x1

ρh dx + [ρuh]x2x1 = 0

p. 12 � Model formulation



Newton's second law for deformable media (Euler): rate of increase of horizontal

momentum (in the x direction) in V must equal the sum of the net in�ux of

momentum into the volume and the net horizontal force acting on the column.

(Momentum: product of mass and velocity of an object).

Rate of increase of momentum

d

dt

z2∫
z1

x2∫
x1

η∫
−H

ρu dydxdz = ∆z
d

dt

x2∫
x1

ρuhdx

p. 13 � Model formulation



Momentum �ux

Net in�ux of momentum through faces x = x1 and x = x2 is z2∫
z1

η∫
−H

(ρu)u dydz


x=x1

−

 z2∫
z1

η∫
−H

(ρu)u dydz


x=x2

= −∆z
[
ρu2h

]x2
x1

There is no �ux through y = −H and y = η, and no net �ux through z = z1 and

z = z2.

p. 14 � Model formulation



Forces acting on V

Ignore friction at y = −H. Then only contributions to horizontal forces come from

pressure at x = x1 and x = x2, so net horizontal forces acting on V is z2∫
z1

η∫
−H

p dydz

x2

x1

= −

∆z

η∫
−H

ρg(η − y) dy

x2

x1

=

[
−∆zρg(ηy − 1

2
y2)

∣∣∣∣η
−H

]x2
x1

=

[
−1

2
∆zρgh2

]x2
x1

p. 15 � Model formulation



Conclusion from Newton's second law

d

dt

x2∫
x1

ρuh dx +

[
ρu2h +

1

2
ρgh2

]x2
x1

= 0

p. 16 � Model formulation



The general model

Pressure magnitude:

p = ρg(η − y) (1)

Horizontal velocity:

d

dt

x2∫
x1

ρh dx + [ρuh]x2x1 = 0 (2)

Free surface height:

d

dt

x2∫
x1

ρuh dx +

[
ρu2h +

1

2
ρgh2

]x2
x1

= 0 (3)

p. 17 � Model formulation
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Suppose u and h are smooth (with continuous �rst order partial derivatives), then (2)

and (3) take a much simpler form,∫ x2

x1

(
∂h

∂t
+

∂

∂x
(uh)

)
dx = 0

and ∫ x2

x1

(
∂

∂t
(uh) +

∂

∂x
(u2h +

1

2
gh2)

)
dx = 0

Since the intervals of integration [x1, x2] are arbitrary, and that the integrands are

continuous, we have
∂h

∂t
+

∂

∂x
(uh) = 0

and
∂

∂t
(uh) +

∂

∂x
(u2h +

1

2
gh2) = 0

p. 19 � Case of smooth solutions



We write
∂h

∂t
+

∂

∂x
(uh) = 0

and
∂

∂t
(uh) +

∂

∂x
(u2h +

1

2
gh2) = 0

as

ht + (uh)x = 0 (4)

and

(uh)t + (u2h +
1

2
gh2)x = 0 (5)

p. 20 � Case of smooth solutions



From (4),

ht = −(uh)x = −(uxh + uhx)

Equation (5) can be rewritten as

(5) ⇔ uth + uht + (u2h +
1

2
gh2)x = 0

⇔ uth − u(uxh + uhx) + 2uuxh + u2hx + ghhx = 0

⇔ uth − uuxh −���u2hx + 2uuxh +���u2hx + ghhx = 0

⇔ uth + uuxh + ghhx = 0

Therefore, provided h ̸= 0, we get

ht + (uh)x = 0 (6a)

ut + uux + ghx = 0 (6b)

which describes the evolution of u and h.

p. 21 � Case of smooth solutions



The model for smooth solutions

ht + (uh)x = 0 (6a)

ut + uux + ghx = 0 (6b)

If −∞ < x < ∞, then all we need is an initial condition, i.e., functions describing the

initial state of u and h:

u(x , 0) = u0(x), h(x , 0) = h0(x), −∞ < x < ∞.

If x has a boundary, then we need boundary conditions.

p. 22 � Case of smooth solutions
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Suppose the bottom is �at (H is constant), and that the deviation from the

undisturbed depth H is small compared to H itself, then

h = (H + ζ) = H(1+
ζ

H
) ≃ H, ht = ζt , hx = ζx .

If |u| is also small, then uux can be neglected. Then we can linearize

ht + (uh)x = 0 (6a)

ut + uux + ghx = 0, (6b)

getting

ζt + Hux = 0 (7a)

ut + gζx = 0 (7b)

p. 24 � Linearization



Di�erentiate (7b) with respect to x :

utx + gζxx = 0

and therefore,

utx = −gζxx (8)

Di�erentiate (7a) with respect to t:

ζtt + Huxt = 0 (9)

If u has continuous second-order partial derivatives, then from Clairaut's theorem,

utx = uxt . Therefore, substituting (8) into (9),

ζtt − HGζxx = 0

that is

ζtt = c2ζxx , c2 = Hg

p. 25 � Linearization



The one-dimensional wave equation (1)

The partial di�erential equation

ζtt = c2ζxx (10)

with c2 = Hg , is the one-dimensional wave equation. Initial conditions are given by

ζ(x , 0) = h0(x)− H ≡ ζ0(x)

ζt(x , 0) = −Hux(x , 0) = −H[u0(x)]x ≡ ν0(x)

p. 26 � Linearization



The one-dimensional wave equation (2)

Things can also be expressed in terms of u. Using the same type of simpli�cation used

before for ζ, we get

utt = c2uxx (11)

with c2 = Hg . Initial conditions are given by

u(x , 0) = u0(x)

ut(x , 0) = −gζx(x , 0) = −g [h0(x)]x ≡ v0(x)

p. 27 � Linearization
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Traveling wave solutions

This was obtained by d'Alembert. Consider

utt = c2uxx (11)

Note that this can be written as(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0

This implies that for any F ,G , the sum

u(x , t) = F (x − ct) + G (x + ct)

satis�es (11).

p. 29 � Traveling wave solutions



Derivation of the solution

Introduce the new variables

a = x − ct and b = x + ct

We have
∂u

∂x
=

∂u

∂a
+

∂u

∂b

∂u

∂t
= −c

∂u

∂a
+ c

∂u

∂b

∂2

∂x2
u =

(
∂

∂a
+

∂

∂b

)2

u =
∂2u

∂a2
+ 2

∂2u

∂a∂b
+

∂2u

∂b2

∂2

∂t2
u =

(
−c

∂

∂a
+ c

∂

∂b

)2

u = c2
(
∂2u

∂a2
− 2

∂2u

∂a∂b
+

∂2u

∂b2

)

p. 30 � Traveling wave solutions



So the equation

utt = c2uxx (11)

is written

4
∂2u

∂a∂b
= 0

Integrate with respect to b:
∂u

∂a
= ξ(a)

and thus

u(x , t) = u(a, b) =

∫
ξ(a)da+ G (b)

= F (a) + G (b)

= F (x − ct) + G (x + ct)

p. 31 � Traveling wave solutions



Set

u(x , 0) = f (x) ut(x , 0) = g(x)

Then d'Alembert's formula gives

u(x , t) =
f (x − ct) + f (x + ct)

2
+

1

2c

∫ x+ct

x−ct
g(s)ds

p. 32 � Traveling wave solutions



Case of a Dirac delta initial condition

Suppose u0(x) = 0 and v0(x) = δ(x), for −∞ < x < ∞, with δ the Dirac delta,

δ(x) =

{
∞ if x = 0

0 otherwise.

Therefore,

u(x , t) =
1

2c

∫ x+ct

x−ct
δ(z)dz =

1

2c
{H(x + ct)− H(x − ct)} ,

with H the Heaviside function,

H(x) =

{
0 if x < 0

1 if x > 0.

p. 33 � Traveling wave solutions



For simplicity, take c = 1. This gives

u(x , t) =
1

2
{H(x + t)− H(x − t)} ,

p. 34 � Traveling wave solutions



t

x

x−t=0xt=0 t 1

H xt 1

−H x−t1

H xt 1−H x−t1

p. 35 � Traveling wave solutions



As t increases, we move further up in the top graph in (x , t)-space, resulting in a wider

and wider square pulse.
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xp. 36 � Traveling wave solutions
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