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We give a few examples that illustrate how ubiquitous matrices are in mathematics

In the process, we introduce some concepts that are used later

However, precise definitions are given in subsequent chapter; here concepts are
introduced with very few explanations
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Linear systems of difference equations

Let x(t) ∈ Rn be a state variable and t ∈ N be an independent variable, typically
thought of as time. Let A ∈ Mn(R). An autonomous homogeneous linear system
of difference equations is a sequence defined by

x(t + 1) = Ax(t) (1a)

x(0) = x0 ∈ Rn, (1b)

where x0 is called the initial condition (IC)

(Autonomous: A is a constant that does not depend on t. Homogeneous: the system
is not of the form x(t + 1) = Ax(t) + b)
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Given the initial condition x(0) = x0, we have from (1a) that

x(1) = Ax(0) = Ax0

x(2) = Ax(1) = AAx0 = A2x0

x(3) = Ax(2) = AA2x0 = A3x0

By induction,
x(t) = Atx0

for all t ∈ N. Thus the behaviour of x(t) as t → ∞ depends on At

In order to understand what this behaviour could be, the following two questions
should be answered

1. What is (if it exists) limt→∞ x(t)?

2. What is (if it exists) limt→∞ At?
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Let v be an eigenvector associated to the eigenvalue λ of A, i.e., λ be such that v ̸= 0
satisfies Av = λv . Then we have

A2v = A(Av)

= A(λv)

= λAv

= λ2v

i.e., v is also an eigenvector of A2 and is associated to the eigenvalue λ2. By induction

Akv = λkv

i.e., v is an eigenvector of the matrix Ak associated to the eigenvalue λk . Akv is a
vector in Fn; we can thus take its norm ∥Akv∥, where ∥ · ∥ is some norm on Fn. It
follows that if |λ| < 1, then ∥Akv∥ = |λ|k∥v∥ goes to zero as k → ∞
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Theorem 1.1

Let A ∈ Mn(R), consider the map Ax . TFAE:

1. There exists a norm ∥ ∥α on Rn and a constant 0 < µ < 1 such that for any
x ∈ Rn, the iterates satisfy, for all k ≥ 0

∥Akx∥α ≤ µk∥x∥α

2. For any norm ∥ ∥β on Rn, there exists constants 0 < µ < 1 and C ≥ 1 such that
all x ∈ Rn and all k ≥ 0

∥Ax∥β ≤ Cµk∥x∥β
3. All the eigenvalues λ of A satisfy |λ| < 1
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To use the result above, we need to ensure all eigenvalues lie inside the unit disk in C

For certain classes of matrices, this can be achieved without explicitly computing the
eigenvalues

A linear map corresponding to a matrix with all eigenvalues of modulus less than 1 is a
linear contraction, with the origin a linear sink or attracting fixed point. If all
eigenvalues have modulus larger than 1, then the map induced by A is a linear
expansion, and the origin is a linear source or repelling fixed point. The map Ax is
a hyperbolic linear map if all eigenvalues of A have modulus different of 1
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Definition 1.2

Let Mn be the set of square n × n matrices. For A ∈ Mn, denote σ(A) the set of its
eigenvalues, i.e.,

σ(A) = {λ ∈ C; ∃v ̸= 0, Av = λv}

which we call the spectrum of A. We call spectral radius of A the real number

ρ(A) = max
λ∈σ(A)

{|λ|}

Theorem 1.3

If ρ(A) < 1, then lim
t→∞

x(t) = 0 for system (1)
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Example – Leslie matrices

Leslie matrices arise when considering the age-structured dynamics of populations
reproducing every year, such as most fish

Assume n is the maximum age observed for that species. Time t is taken in years and is
discrete. Let x(t) = (x1(t), . . . , xn(t))

T be the vector of distribution of the population
in ages, i.e., xi (t) is the population of fish of age a between i − 1 and i at time t

A proportion si ∈ [0, 1] of individuals of age i − 1 ≤ a < i survive to the next year. As
years progress at the same rate as age, this means that xi+1(t + 1) = sixi (t)

When individuals reproduce, they give birth to fi individuals in the first age class, i.e.,
birth in the first age class takes the form

x1(t + 1) = f1x1(t) + f2x2(t) + · · ·+ fnxn(t)
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Population growth model with a Leslie matrix

x1(t + 1) = f1x1(t) + f2x2(t) + · · ·+ fnxn(t)

x2(t + 1) = s1x1(t)

x3(t + 1) = s2x2(t)

...

xn(t + 1) = sn−1xn−1(t)
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Suppose that on the first year counts are taken, we observe an initial age distribution
x(0) = (x1(0), . . . , xn(0))

T

Assume the survival rates si and fecundity constants fi are known

How can we expect the population to evolve over the course of time? In particular, is
the species likely to survive or will it become extinct?
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Write the system in vector form
x1(t + 1)
x2(t + 1)
x3(t + 1)

...
xn(t + 1)

 =


f1 f2 f3 · · · fn−1 fn
s1 0 0 · · · 0 0
0 s2 0 · · · 0 0
...

. . .
...

0 sn−1 0




x1(t)
x2(t)
x3(t)
...

xn(t)

 (2)

which we summarize as
x(t + 1) = Lx(t) (3)

with L the matrix in (2), i.e., a nonnegative matrix with only the first row and the
first sub-diagonal nonzero
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L =


f1 f2 f3 · · · fn−1 fn
s1 0 0 · · · 0 0
0 s2 0 · · · 0 0
...

. . .
...

0 sn−1 0



By Theorem 1.3, if ρ(L) < 1 then x(t) → 0 at t → ∞, so in this case, the population
would become extinct

By the discussion earlier, if ρ(L) = 1, then ∥x(t)∥ (the total population) stays constant

If ρ(L) > 1, the population increases
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ODE

An ordinary differential equation (ODE) is an equation of the form

d

dt
x(t) = f (x(t)) (4)

where x(t) ∈ Rn is a function and f : Rn → Rn

An initial value problem (IVP) is the consideration of (4) together with an initial
condition x(t0) = x0 ∈ Rn

A solution to (4) is a function ϕ(t) that satisfies (4). A solution to the IVP with
x(t0) = x0 associated to (4) is, among all solutions to (4), the one (typically the only
one) that additionally satisfies the initial condition, i.e., such that ϕ(t0) = x0
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Linear systems

Consider the autonomous linear system

x ′(t) = Ax(t) (5)

where A ∈ Mn is a constant

Let σ(A) = {λ1, . . . , λn} be the spectrum of A. Let wj = uj + ivj be a generalized
eigenvector of A corresponding to an eigenvalue λj = aj + ibj , with vj = 0 if bj = 0,
and

B = {u1, . . . , uk , uk+1, vk+1, . . . , um, vm}

be a basis of Rn, with n = 2m − k , where k is the number of real eigenvalues in σ(A)
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Definition 1.4 (Stable, unstable and center subspaces)

The stable, unstable and center subspaces of the linear system (5) are given,
respectively, by

E s = Span{uj , vj : aj < 0},

Eu = Span{uj , vj : aj > 0}

and
E c = Span{uj , vj : aj = 0}
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Definition 1.5

The mapping eAt : Rn → Rn is the flow of the linear system (5)

The term flow is used since eAt describes the motion of points x0 ∈ Rn along
trajectories of (5)

Definition 1.6

If all eigenvalues of A have nonzero real part, i.e., if E c = ∅, then the flow eAt of
system (5) is a hyperbolic flow and the system (5) is a hyperbolic linear system

Definition 1.7

A subspace E ⊂ Rn is invariant with respect to the flow eAt , or invariant under
the flow of (5), if eAtE ⊂ E for all t ∈ R
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Theorem 1.8

Let E be the generalized eigenspace of A associated to the eigenvalue λ. Then AE ⊂ E

Theorem 1.9

Let A ∈ Mn(R). Then
Rn = E s ⊕ Eu ⊕ E c

Furthermore, if the matrix A is the matrix of the linear autonomous system (5), then
E s , Eu and E c are invariant under the flow of (5), i.e., let x0 ∈ ES , y0 ∈ EC and
z0 ∈ EU , then eAtx0 ∈ ES , eAty0 ∈ EC and eAtz0 ∈ EU
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Nonlinear systems of ODE

There is no general theory allowing to obtain explicit solutions of a nonlinear IVP

Instead of seeking explicit solutions, we use qualitative analysis, which uses analysis
to establish properties of the solutions without needing to actually find their explicit
expression
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Suppose you are given a system of ordinary differential equations

x ′ = f (x), (6)

where x ∈ Rn and f : Rn → Rn is C 1. A standard step when studying (6)
qualitatively is to seek equilibria of (6), i.e., points x⋆ ∈ Rn such that

f (x⋆) = 0. (7)

At such a point, x ′ = 0, meaning that system (6) is at rest. If you were to consider
solutions to (6) with an initial condition x(0) = x⋆, then there would hold that
x(t) = x⋆ for all t ≥ 0

What would happen if instead of starting at x⋆, you were to choose an initial condition
x(0) close to but distinct from x⋆?
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Simplified version of Hartman-Grobman

Definition 1.10

An equilibrium point x⋆ is hyperbolic if the Jacobian matrix Df of (6) evaluated at
x⋆, denoted Df (x⋆), has no eigenvalues with zero real part, i.e., is invertible

Theorem 1.11 (Hartman-Grobman)

Let x⋆ be a hyperbolic equilibrium point of (6). Then in some neighbourhood N (x⋆)
of x⋆, the flow of (6) is topologically equivalent to the flow of the linear system

x ′ = Df (x⋆)(x − x⋆) (8)

where Df (x⋆) is the Jacobian matrix Df of f evaluated at x⋆
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Theorem 1.12 (Stable manifold theorem)

Let E be an open subset of Rn containing the origin, let f ∈ C 1(E ), and let ϕt be the
flow of the nonlinear system (6). Suppose that f (0) = 0 and that Df (0) has k
eigenvalues with negative real part and n − k eigenvalues with positive real part. Then
there exists a k-dimensional differentiable manifold S tangent to the stable subspace
E s of the linear system (8) at 0 such that for all t ≥ 0, ϕt(S) ⊂ S and for all x0 ∈ S

lim
t→∞

ϕt(x0) = 0

and there exists an (n − k)-dimensional differentiable manifold U tangent to the
unstable subspace Eu of (8) at 0 such that for all t ≤ 0, ϕt(U) ⊂ U and for all x0 ∈ U

lim
t→−∞

ϕt(x0) = 0
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Example – A chemostat model

System of 2 nonlinear DE modelling a biological device called a chemostat

dS

dt
= D

(
S0 − S

)
− µ(S)x (9a)

dx

dt
= (µ(S)− D)x (9b)

Parameters S0 and D, respectively the input concentration and the dilution rate, are
real and positive. The function µ is the growth function. It is generally assumed to
satisfy µ(0) = 0, µ′ > 0 and µ′′ < 0
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One can verify that the positive quadrant is positively invariant under the flow of (9),
i.e., that for S(0) ≥ 0 and x(0) ≥ 0, solutions remain nonnegative for all positive
times, and similar properties

But since we are here only interested in applications of the stable manifold theorem,
we proceed to a very crude analysis, and will not deal with this point
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Write the system in vector form as

ξ′ = f (ξ),

with ξ = (S , x)T and

f (ξ) =

(
D(S0 − S)− µ(S)x

(µ(S)− D)x

)
EP of the system are found by solving f (ξ) = 0. We find one situated on one of the
boundaries of the positive quadrant

ξ⋆T = (S⋆
T , x

⋆
T ) =

(
S0, 0

)
and the second one in the interior of R2

+,

ξ⋆I = (S⋆, x⋆) =
(
λ,S0 − λ

)
where λ is such that µ(λ) = D. Note that this implies that if λ ≥ S0, ξ⋆T is the only
equilibrium of the system since in that case, ξ⋆I ̸≥ 0, which is not biologically realistic
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At an arbitrary point ξ = (S , x), the Jacobian matrix of (9) is given by

Df (ξ) =

(
−D − µ′(S)x −µ(S)

µ′(S)x µ(S)− D

)

Thus, at the trivial equilibrium ξ⋆T

Df (ξ⋆T ) =

(
−D −µ(S0)
0 µ(S0)− D

)

We have two eigenvalues, −D and µ(S0)− D. Since −D < 0, we focus on the
eigenvalue µ(S0)− D
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Assume that µ(S0)− D < 0. This implies that ξ⋆T is the only equilibrium, since ξ⋆I is
not feasible if λ > S0

System has dimensionality 2 and Df (ξ⋆T ) has two negative eigenvalues =⇒ the stable
manifold theorem (Theorem 1.12) states that there exists a 2-dimensional
differentiable manifold M such that

▶ ϕt(M) ⊂ M,

▶ for all ξ0 ∈ M, limt→∞ ϕt(ξ0) = ξ⋆T .

▶ At ξ⋆T , M is tangent to the stable subspace ES of the linearized system
ξ′ = Df (ξ⋆T )(ξ − ξ⋆T ).

Since there are no eigenvalues with positive real part, there does not exist an unstable
manifold in this case
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Let us now characterize the nature of the stable subspace ES . It is obtained by
studying the linear system

ξ′ = Df (ξ⋆T )(ξ − ξ⋆T )

=

(
−D −µ(S0)
0 µ(S0)− D

)(
S − S0

x

)
=

(
−D(S − S0)− µ(S0)x

(µ(S0)− D)x

)
(10)

Of course, the Jacobian matrix associated to this system is the same as that of the
nonlinear system (at ξ⋆T ). Associated to the eigenvalue −D is the eigenvector
v1 = (1, 0)T , to µ(S0)− D is v2 = (−1, 1)T
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The stable subspace is thus given by span(v1, v2), i.e., the whole of R2

In fact, the stable manifold of ξ⋆T is the whole positive quadrant, since all solutions
limit to this equilibrium

The same type of analysis can be conducted at the interior equilibrium ξ⋆I . It is a little
harder in this case, since x⋆ > 0 there and therefore the Jacobian matrix Df (ξ⋆I ) does
not have the same upper triangular structure as Df (ξ⋆T )
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Linear ODEs

Definition 1.13 (Linear ODE)

A linear ODE is a differential equation taking the form

d

dt
x = A(t)x + B(t), (LNH)

where A(t) ∈ Mn(R) with continuous entries, B(t) ∈ Rn with real valued, continuous
coefficients, and x ∈ Rn. The associated IVP takes the form

d

dt
x = A(t)x + B(t)

x(t0) = x0.
(11)
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Types of systems

▶ x ′ = A(t)x + B(t) is linear nonautonomous (A(t) depends on t) nonhomogeneous
(also called affine system).

▶ x ′ = A(t)x is linear nonautonomous homogeneous.

▶ x ′ = Ax + B, that is, A(t) ≡ A and B(t) ≡ B, is linear autonomous
nonhomogeneous (or affine autonomous).

▶ x ′ = Ax is linear autonomous homogeneous.
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Existence and uniqueness of solutions

Theorem 1.14 (Existence and Uniqueness)

Solutions to (11) exist and are unique on the whole interval over which A and B are
continuous.
In particular, if A,B are constant, then solutions exist on R.
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Autonomous linear systems

Consider the autonomous affine system

d

dt
x = Ax + B, (A)

and the associated homogeneous autonomous system

d

dt
x = Ax . (L)
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Exponential of a matrix

Definition 1.15 (Matrix exponential)

Let A ∈ Mn(F) with F = R or C. The exponential of A, denoted eAt , is a matrix in
Mn(F), defined by

eAt = I+
∞∑
k=1

tk

k!
Ak ,

where I is the identity matrix in Mn(F).
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Properties of the matrix exponential

▶ eAt1eAt2 = eA(t1+t2) for all t1, t2 ∈ R. 1
▶ AeAt = eAtA for all t ∈ R.
▶ (eAt)−1 = e−At for all t ∈ R.
▶ The unique solution ϕ of (L) with ϕ(t0) = x0 is given by

ϕ(t) = eA(t−t0)x0.
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Computing the matrix exponential

Let P be a nonsingular matrix in Mn(R). We transform the IVP

d

dt
x = Ax

x(t0) = x0

(LIVP)

using the transformation x = Py or y = P−1x .

The dynamics of y is y ′ = P−1APy . The initial condition is y0 = P−1x0.
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We have thus transformed IVP (LIVP) into

d

dt
y = P−1APy

y(t0) = P−1x0

(L IVP y)

From the earlier result, we then know that the solution of (L IVP y) is given by

ψ(t) = eP
−1AP(t−t0)P−1x0,

and since x = Py , the solution to (LIVP) is given by

ϕ(t) = PeP
−1AP(t−t0)P−1x0.

So everything depends on P−1AP.

p. 36 – Linear systems of ODE – Brief theory



The cases

▶ P−1AP is diagonal, the solution to (LIVP) is given by

ϕ(t) = P

eλ1t 0
. . .

0 eλnt

P−1x0.

▶ P−1AP is not diagonal, then use Jordan form (slightly more complicated).
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Theorem 1.16

For all (t0, x0) ∈ R× Rn, there is a unique solution x(t) to (LIVP) defined for all
t ∈ R. Each coordinate function of x(t) is a linear combination of functions of the form

tkeαt cos(βt) and tkeαt sin(βt)

where α+ iβ is an eigenvalue of A and k is less than the algebraic multiplicity of the
eigenvalue.
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Generalized eigenvectors, nilpotent matrix

Definition 1.17 (Generalized eigenvectors)

Let A ∈ Mr (R). Suppose λ is an eigenvalue of A with multiplicity m ≤ n. Then, for
k = 1, . . . ,m, any nonzero solution v of

(A− λI)kv = 0

is called a generalized eigenvector of A.

Definition 1.18 (Nilpotent matrix)

Let A ∈ Mn(R). A is nilpotent (of order k) if Aj ̸= 0 for j = 1, . . . , k − 1, and Ak = 0.
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Jordan normal form

Theorem 1.19 (Jordan normal form)

Let A ∈ Mn(R) have eigenvalues λ1, . . . , λn, repeated according to their multiplicities.

▶ Then there exists a basis of generalized eigenvectors for Rn.

▶ And if {v1, . . . , vn} is any basis of generalized eigenvectors for Rn, then the matrix
P = [v1 · · · vn] is invertible, and A can be written as

A = S + N,

where
P−1SP = diag(λj),

the matrix N = A− S is nilpotent of order k ≤ n, and S and N commute, i.e.,
SN = NS .
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Theorem 1.20

Under conditions of the Jordan normal form Theorem, the linear system x ′ = Ax with
initial condition x(0) = x0, has solution

x(t) = Pdiag
(
eλj t

)
P−1

(
I+ Nt + · · · t

k

k!
Nk

)
x0.

The result is particularly easy to apply in the following case.

Theorem 1.21 (Case of an eigenvalue of multiplicity n)

Suppose that λ is an eigenvalue of multiplicity n of A ∈ Mn(R). Then S = diag(λ),
and the solution of x ′ = Ax with initial value x0 is given by

x(t) = eλt
(
I+ Nt + · · · t

k

k!
Nk

)
x0.

In the simplified case, we do not need the matrix P (the basis of generalized
eigenvectors).
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Discrete-time Markov chain

A discrete-time Markov chain is a stochastic process

Consider a system with n states denoted S1, . . . ,Sn. The system starts in a given
state. Every time step, it switches to a different state. (Transition from one state to
itself is also allowed)

We assume that the system is stochastic, i.e., that the transitions happen at random.
In discrete-time Markov chains, the instants at which transitions occur (or not) are in a
discrete set, typically rescaled to be N

(In continuous-time Markov chains, the time of the switches themselves is a
continuous random variable, so times are in R)
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Let pi (t) be the probability that state Si occurs on the tth time step, 1 ≤ i ≤ n

One of the key assumptions in Markov chains is that the process is memoryless: the
transition that occurs from time t to time t + 1 depends only on the state of the
system at time t

Since one the states Si must occur on the tth time step,

p1(t) + p2(t) + · · ·+ pn(t) = 1
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The transition matrix

Let
P = [pij ]

be the transition matrix (or projection matrix) of the Markov chain, where

pij = P(Si |Sj)

i.e., the probability of making a transition from state j to state i

Many texts, e.g., [KS83], define pij = P(Sj |Si ). This works the same way, except it
leads to PT instead of P (or row vectors instead of column vectors)
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Let pi (t + 1) be the probability that state Si , 1 ≤ i ≤ n, occurs on the (t + 1)th step.
There are n ways to be in state Si at step t + 1:

1. Step t is S1. The probability of getting S1 on the tth step is p1(t) and the
probability of having Si after S1 is pi1, so P(Si |S1) = pi1p1(k)

2. We get S2 on step t and Si on step t + 1 and P(Si |S2) = pi2p2(t)

..

n. The probability of occurrence of Si at step t + 1 if Sn at step t is
P(Si |Sn) = pinpn(t)

=⇒ pi (t + 1) = P(Si |S1) + · · ·+ P(Si |Sn)
= pi1p1(t) + · · ·+ pinpn(t)
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Therefore,

p1(t + 1) = p11p1(t) + p12p2(t) + · · ·+ p1npn(t)

...

pk(t + 1) = pk1p1(t) + pk2p2(t) + · · ·+ pkrpr (t)

...

pn(t + 1) = pn1p1(t) + pn2p2(t) + · · ·+ pnnpr (t)
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In matrix form,
p(t + 1) = Pp(t), t = 1, 2, 3, . . . (12)

where p(t) = (p1(t), p2(t), . . . , pn(t))
T is a (column) probability vector and

P = [pij ] ∈ Mn is the transition matrix

P =


p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
...

pn1 pn2 · · · pnn

 (13)
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Two observations about P

▶ Entries of P being probabilities, they are all in [0, 1]. So in particular, they are all
nonnegative. We say P is a nonnegative matrix and write P ≥ 0

▶ The column sums of P all equal 1. Take for instance the first column: its entries
represent the probabilities of transition from state 1. Since an event must always
happen, the sum of these probabilities must be 1. We say P is a (column)
stochastic matrix
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Definition 1.22 (Stochastic matrix)

The nonnegative n × n matrix M is

▶ row stochastic if
∑n

j=1mij = 1 for all i = 1, . . . , n

▶ column stochastic if
∑n

i=1mij = 1 for all j = 1, . . . , n

▶ stochastic if it is row or column stochastic

▶ doubly stochastic if it is row and column stochastic
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An interesting property of stochastic matrices

Theorem 1.23

Let M be a stochastic matrix. Then all eigenvalues λ of M are such that |λ| ≤ 1.
Furthermore, λ = 1 is an eigenvalue of M

Assume w.l.o.g. that M is row stochastic, i.e., M has row sums 1. In vector form,
M1l = 1l. Now remember that λ is an eigenvalue of M, with associated eigenvector
v ̸= 0, if and only if Mv = λv . So, in the expression M1l = 1l, we read an eigenvector,
1l, and an eigenvalue, 1

Proving the first conclusion of Theorem 1.23 involves a theorem called the
Perron-Frobenius Theorem, which we will see in much detail later
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Long time behaviour

Let p0 := p(0) = (p1(0), . . . , pn(0))
T be the initial probability distribution vector, with

1lTp0 = 1, i.e., such that the sum of the entries of p0 be 1; we could also write
⟨p0, 1l⟩ = 1. Then

p(1) = Pp(0) = Pp0

p(2) = Pp(1)

= P(Pp0)

= P2p0

Iterating, for any t ∈ N,
p(t) = Ptp0

Rings a bell? (cf Section 1)
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So the long time evolution of the system is governed by

lim
t→+∞

p(t) = lim
t→+∞

Ptp0 =

(
lim

t→+∞
Pt

)
p0 (14)

if the latter limit exists

So if we can characterize the nature of matrix Pt and in particular, the existence of the
limit limt→∞ Pt , we will know the long time behaviour of the Markov chain
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Theorem 1.24

If M,N are nonsingular stochastic matrices, then MN is a stochastic matrix

Corollary 1.25

If M is a nonsingular stochastic matrix, then for any t ∈ N, Mt is a stochastic matrix

=⇒ matrix Pt in (14) is stochastic; so, in particular, it is a nonnegative matrix with
column sums all equal to 1
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Regular Markov chains

Definition 1.26 (Regular Markov chain)

A regular Markov chain is one in which Pk is positive for some integer k > 0, i.e.,
Pk has only positive entries, no zero entries

Definition 1.27 (Primitive matrix)

A nonnegative matrix M is primitive if, and only if, there is an integer k > 0 such that
Mk is (entry-wise) positive

Theorem 1.28

A Markov chain is regular ⇐⇒ P is primitive
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Regular Markov chains are well-behaved

Theorem 1.29

If P is the transition matrix of a regular Markov chain, then

1. the powers Pt approach a stochastic matrix W

2. each column of W is the same vector w = (w1, . . . ,wn)
T

3. the components of w are positive

So if the Markov chain is regular, (14) becomes

lim
t→+∞

p(t) = lim
t→+∞

Ptp0 = Wp0
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Let M ∈ Mn, u, v be two column vectors, λ ∈ C. Then, if

Mu = λu

u is the (right) eigenvector corresponding to λ, and if

vTM = λvT

then v is the left eigenvector corresponding to λ

To a given eigenvalue there corresponds one left and one right eigenvector (to
multiples)

(vTM) = (λvT )T ⇐⇒ MT v = λv , so if your numeric/symbolic solver spits out right
eigenvectors, to get left ones, compute eigenvectors of MT
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Back to the regular MC

We already know that the left eigenvector corresponding to 1 is 1lT , since 1lTP = 1lT ,
i.e., the column sums of P all equal 1

The vector w in Theorem 1.29 is the right eigenvector corresponding to the eigenvalue
1 of P

To see this, remark that, if p(t) converges, then p(t + 1) = Pp(t) in the limit for large
t, so w is a fixed point of the system. We thus write

w = Pw

and solve for w , which amounts to finding w as the (right) eigenvector corresponding
to the eigenvalue 1
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When you compute an eigenvector, the result is to a multiple and often the expression
needs normalising (you want a probability vector)

Once you obtain w , check that the norm

∥w∥ = w1 + · · ·+ wn

is equal to one. If not, normalise as
w

∥w∥
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Absorbing Markov chains

Suppose now that the matrix is not only not primitive but also reducible

Definition 1.30 (Reducible/irreducible matrices)

0 ≤ M ∈ Mn is reducible if ∃P ∈ Mn, permutation matrix, s.t.

PTMP =

(
S R
0 Q

)
If no such matrix exists, M is irreducible

Let G(M) be the digraph induced by M

Theorem 1.31

0 ≤ M ∈ Mn irreducible ⇐⇒ G(M) strongly connected
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So if the transition matrix P is reducible, G(P) is not strongly connected, i.e., there are
states of the chain that are not accessible from others

When in a state that does not have access to other states, we are stuck.. we say
absorbed

An absorbing Markov chain is one where at least one state is absorbing

Theorem 1.29 does not apply here, but we get a lot of interesting properties by
observing that P can be put in the form(

I R
0 Q

)
and considering the fundamental matrix N = (I− Q)−1
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Linear systems of difference equations

Ordinary differential equation

Linear systems of ODE – Brief theory

Discrete-time Markov chains

Discretisation of partial differential equations



Following [Win89]: Ω ⊂ Rd (d ≥ 1) a bounded connected region, u = u(x) for x ∈ Ω;
a linear elliptic BVP on Ω takes the form

Lu = f , Ω (15a)

αu + β
∂u

∂v
= g , ∂Ω (15b)

where L is a linear differential operator of the form

Lu = −∇(k∇u + bu) + qu

Suppose that the scalar functions k(x), q(x) and the vector function
b(x) = (b1(x), . . . , bd(x))

T for d > 1, otherwise a scalar function b(x), are sufficiently
smooth over the region Ω. Further, let k(x) ≥ k0 = const > 0 and q(x) ≥ 0 for each
x ∈ Ω

L together with corresponding BC on ∂Ω is a linear elliptic differential operator
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As a particular example, suppose Ω = (0, 1) is a one-dimensional domain, i.e., an
interval, and suppose

ω̄h = {0 = x1 < x2 < . . . < xn = 1} = ωh + γh

is a discretisation of the closure of said interval, with γh = {x0, xn} and hi = h = 1/n
be a uniform grid, i.e., xi = ih. Consider the following problem

Lu = −u′′ + b(x)u′ = 0, x ∈ Ω (16a)

u(0) = u0, u(1) = u1 (16b)

with b(x) bounded in Ω
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Let us approximate on ω̄ using centred differences (a finite difference scheme):

y0 = u0 (17a)

−D+D−yi + biD0yi = 0, i = 1, . . . , n − 1 (17b)

yn = u1 (17c)

where bi = b(xi ). The notation D+D− and D0 refer to difference operators:

D+yi =
yi+1 − yi

h
(18a)

D−yi =
yi − yi−1

h
(18b)

D0yi =
yi+1 − yi−1

2h
(18c)

D+D−yi =
yi−1 − 2yi + yi+1

h2
(18d)

These operators “encode” derivatives on the discrete grid used
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For i = 1, . . . , n − 1, define γi = hbi/2. Then the problem can be written in matrix
form as

Ay = f (19)

where f = (u0, 0, . . . , 0, u1)
T = u0e1 + u1en+1 and

A =



1 0
−(1 + γ1) 2 −(1− γ + 1)

−(1 + γ2) 2 −(1− γ2)

. . .
. . .

. . .

−(1 + γn−1) 2 −(1− γn−1)
0 1


Properties of the (approximate) solution then depend on the properties of the
M-matrix A
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