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We conduct an experiment with a set of r outcomes,

S = {S1, . . . ,Sr}.

The experiment is repeated n times (with n large, potentially in�nite).

The system has no memory: the next state depends only on the present state.

The probability of Sj occurring on the next step, given that Si occurred on the last
step, is

pij = p(Sj |Si ).
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Suppose that Si is the current state, then one of S1, . . . ,Sr must be the next state;
therefore,

pi1 + pi2 + · · ·+ pir = 1, 1 ≤ i ≤ r .

(Note that some of the pij can be zero, all that is needed is that
∑r

j=1
pij = 1 for all i .)

p. 3 � Markov chains



Markov chain

De�nition 1

An experiment with �nite number of possible outcomes S1, . . . ,Sr is repeated. The
sequence of outcomes is a Markov chain if there is a set of r2 numbers {pij} such that
the conditional probability of outcome Sj on any experiment given outcome Si on the
previous experiment is pij , i.e., for 1 ≤ i , j ≤ r , n = 1, . . .,

pij = Pr(Sj on experiment n + 1|Si on experiment n).

The outcomes S1, . . . ,Sr are the states, and the pij are the transition probabilities. The
matrix P = [pij ] is the transition matrix.
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Transition matrix
The matrix

P =


p11 p12 · · · p1r
p21 p22 · · · p2r

pr1 pr2 · · · prr


has

▶ nonnegative entries, pij ≥ 0

▶ entries less than 1, pij ≤ 1

▶ row sum 1, which we write

r∑
j=1

pij = 1, i = 1, . . . , r

or, using the notation 1lT = (1, . . . , 1),

P1l = 1l

p. 5 � Markov chains
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Simple Mendelian inheritance

A certain trait is determined by a speci�c pair of genes, each of which may be two
types, say G and g .

One individual may have:

▶ GG combination (dominant)

▶ Gg or gG , considered equivalent genetically (hybrid)

▶ gg combination (recessive)

In sexual reproduction, o�spring inherit one gene of the pair from each parent.
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Basic assumption of Mendelian genetics

Genes inherited from each parent are selected at random, independently of each other.
This determines probability of occurrence of each type of o�spring. The o�spring

▶ of two GG parents must be GG ,

▶ of two gg parents must be gg ,

▶ of one GG and one gg parent must be Gg ,

▶ other cases must be examined in more detail.
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GG and Gg parents

G G G g

G g

Parents

G G G gG G Offspring

O�spring has probability

▶
1

2
of being GG

▶
1

2
of being Gg
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Gg and Gg parents

G g G g

G g

Parents

g G g gG G Offspring

O�spring has probability

▶
1

4
of being GG

▶
1

2
of being Gg

▶
1

4
of being gg
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gg and Gg parents

g g G g

g g

Parents

g G g gg G Offspring

O�spring has probability

▶
1

2
of being Gg

▶
1

2
of being gg
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General case

Let pi (n) be the probability that the state Si will occur on the nth repetition of the
experiment, 1 ≤ i ≤ r .

Since one the states Si must occur on the nth repetition,

p1(n) + p2(n) + · · ·+ pr (n) = 1.

p. 13 � Repetition of the process



Let pi (n + 1) be the probability that state Si , 1 ≤ i ≤ r , occurs on (n + 1)th repetition
of the experiment.

There are r ways to be in state Si at step n + 1:

1. Step n is S1. Probability of getting S1 on nth step is p1(n), and probability of
having Si after S1 is p1i . Therefore, by multiplication principle,
P(Si |S1) = p1ip1(n).

2. We get S2 on step n and Si on step (n + 1). Then P(Si |S2) = p2ip2(n).

..

r. Probability of occurrence of Si at step n + 1 if Sr at step n is P(Si |Sr ) = pripr (n).

Therefore, pi (n + 1) is sum of all these,

pi (n + 1) = P(Si |S1) + · · ·+ P(Si |Sr )
= p1ip1(n) + · · ·+ pripr (n)
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Therefore,
p1(n + 1) = p11p1(n) + p21p2(n) + · · ·+ pr1pr (n)

...

pk(n + 1) = p1kp1(n) + p2kp2(n) + · · ·+ prkpr (n)

...

pr (n + 1) = p1rp1(n) + p2rp2(n) + · · ·+ prrpr (n)

(1)
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In matrix form
p(n + 1) = p(n)P, n = 1, 2, 3, . . . (2)

where p(n) = (p1(n), p2(n), . . . , pr (n)) is a (row) probability vector and P = (pij) is a
r × r transition matrix,

P =


p11 p12 · · · p1r
p21 p22 · · · p2r

pr1 pr2 · · · prr
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So, what we have is

(p1(n + 1), . . . , pr (n + 1)) =

(p1(n), . . . , pr (n))


p11 p12 · · · p1r
p21 p22 · · · p2r

pr1 pr2 · · · prr


It is easy to check that this gives the same expression as (1).
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For our genetic model..

Consider a process of continued matings.

▶ Start with an individual of known or unknown genetic character and mate it with a
hybrid.

▶ Assume that there is at least one o�spring; choose one of them at random and
mate it with a hybrid.

▶ Repeat this process through a number of generations.

The genetic type of the chosen o�spring in successive generations can be represented by
a Markov chain, with states GG , Gg and gg . So there are 3 possibles states S1 = GG ,
S2 = Gg and S3 = gg .
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We have

↗ GG Gg gg

GG 0.5 0.5 0
Gg 0.25 0.5 0.25
gg 0 0.5 0.5

The transition probabilities are thus

P =

 1

2

1

2
0

1

4

1

2

1

4

0 1

2

1

2
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Stochastic matrices

De�nition 2 (Stochastic matrix)

The nonnegative r × r matrix M is stochastic if
∑r

j=1
aij = 1 for all i = 1, 2, . . . , r .

Theorem 3

Let M be a stochastic matrix M. Then all eigenvalues λ of M are such that |λ| ≤ 1.
Furthermore, λ = 1 is an eigenvalue of M.

To see that 1 is an eigenvalue, write the de�nition of a stochastic matrix, i.e., M has
row sums 1. In vector form, M1l = 1l. Now remember that λ is an eigenvalue of M,
with associated eigenvector v , i� Mv = λv . So, in the expression M1l = 1l, we read an
eigenvector, 1l, and an eigenvalue, 1.
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Long �time� behavior

Let p(0) be the initial distribution (row) vector. Then

p(1) = p(0)P

p(2) = p(1)P

= (p(0)P)P

= p(0)P2

Iterating, we get that for any n,

p(n) = p(0)Pn

Therefore,
lim

n→+∞
p(n) = lim

n→+∞
p(0)Pn = p(0) lim

n→+∞
Pn

p. 21 � Repetition of the process



Additional properties of stochastic matrices

Theorem 4

If M,N are stochastic matrices, then MN is a stochastic matrix.

Theorem 5

If M is a stochastic matrix, then for any k ∈ N, Mk is a stochastic matrix.
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Regular Markov chain

De�nition 6 (Regular Markov chain)

A regular Markov chain is one in which Pk is positive for some integer k > 0, i.e., Pk

has only positive entries, no zero entries.

De�nition 7

A nonnegative matrix M is primitive if, and only if, there is an integer k > 0 such that
Mk is positive.

Theorem 8

A Markov chain is regular if, and only if, the transition matrix P is primitive.

p. 24 � Regular Markov chains



Important result for regular Markov chains

Theorem 9

If P is the transition matrix of a regular Markov chain, then

1. the powers Pn approach a stochastic matrix W ,

2. each row of W is the same (row) vector w = (w1, . . . ,wr ),

3. the components of w are positive.

So if the Markov chain is regular,

lim
n→+∞

p(n) = p(0) lim
n→+∞

Pn = p(0)W
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Left and right eigenvectors

Let M be an r × r matrix, u, v be two column vectors, λ ∈ R. Then, if

Mu = λu,

u is the (right) eigenvector corresponding to λ, and if

vTM = λvT

then v is the left eigenvector corresponding to λ. Note that to a given eigenvalue there
corresponds one left and one right eigenvector.

p. 26 � Regular Markov chains



The vector w is in fact the left eigenvector corresponding to the eigenvalue 1 of P .
(We already know that the (right) eigenvector corresponding to 1 is 1l.)

To see this, remark that, if p(n) converges, then p(n + 1) = p(n)P , so w is a �xed
point of the system. We thus write

wP = w

and solve for w , which amounts to �nding w as the left eigenvector corresponding to
the eigenvalue 1.

Alternatively, we can �nd w as the (right) eigenvector associated to the eigenvalue 1
for the transpose of P ,

PTwT = wT
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Now remember that when you compute an eigenvector, you get a result that is the
eigenvector, to a multiple.

So the expression you obtain for w might have to be normalized (you want a probability
vector). Once you obtain w , check that the norm ∥w∥ de�ned by

∥w∥ = w1 + · · ·+ wr

is equal to one. If not, use
w

∥w∥
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Back to genetics..

The Markov chain is here regular. Indeed, take the matrix P ,

P =

 1

2

1

2
0

1

4

1

2

1

4

0 1

2

1

2


and compute P2:

P2 =

 3

8

1

2

1

8
1

4

1

2

1

4
1

8

1

2

3

8


As all entries are positive, P is primitive and the Markov chain is regular.
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Another way to check regularity:

Theorem 10

A matrix M is primitive if the associated connection graph is strongly connected, i.e.,

that there is a path between any pair (i , j) of states, and that there is at least one

positive entry on the diagonal of M.

This is checked directly on the transition graph

GG Gg

gg

0.5
0.5

0.5

0.5

0.5

0.25

0.25
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Compute the left eigenvector associated to 1 by solving

(w1,w2,w3)

 1

2

1

2
0

1

4

1

2

1

4

0 1

2

1

2

 = (w1,w2,w3)

1

2
w1 +

1

4
w2 = w1 (3a)

1

2
w1 +

1

2
w2 +

1

2
w3 = w2 (3b)

1

4
w2 +

1

2
w3 = w3 (3c)

From (3a), w1 = w2/2, and from (3c), w3 = w2/2. Substituting these values into (3b),

1

4
w2 +

1

2
w2 +

1

4
w2 = w2,

that is, w2 = w2, i.e., w2 can take any value. So w = (1
4
, 1
2
, 1
4
).
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Mating with a GG individual

Suppose now that we conduct the same experiment, but mate each new generation
with a GG individual instead of a Gg individual. Transition table is

↗ GG Gg gg

GG 1 0 0
Gg 0.5 0.5 0
gg 0 1 0

The transition probabilities are thus

P =

 1 0 0
1

2

1

2
0

0 1 0
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New transition graph

GG Gg

gg

1 0.5

1

0.5

Clearly:
▶ we leave gg after one iteration, and can never return,
▶ as soon as we leave Gg , we can never return,
▶ can never leave GG as soon as we get there.
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Absorbing states, absorbing chains

De�nition 11

A state Si in a Markov chain is absorbing if whenever it occurs on the nth generation of
the experiment, it then occurs on every subsequent step. In other words, Si is absorbing
if pii = 1 and pij = 0 for i ̸= j .

De�nition 12

A Markov chain is said to be absorbing if it has at least one absorbing state, and if from
every state it is possible to go to an absorbing state.

In an absorbing Markov chain, a state that is not absorbing is called transient.
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Some questions on absorbing chains

Suppose we have a chain like the following:

1 2 3 4

1. Does the process eventually reach an absorbing state?

2. Average number of times spent in a transient state, if starting in a transient state?

3. Average number of steps before entering an absorbing state?

4. Probability of being absorbed by a given absorbing state, when there are more than
one, when starting in a given transient state?
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Reaching an absorbing state

Answer to question 1:

Theorem 13

In an absorbing Markov chain, the probability of reaching an absorbing state is 1.
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Standard form of the transition matrix

For an absorbing chain with k absorbing states and r − k transient states, the transition
matrix can be written as

P =

(
Ik 0
R Q

)
with following meaning,

Absorbing states Transient states
Absorbing states Ik 0
Transient states R Q

with Ik the k × k identity matrix, 0 an k × (r − k) matrix of zeros, R an (r − k)× k
matrix and Q an (r − k)× (r − k) matrix.

p. 38 � Absorbing Markov chains



The matrix Ir−k − Q is invertible. Let

▶ N = (Ir−k − Q)−1 be the fundamental matrix of the Markov chain

▶ Ti be the sum of the entries on row i of N

▶ B = NR .

Answers to our remaining questions:

2. Nij is the average number of times the process is in the jth transient state if it
starts in the ith transient state.

3. Ti is the average number of steps before the process enters an absorbing state if it
starts in the ith transient state.

4. Bij is the probability of eventually entering the jth absorbing state if the process
starts in the ith transient state.
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Back to genetics..

The matrix is already in standard form,

P =

 1 0 0
1

2

1

2
0

0 1 0

 =

(
I1 0
R Q

)

with I1 = 1, 0 = (0 0) and

R =

(
1

2

0

)
Q =

(
1

2
0

1 0

)
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We have

I2 − Q =

(
1 0
0 1

)
−
(

1

2
0

1 0

)
=

(
1

2
0

−1 1

)
so

N = (I2 − Q)−1 = 2

(
1 0
1 1

2

)
=

(
2 0
2 1

)
Then

T = N1l =

(
2
3

)
and

B = NR =

(
2 0
2 1

)(
1

2

0

)
=

(
1
1

)
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The drunk man's walk, 1.0

▶ chain of states S1, . . . ,Sp
▶ if in state Si , i = 2, . . . , p − 1, probability 1/2 of going left (to Si−1) and 1/2 of

going right (to Si+1)

▶ if in state S1, probability 1 of going to S2
▶ if in state Sp, probability 1 of going to Sp−1

S
1

S
i-1

1/2 1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/21/21

1

S
2

S
3

S
i

S
p-2

S
p-1

S
p
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The transition matrix for DMW 1.0

P =



0 1 0 0 0 · · · 0
1/2 0 1/2 0
0 1/2 0 1/2
...

. . .
. . .

. . .
...

1/2 0 1/2
0 1 0


Clearly a primitive matrix, so this is an regular Markov chain.
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We need to solve wTP = wT , that is,

1

2
w2 = w1

w1 +
1

2
w3 = w2

1

2
w2 +

1

2
w4 = w3

1

2
w3 +

1

2
w5 = w4

...

1

2
wp−3 +

1

2
wp−1 = wp−2

1

2
wp−2 + wp = wp−1

1

2
wp−1 = wp
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Express everything in terms of w1:

w2 = 2w1

w1 +
1

2
w3 = w2 ⇔ w3 = 2(w2 − w1) = 2w1

1

2
w2 +

1

2
w4 = w3 ⇔ w4 = 2(w3 −

1

2
w2) = 2(w3 − w1) = 2w1

1

2
w3 +

1

2
w5 = w4 ⇔ w5 = 2(w4 −

1

2
w3) = 2(w4 − w1) = 2w1

...

1

2
wp−3 +

1

2
wp−1 = wp−2 ⇔ wp−1 = 2w1

1

2
wp−2 + wp = wp−1 ⇔ wp = wp−1 −

1

2
wp−2 = w1

1

2
wp−1 = wp (con�rms that wp = w1)
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So we get
wT = (w1, 2w1, . . . , 2w1,w1)

We have

p∑
i=1

wi = w1 +

(
p−1∑
i=2

2w1

)
+ w1

= 2w1 +

p−1∑
i=2

2w1

=

p−1∑
i=1

2w1

= 2w1

p−1∑
i=1

1

= 2w1(p − 1)
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Since
p∑

i=1

wi = 2w1(p − 1)

to get a probability vector, we need to take

w1 =
1

2(p − 1)

So

wT =

(
1

2(p − 1)
,

1

p − 1
, . . . ,

1

p − 1
,

1

2(p − 1)

)
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Now assume we take an initial condition with p(0) = (1, 0, . . . , 0), i.e., the walker starts
in state 1. Then

lim
t→∞

p(t) = p(0)W = p(0)w = p(0) · wT

so

lim
t→∞

p(t) = (1, 0, . . . , 0) ·
(

1

2(p − 1)
,

1

p − 1
, . . . ,

1

p − 1
,

1

2(p − 1)

)
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The drunk man's walk, 2.0

▶ chain of states S1, . . . ,Sp
▶ if in state Si , i = 2, . . . , p − 1, probability 1/2 of going left (to Si−1) and 1/2 of

going right (to Si+1)

▶ if in state S1, probability 1 of going to S1
▶ if in state Sp, probability 1 of going to Sp

S
1

S
i-11/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2
1/2

1 1

S
2

S
3

S
i

S
p-2

S
p-1

S
p
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The transition matrix for DMW 2.0

P =



1 0 0 0 0 · · · 0
1/2 0 1/2 0
0 1/2 0 1/2
...

. . .
. . .

. . .
...

1/2 0 1/2
0 0 1
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Put P in standard form

Absorbing states are S1 and Sp, write them �rst, then write other states.

S1 Sp S2 S3 S4 · · · Sp−2 Sp−1

S1 1 0 0 0 0 · · · 0 0
Sp 0 1 0 0 0 · · · 0 0
S2 1/2 0 0 1/2 0 · · · 0 0
S3 0 0 1/2 0 1/2 · · · 0 0
...

Sp−2 0 0 0 0 0 · · · 0 1/2
Sp−1 0 1/2 0 0 0 · · · 1/2 0

So we �nd

P =

(
I2 0
R Q

)
where 0 a 2× (p − 2)-matrix, R a (p − 2)× 2 matrix and Q a (p − 2)× (p − 2) matrix

p. 51 � Random walks



R =


1/2 0
0 0
...

...
0 0
0 1/2


and

Q =



0 1/2 0
1/2 0 1/2
0 1/2 0

. . .
. . .

. . .

0 1/2 0 1/2
0 1/2 0
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Ip−2 − Q =



1 −1/2 0
−1/2 1 −1/2
0 −1/2 1

. . .
. . .

. . .

0 −1/2 1 −1/2
0 −1/2 1


This is a tridiagonal symmetric Toeplitz matrix
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Inverting a symmetric tridiagonal matrix

We want to use the following result (found for example in some slides of Gérard
Meurant about Tridiagonal matrices): if

Jk =


α1 β1
β1 α2 β2

. . .
. . .

. . .

βk−2 αk−1 βk−1

βk−1 αk


δ1 = α1, δj = αj −

β2

j−1

δj−1

, j = 2, . . . , k

d
(k)
k = αk , d

(k)
j = αj −

β2

j

d
(k)
j+1

, j = k − 1, . . . , 1

then we have the result on the next slide
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Inverse of a symmetric tridiagonal Toeplitz matrix

Theorem 14

The inverse of the symmetric tridiagonal Toeplitz matrix Jk is given by

(J−1

k )ij = (−1)j−iβi · · ·βj−1

d
(k)
j+1

· · · d (k)
k

δi · · · δk
, ∀i ,∀j > i

(J−1

k )ii =
d
(k)
i+1

· · · d (k)
k

δi · · · δk
, ∀i
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Note that α1 = · · · = αk = 1 and β1 = · · · = βk−1 = −1/2. Write α := αi = 1 and
β := βi = −1/2. We have δ1 = α = 1, and the general term takes the form

δj = α− β2

δj−1

= 1− 1

4δj−1

, j = 2, . . . , k

δ2 = 1− 1

4
=

3

4

δ3 = 1− 1

43
4

=
2

3

δ4 = 1− 1

42
3

= 1− 3

8
=

5

8

δ5 = 1− 1

45
8

= 1− 2

5
=

3

5

δ6 = 1− 1

43
5

= 1− 5

12
=

7

12

δ7 = 1− 1

4 7

12

= 1− 3

7
=

4

7
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Taking a look at the few terms in the sequence, we get the feeling that

δ2n =
2n + 1

4n
and δ2n+1 =

n + 1

2n + 1

A little induction should con�rm this. Induction hypothesis (changing indices for odd δ):

Pn :

{
δ2n−1 = n

2n−1

δ2n = 2n+1

4n

P1 is true. Assume Pj . Then

δ2j+1 = 1− 1

4δ2j
= 1− 1

42j+1

4j

= 1− j

2j + 1
=

j + 1

2j + 1

δ2j+2 = 1− 1

4δ2j+1

= 1− 1

4 j+1

2j+1

= 1− 2j + 1

4(j + 1)
=

2(j + 1) + 1

4(j + 1)

So Pj+1 holds true
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In fact, we can go further, by expressing

δ2n =
2n + 1

4n
and δ2n+1 =

n + 1

2n + 1

in terms of odd and even j . If j is even,

δj =
j + 1

2j

while if j is odd,

δj =
(j + 1)/2

j

But the latter gives

δj =
j + 1

2j

so this formula holds for all j 's
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For the d
(k)
j 's, we have d

(k)
k = 1 and

d
(k)
j = 1− 1

4d
(k)
j+1

So d
(k)
k = δ1 and

d
(k)
k−j+1

= δj =
j + 1

2j
, j = 2, . . . , k

The form
d
(k)
j = δk−j+1

will also be useful. In summary,

δ1 δ2 · · · δj · · · δk−1 δk

d
(k)
k d

(k)
k−1

· · · d
(k)
k−j+1

· · · d
(k)
2

d
(k)
1

1 3

4
· · · j+1

2j · · · k
2(k−1)

k+1

2k
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In J−1, the following terms appear

d
(k)
j+1

· · · d (k)
k

δi · · · δk
, ∀i ,∀j > i

and
d
(k)
i+1

· · · d (k)
k

δi · · · δk
, ∀i
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We have, ∀i ,

d
(k)
i+1

· · · d (k)
k

δi · · · δk
=

δk−(i+1)+1 · · · δk−k+1

δi · · · δk

=
δk−i · · · δ1
δi · · · δk

=
δ1 · · · δk−i

δi · · · δk

=

k−i∏
j=1

j+1

2j

k∏
j=i

j+1

2j

=
k−i∏
j=1

j + 1

2j

k∏
j=i

2j

j + 1
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