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Outline of these slides
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Part 4: Linear maps
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Part 6: Inner product spaces
Part 7: Operators on inner product spaces
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Source of the material

The material in these slides is mostly derived from [Axl15]
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Sets and elements

Definition 2.1 (Set)

A set X is a collection of elements.

We write x ∈ X or x ̸∈ X to indicate that the element x belongs to the set X or does
not belong to the set X , respectively.

Definition 2.2 (Subset)

Let X be a set. The set S is a subset of X , which is denoted S ⊂ X or S ⊆ X , if all
its elements belong to X . S is a proper subset of X if it is a subset of X and not
equal to X ; we then write S ⊊ X .

Smith reserves ⊂ for ⊊. I learned ⊂ for not specified (proper or not) and ⊊ for proper.
So beware!
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Quantifiers

▶ A shorthand notation for “for all elements x belonging to X” is ∀x ∈ X . For
example, if X = R, the field of real numbers, then ∀x ∈ R means “for all real
numbers x”.

▶ A shorthand notation for “there exists an element x in the set X” is ∃x ∈ X .

▶ Sometimes we write ∃!x ∈ X for “there exists a unique x in X”.

▶ ∀ and ∃ are quantifiers.
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Intersection and union of sets

Let X and Y be two sets.

Definition 2.3 (Intersection)

The intersection of X and Y , X ∩Y , is the set of elements that belong to X and to Y

X ∩ Y = {x : x ∈ X and x ∈ Y }

Definition 2.4 (Union)

The union of X and Y , X ∪ Y , is the set of elements that belong to X or to Y

X ∪ Y = {x : x ∈ X or x ∈ Y }

Use of the expression “and/or” is strictly forbidden in this course! “Or but not and”
(a.k.a. xor, exclusive or) is (X ∪ Y ) \ (X ∩ Y ).
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A few notions of logic

In a logical sense, a proposition is an assertion (or statement) whose truth value (true
or false) can be asserted. For example, a theorem is a proposition that has been shown
to be true. “The sky is blue” is also a proposition.
Let A be a proposition. We generally write

A

to mean that A is true, and
not A

to mean that A is false. We also write ¬A. not A is the negation of A.
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A few notions of logic (cont.)

Let A,B be propositions. Then

▶ A ⇒ B (read A implies B) means that whenever A is true, then so is B.

▶ A ⇔ B, also denoted A if and only if B (A iff B for short), means that A ⇒ B
and B ⇒ A. We also say that A and B are equivalent.

Let A and B be propositions. Then

(A ⇒ B) ⇔ (not B ⇒ not A)

This is useful for proving some results.
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Necessary and/or sufficient conditions

Suppose we want to establish whether a given statement P is true, depending on the
truth value of a statement H. Then we say that

▶ H is a necessary condition if P ⇒ H.
(It is necessary that H be true for P to be true; so whenever P is true, so is H).

▶ H is a sufficient condition if H ⇒ P.
(It suffices for H to be true for P to also be true).

▶ H is a necessary and sufficient condition if H ⇔ P, i.e., H and P are
equivalent.
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Playing with quantifiers

For the quantifiers ∀ (for all) and ∃ (there exists),

∃ is the negation of ∀

Therefore, for example, the contrapositive of

∀x ∈ X , ∃y ∈ Y

is
∃x ∈ X , ∀y ∈ Y

This is also regularly used in proofs.
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Vector spaces

Fields

Definition of vector spaces

Example – Space Fn

Example – Complex numbers

Subspaces
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Operations

Definition 2.5 (Operations – Addition and multiplication)

An operation on a set V is a mapping that associates an element of the set V to
every pair of its elements

▶ The result of the addition of a and b is the sum a+ b of a and b

▶ The result of the multiplication of a and b is the product ab (or a · b) of a and b
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Field

Definition 2.6 (Field)

A field is a set F together with two (binary) operations, addition and multiplication,
which are required to satisfy the following field axioms, where a, b, c ∈ F:
▶ Associativity of addition and multiplication: a+ (b + c) = (a+ b) + c and

a(bc) = (ab)c

▶ Commutativity of addition and multiplication: a+ b = b + a and ab = ba

▶ Additive and multiplicative identity: ∃0, 1 ∈ F, 0 ̸= 1, s.t. a+0 = a and a1 = a

▶ Additive inverses: ∀a ∈ F, ∃ − a ∈ F s.t. a+ (−a) = 0

▶ Multiplicative inverses: ∀a ̸= 0 ∈ F, ∃a−1 ∈ F s.t. aa−1 = 1

▶ Distributivity (of multiplication over addition): a(b + c) = (ab) + (ac)
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Notation

▶ Both R and C are fields.

▶ From now on, F refers to R or C.
▶ Some results are specific to R xor C, in which case we specify the relevant field.

▶ If we use F, we mean the result applies to both R and C.
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Addition and Scalar multiplication

Definition 2.7 (Addition and scalar multiplication on a set)

▶ An addition on a set V is a function that assigns an element u+ v ∈ V to each
pair of elements u, v ∈ V

▶ A scalar multiplication on a set V is a function that assigns an element λv to
each λ ∈ F and each v ∈ V
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Vector space

Definition 2.8 (Vector space)

A vector space (over F) is a set V along with an addition on V and a scalar
multiplication on V such that the following properties (axioms) hold

1. ∀u, v ∈ V , u+ v = v + u [commutativity]

2. ∀u, v,w ∈ V and ∀a, b ∈ F, (u+ v) +w = u+ (v +w) and (ab)v = a(bv)
[associativity]

3. ∃0V ∈ V s.t. ∀v ∈ V , v + 0V = v [additive identity]

4. ∀v ∈ V , ∃w ∈ V s.t. v +w = 0V [additive inverse]

5. ∀v ∈ V , 1v = v [multiplicative identity]

6. ∀a, b ∈ F and ∀u, v ∈ V , a(u+ v) = au+ av and (a+ b)v = av + bv
[distributivity]
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Results

Theorem 2.9 (Uniqueness of the additive identity)

A vector space V has a unique additive identity 0V ∈ V

Theorem 2.10 (Existence and uniqueness of additive inverse)

Let V be a vector space. Then each v ∈ V has a unique additive inverse, denoted −v

We also define v −w as v + (−w).

Theorem 2.11

▶ ∀v ∈ V , 0Fv = 0V .

▶ ∀a ∈ F, a0V = 0V .

▶ ∀v ∈ V , (−1)v = −v.
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Vector space

Definition 2.12 (Vector space)

A vector space (over F) is a set V along with an addition on V and a scalar
multiplication on V such that the following properties (axioms) hold

1. ∀u, v ∈ V , u+ v = v + u [commutativity of +]

2. ∀u, v,w ∈ V , (u+ v) +w = u+ (v +w) [associativity of +]

3. ∃!0V ∈ V s.t. ∀v ∈ V , v + 0V = v [additive identity]

4. ∀v ∈ V , ∃!− v ∈ V s.t. v + (−v) = 0V [additive inverse]

5. ∀a ∈ F and ∀u, v ∈ V , a(u+ v) = au+ av [distributivity of · over +]

6. ∀a, b ∈ F and ∀u ∈ V , (a+ b)v = av + bv [distributivity of + over ·]
7. ∀a, b ∈ F, (ab)v = a(bv) [associativity of ·]
8. ∀v ∈ V , 1v = v [multiplicative identity]
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Fn is a vector space

Typically called Euclidean space when F = R.
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Definition 2.13

Let 0 ̸= n ∈ N. An n-tuple is an ordered collection of n elements,

(x1, . . . , xn)

Definition 2.14

Let 0 ̸= n ∈ N. Fn is the set of all n-tuples of elements of F:

Fn = {(x1, . . . , xn) : xj ∈ F for j = 1, . . . , n}

▶ Often write x = (x1, . . . , xn) for short.

▶ For a given j ∈ {1, . . . , n}, xj is the jth coordinate of x .

▶ Think of R2,R3,Rn that you saw in whatever flavour of Linear Algebra 1 you took.
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Addition in Fn

Definition 2.15 (Addition in Fn)

Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn. Then

x + y = (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

Property 2.16 (Commutativity of addition in Fn)

Let x , y ∈ Fn, then
x + y = y + x
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0 and additive inverse in Fn

Definition 2.17 (0)

0 denotes the n-tuple whose coordinates are all 0,

0 = (0, . . . , 0)

If any ambiguity arises, will write 0Fn

Definition 2.18 (Additive inverse)

Let x ∈ Fn. The additive inverse of x is −x ∈ Fn s.t.

x + (−x) = 0

If x = (x1, . . . , xn), then −x = (−x1, . . . ,−xn)

p. 22 – Example – Space Fn



Scalar multiplication in Fn

Definition 2.19 (Scalar multiplication)

The product of λ ∈ F and x ∈ Fn is

λx = λ(x1, . . . , xn) = (λx1, . . . , λxn)
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Complex numbers

Definition 2.20 (Complex numbers)

A complex number is an ordered pair (a, b), where a, b ∈ R. Usually written a+ ib or
a+ bi , where i2 = −1
The set of all complex numbers is denoted C,

C = {a+ ib : a, b ∈ R}
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Definition 2.21 (Addition and multiplication on C)
Letting a+ ib and c + id ∈ C, addition on C is defined by

(a+ ib) + (c + id) = (a+ c) + i(b + d)

and multiplication on C is defined by

(a+ ib)(c + id) = (ac − bd) + i(ad + bc)

Latter equality easy to obtain using regular multiplication and i2 = −1
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Properties

∀α, β, γ ∈ C,
▶ α+ β = β + α and αβ = βα [commutativity]

▶ (α+ β) + γ = α+ (β + γ) and (αβ)γ = α(βγ) [associativity]

▶ γ + 0 = γ and γ1 = γ [identities]

▶ ∀α ∈ C, ∃β ∈ C unique s.t. α+ β = 0 [additive inverse]

▶ ∀α ̸= 0 ∈ C, ∃β ∈ C unique s.t. αβ = 1 [multiplicative inverse]

▶ γ(α+ β) = γα+ γβ [distributivity]

Thus C is a field.
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Additive & multiplicative inverse, subtraction, division

Definition 2.22

Let α, β ∈ C
▶ −α is the additive inverse of α, i.e., the unique number in C s.t. α+ (−α) = 0

▶ Subtraction on C:
β − α = β + (−α)

▶ For α ̸= 0, 1/α is the multiplicative inverse of α, i.e., the unique number in C
s.t.

α(1/α) = 1

▶ Division on C:
β/α = β(1/α)
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Definition 2.23 (Real and imaginary parts)

Let z = a+ ib. Then Re z = a is real part and Im z = b is imaginary part of z

If ambiguous, write Re (z) and Im (z)

Definition 2.24 (Conjugate and Modulus)

Let z = a+ ib ∈ C. Then
▶ Complex conjugate of z is

z̄ = Re z − i(Im z) = a− ib

▶ Modulus (or absolute value) of z is

|z | =
√
(Re z)2 + (Im z)2 =

√
a2 + b2 ≥ 0
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Properties of complex numbers

Let w , z ∈ C, then
▶ z + z̄ = 2Re z

▶ z − z̄ = 2iIm z

▶ zz̄ = |z |2

▶ w + z = w̄ + z̄ and wz = w̄ z̄

▶ z̄ = z

▶ |Re z | ≤ |z | and |Im z | ≤ |z |
▶ |z̄ | = |z |
▶ |wz | = |w | |z |
▶ |w + z | ≤ |w |+ |z | [triangle inequality]
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Subspace

Definition 2.25 (Subspace)

Let V be a vector space over F. Let U ⊆ V be a subset of V . Then U is a subspace
of V if U is a vector space over F for the same operations of addition and scalar
multiplication as V

Theorem 2.26 (Conditions for a subspace)

U ⊆ V is a subspace of V ⇐⇒ U satisfies the following three conditions:

▶ 0V ∈ U [additive identity]

▶ ∀u, v ∈ U, u+ v ∈ U [closed under addition]

▶ ∀u ∈ U, ∀a ∈ F, au ∈ U [closed under scalar multiplication]

The smallest possible subspace of V is {0V }, the largest is V .
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Sums of subspaces

Definition 2.27 (Sum of subsets)

Let V be a vector space and U1, . . . ,Um be subsets of V . The sum of U1, . . . ,Um is

U1 + · · ·+ Um = {u1 + · · ·+ um : u1 ∈ U1, . . . ,um ∈ Um}

Theorem 2.28

Let V be a vector space and U1, . . . ,Um be subspaces of V . Then U1 + · · ·+ Um is
the smallest subspace of V containing U1, . . . ,Um
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Direct sums

Definition 2.29 (Direct sum)

Suppose U1, . . . ,Um are subspaces of a vector space V . The sum U1 + · · ·+ Um is a
direct sum and is then written U1 ⊕ · · · ⊕Um if each element of U1 + · · ·+Um can be
written in only one way as a sum u1 + · · ·+ um, where each uj ∈ Uj

Theorem 2.30 (Condition for a direct sum)

Suppose U1, . . . ,Um are subspaces of a vector space V . Then U1 + · · ·+ Um is a
direct sum ⇐⇒ the only way to write 0 as a sum u1 + · · ·+ um, where each uj ∈ Uj ,
is by taking each uj equal to 0V

Theorem 2.31 (Direct sum of two subspaces)

Let U,W be subspaces of a vector space V . Then U +W is a direct sum ⇐⇒
U ∩W = {0V }
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Definition 2.32 (Linear combination)

A linear combination of a list v1, . . . , vm of vectors in V is a vector

a1v1 + · · ·+ amvm,

where a1, . . . , am ∈ F

Definition 2.33 (Span)

The set of all linear combinations of a list of vectors v1, . . . , vm is the span of
v1, . . . , vm,

span(v1, . . . , vm) = {a1v1 + · · ·+ amvm : a1, . . . , am ∈ F}

The span of the empty list ( ) is {0V }
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Finite/infinite-dimensional vector spaces

Theorem 2.34

The span of a list of vectors in V is the smallest subspace of V containing all the
vectors in the list

Definition 2.35 (List of vectors spanning a space)

If span(v1, . . . , vm) = V , we say v1, . . . , vm spans V

Definition 2.36 (Finite-dimensional vector space)

A vector space V is finite-dimensional if some list of vectors in it spans V

Definition 2.37 (Infinite-dimensional vector space)

A vector space V is infinite-dimensional if it is not finite-dimensional
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Linear (in)dependence

Definition 2.38 (Linear independence/Linear dependence)

A list v1, . . . , vm of vectors in a vector space V is linearly independent if

(a1v1 + · · ·+ amvm = 0) ⇔ (a1 = · · · = am = 0) ,

where a1, . . . , am ∈ F. A list of vectors is linearly dependent if it is not linearly
independent.

The empty list ( ) is assumed to be linearly independent
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Lemma 2.39 (Linear dependence)

Let v1, . . . , vm be a linearly dependent list in a vector space V . Then there exists
j ∈ {1, 2, . . . ,m} s.t.

1. vj ∈ span(v1, . . . , vj−1)

2. if the jth term is removed from v1, . . . , vm, the span of the remaining list equals
span(v1, . . . , vm)

Theorem 2.40

Let V be a finite-dimensional vector space. Then the length of every linearly
independent list of vectors is less than or equal to the length of every spanning list of
vectors

Theorem 2.41 (Subspace of a finite-dimensional vector space)

Every subspace of a finite-dimensional vector space is finite-dimensional
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Basis

Definition 2.42 (Basis)

Let V be a vector space. A basis of V is a list of vectors in V that is both linearly
independent and spanning

Theorem 2.43 (Criterion for a basis)

A list v1, . . . , vm of vectors in a vector space V is a basis of V iff ∀v ∈ V , v can be
written uniquely in the form

v = a1v1 + · · ·+ amvm,

where a1, . . . , am ∈ F
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Theorem 2.44 (All spanning lists contain a basis)

Every spanning list in a vector space can be reduced to a basis of the vector space

Theorem 2.45 (Basis of finite-dimensional vector space)

Every finite-dimensional vector space has a basis

Theorem 2.46 (Extension to a basis)

Every linearly independent list of vectors in a finite-dimensional vector space can be
extended to a basis of the vector space

Theorem 2.47

Let V be a finite-dimensional vector space and U ⊂ V be a subspace of V . Then
∃W ⊂ V subspace of V s.t. V = U ⊕W
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Theorem 2.48 (Bases of a finite-dim. space have equal length)

Any two bases of a finite-dimensional vector space have the same length

Definition 2.49 (Dimension)

The dimension dimV of a finite-dimensional vector space V is the length of any basis
of the vector space

Theorem 2.50 (Dimension of a subspace)

Let V be a finite-dimensional vector space and U ⊂ V be a subspace of V . Then
dimU ≤ dimV
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Theorem 2.51

Let V be a finite-dimensional vector space. Then every linearly independent list of
vectors in V with length dimV is a basis of V

Theorem 2.52

Let V be a finite-dimensional vector space. Then every spanning list of vectors in V
with length dimV is a basis of V

Theorem 2.53 (Dimension of a sum of subspaces)

Let U1,U2 be subspaces of a finite-dimensional vector space V . Then

dim (U1 + U2) = dimU1 + dimU2 − dim (U1 ∩ U2)
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Definition 2.54 (Linear map/transformation)

Let V ,W be vector spaces. A linear map (or linear transformation) from V to W is
a function T : V → W that has the following properties:

1. Additivity ∀u, v ∈ V , T (u+ v) = T (u) + T (v).

2. Homogeneity ∀λ ∈ F, ∀v ∈ V , T (λv) = λT (v).

Often, parentheses are omitted, T (u) is written Tu

The set of all linear maps from V to W is denoted L(V ,W )
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Theorem 2.55 (Linear maps and basis of domain)

Let V ,W be two vector spaces and v1, . . . , vn be a basis of V . Let w1, . . . ,wn ∈ W .
Then there exists a unique linear map T : V → W s.t.

∀j = 1, . . . , n, Tvj = wj
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Definition 2.56 (Addition & Scalar multiplication)

Let V ,W be vector spaces, S ,T ∈ L(V ,W ) and λ ∈ F. The sum S +T and product
λT are the linear maps from V to W defined, ∀v ∈ V , by

(S + T )(v) = Sv + Tv and (λT )(v) = λ(Tv).

Theorem 2.57 (Linear maps are vector spaces)

Let V ,W be vector spaces. Equipped with addition and scalar multiplication as just
defined, L(V ,W ) is a vector space.
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Product of linear maps

Definition 2.58 (Product of linear maps)

Let U,V ,W be vector spaces, T ∈ L(U,V ),S ∈ L(V ,W ). The product
ST ∈ L(U,W ) is defined for u ∈ U by

(ST )(u) = S(Tu).

This means that the product of linear maps is the composition S ◦ T , although
because of the linearity, we often omit the ◦ composition sign.
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Properties of products of linear maps

Theorem 2.59

1. Associativity If V ,V2,V3,W vector spaces,
T1 ∈ L(V ,V2),T2 ∈ L(V2,V3),T3 ∈ L(V3,W ), then

(T1T2)T3 = T1(T2T3)

2. Identity V ,W vector spaces. Then for T ∈ L(V ,W ),

TIV = IWT = T

3. Distributivity U,V ,W vector spaces, T ,T1,T2 ∈ L(U,V ), S ,S1, S2 ∈ L(V ,W ),
then

(S1 + S2)T = S1T + S2T and S(T1 + T2) = ST1 + ST2
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Theorem 2.60 (Linear maps take 0 to 0)

Let V ,W be vector spaces, T ∈ L(V ,W ). Then

T (0V ) = 0W .
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Definition 2.61 (Null space)

Let V ,W be finite-dimensional vector spaces and T ∈ L(V ,W ). The null space
nullT (or kernel kerT ) of T is the subet of V consisting of those vectors that T maps
to 0W :

nullT = {v ∈ V ;Tv = 0W } .

Theorem 2.62 (Null space is a subspace)

Let V ,W be finite-dimensional vector spaces and T ∈ L(V ,W ). Then nullT is a
subspace of V
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Definition 2.63 (Injectivity)

A function T : V → W is injective (or one-to-one) if

Tu = Tv ⇒ u = v.

We can also use the contrapositive: T injective if u ̸= v ⇒ Tu ̸= Tv.

Theorem 2.64 (Linking injectivity and null space)

Let V ,W be finite-dimensional vector spaces, T ∈ L(V ,W ). Then

T injective ⇔ nullT = {0V }
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Definition 2.65 (Range)

Let V ,W be finite-dimensional vector spaces, T : V → W a function. The range (or
image) of T is the subset of W defined by

range T = {Tv; v ∈ V }.

When talking about the image, we write Im T .

Theorem 2.66 (Range is a subspace)

Let V ,W be finite-dimensional vector spaces, T ∈ L(V ,W ). Then rangeT is a
subspace of W .
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Definition 2.67 (Surjectivity)

A function T : V → W is surjective (or onto) if

rangeT = W

Theorem 2.68 (Fundamental theorem of linear maps)

Let V be a finite-dimensional vector space and T ∈ L(V ,W ). Then dim rangeT < ∞
and

dimV = dimnullT + dim rangeT
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Theorem 2.69 (Linear map onto a smaller space is not injective)

Let V ,W be finite-dimensional vector spaces such that dimV > dimW . Then
∄T ∈ L(V ,W ) that is injective

Theorem 2.70 (Linear map onto a larger space is not surjective)

Let V ,W be finite-dimensional vector spaces such that dimV < dimW . Then
∄T ∈ L(V ,W ) that is surjective
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Do as exercises..

Theorem 2.71

A homogeneous system of linear equations with more variables than equations has
nonzero solutions.

Theorem 2.72

A nonhomogeneous system of linear equations with more equations than variables has
no solution for some choice of the constant terms
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Definition 2.73 (Matrix)

An m-by-n or m × n matrix is a rectangular array of elements of F with m rows and n
columns,

A = [aij ] =

a11 · · · a1n
...

...
am1 · · · amn


Remember that we always list indices as “row,column”
We denote Mmn(F) the set of m × n matrices with entries in F
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Definition 2.74 (Matrix of a linear map)

Let V ,W be finite-dimensional vector spaces, v1, . . . , vn a basis of V and w1, . . . ,wm

a basis of W . The matrix of T with respect to these bases is the matrix
M(T ) ∈ Mmn with entries ajk defined by

Tvk = a1kw1 + · · ·+ amkwm

for 1 ≤ l ≤ n. If the bases are not clear from the context, then write

M(T , (v1, . . . , vn), (w1, . . . ,wm))

I will often write MT rather than M(T ).
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Most definitions are assumed known

Theorem 2.75 (Matrix of sums of linear maps)

Suppose S ,T ∈ L(V ,W ). Then M(S + T ) = M(S) +M(T )

Theorem 2.76 (Matrix of a scalar times a linear map)

Suppose T ∈ L(V ,W ), λ ∈ F. Then M(λT ) = λM(T )

Theorem 2.77 (Dimension of Mmn)

dimFmn = mn

Theorem 2.78 (Matrix of products of linear maps)

Suppose T ∈ L(U,V ),S ∈ L(V ,W ). Then M(ST ) = M(S)M(T )
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Theorem 2.79

Let A ∈ Mmn, C ∈ Mnp. Then

(AC )jk = Aj•C•k , 1 ≤ j ≤ m, 1 ≤ k ≤ p

and
(AC )•k = AC•k , 1 ≤ k ≤ p

Theorem 2.80

Let A ∈ Mmn, c = (c1, . . . , cn)
T ∈ Mn1. Then

Ac = c1A•1 + · · ·+ cnA•n
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Change of basis

Definition 2.81 (Change of basis matrix)

B = {u1, . . . ,un} and C = {v1, . . . , vn} bases of vector space V The change of basis
matrix PC←B ∈ Mn,

PC←B = [[u1]C · · · [un]C]

has columns the coordinate vectors [u1]C , . . . , [un]C of the vectors in B w.r.t. C

Theorem 2.82

B = {u1, . . . ,un} and C = {v1, . . . , vn} bases of vector space V and PC←B a change of
basis matrix from B to C
1. ∀x ∈ V , PC←B[x]B = [x]C

2. PC←B s.t. ∀x ∈ V , PC←B[x]B = [x]C is unique

3. PC←B invertible and P−1C←B = PB←C
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Row-reduction method for changing bases

Theorem 2.83

B = {u1, . . . ,un} and C = {v1, . . . , vn} bases of vector space V . Let E be any basis
for V ,

B = [[u1]E , . . . , [un]E ] and C = [[v1]E , . . . , [vn]E ]

and let [C |B] be the augmented matrix constructed using C and B. Then

RREF ([C |B]) = [I|PC←B]

If working in Rn, this is quite useful with E the standard basis of Rn (it does not
matter if B = E)
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More on changing bases

Theorem 2.84 (NSC for two matrices representing the same linear map)

Let A,B ∈ Mmn, V and W be n and m dimensional vector spaces, respectively. Then
A and B represent the same linear transformation T ∈ L(V ,W ) relative to perhaps
different bases of V and W ⇐⇒ ∃P ∈ Mm, Q ∈ Mn nonsingular and such that

A = PBQ−1
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Definition 2.85 (Inverse/Invertibility)

T ∈ L(V ,W ) is invertible if ∃S ∈ L(W ,V ) s.t. ST = IV and TS = IW . Such a map
is the inverse of T

Theorem 2.86 (Uniqueness of inverse)

An invertible linear map T ∈ L(V ,W ) has a unique inverse denoted T−1

Theorem 2.87 (NSC for invertibility)

T ∈ L(V ,W ) invertible ⇔ (T injective and surjective)
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Definition 2.88 (Isomorphism/Isomorphic spaces)

T ∈ L(V ,W ) is an isomorphism if it invertible. Two vector spaces are isomorphic if
there exists an isomorphism from one to the other

Theorem 2.89 (NSC for isomorphicity)

Let V ,W be finite-dimensional vector spaces over F. Then

V and W are isomorphic ⇔ dimV = dimW

Theorem 2.90

Let v1, . . . , vn be a basis of V and w1, . . . ,wm be a basis of W . Then M is an
isomorphism between Mmn and L(V ,W )
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Theorem 2.91 (Dimension of L(V ,W ))

Let V ,W be finite-dimensional vector spaces. Then L(V ,W ) is finite-dimensional and

dimL(V ,W ) = dimV dimW
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Definition 2.92 (Matrix of a vector)

Let V be a finite-dimensional vector space, v ∈ V and v1, . . . , vn a basis of V . The
matrix of v with respect to the basis v1, . . . , vn is the n × 1 matrix

M(v) =

c1
...
cn


where c1, . . . , cn ∈ F are s.t.

v = c1v1 + · · ·+ cnvn

Theorem 2.93

Let V ,W be finite-dimensional vector spaces, v1, . . . , vn a basis of V , w1, . . . ,wm a
basis of W and T ∈ L(V ,W ). For k ∈ {1, . . . , n}, M(T )•k = M(Tvk)
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Theorem 2.94 (Linear maps act like matrix multiplication)

Let V ,W be finite-dimensional vector spaces, v1, . . . , vn a basis of V , w1, . . . ,wm a
basis of W , T ∈ L(V ,W ) and v ∈ V . Then

M(Tv) = M(T )M(v)
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Operator/Endomorphism

Definition 2.95 (Operator/Endomorphism)

Let V be a vector space. A linear map L(V ,V ) is an operator (or an
endomorphism). L(V ) = L(V ,V ) denotes the set of all operators on V

Theorem 2.96 (Injectivity equiv. to surjectivity in finite-dim.)

Let V be a finite-dimensional vector space, T ∈ L(V ). TFAE:

1. T invertible

2. T injective

3. T surjective
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Rank of an operator/endomorphism

Proposition 2.97 (Rank)

Let T ∈ L(V ) with V finite-dimensional. Then there exists bases BU = {u1, . . . , un}
and BV = {v1, . . . , vn} for V such that the matrix MT of T can be written as the
block matrix

MT =

(
diag(1, . . . , 1) 0k,n−k

0n−k,k 0n−k,n−k

)
for some k ∈ N called the rank of T , with k = rank(T ) = dim(range T ).
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Definition 2.98 (Row and column rank)

Let A ∈ Mmn(F) be a matrix

▶ The row rank of A is the dimension of the span of the rows of A in M1n(F)
▶ The column rank of A is the dimension of the span of the columns of A in

Mm1(F)

Row and column ranks are the dimensions of the row and column spaces of
Definition 2.102.
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Theorem 2.99 (dim rangeT equals column rank of M(T ))

Let V ,W be finite-dimensional vector spaces, T ∈ L(V ,W ). Then dim rangeT equals
the column rank of M(T )

Theorem 2.100 (Row rank equals column rank)

Let A ∈ Mmn. Then the row rank of A equals the column rank of A

Definition 2.101 (Rank)

Let A ∈ Mmn(F). The rank of A is the column (or row, by Theorem 2.100) rank of A
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Row space and column space of a matrix

Definition 2.102 (Row and column spaces)

Let A ∈ Mmn. The subspaces of Rn and Rm spanned by the row and column vectors
of A are the row space and column space of A, respectively.

Definition 2.103 (Null space/kernel)

Let A ∈ Mmn. The null space (or kernel) of A is the solution space of the
homogeneous system Ax = 0.

This makes explicit the already seen definition in the special case of a matrix. As
previously seen, the null space is a subspace of Rn.

Definition 2.104 (Nullity)

The dimension of the null space of A ∈ Mmn is called the nullity of A.

p. 71 – Invertibility and Isomorphic vector spaces



Theorem 2.105

Let A ∈ Mmn. Then

1. rank(A) = rank(AT )

2. rank(A) + nullity(A) = n

3. rank(A) ≤ min(m, n)

Theorem 2.106 (Consistency)

Consider the linear system Ax = b, with A ∈ Mmn. TFAE:

▶ Ax = b is consistent

▶ b ∈ column space of A

▶ A and [A|b] have the same rank
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Proposition 2.107

Let A ∈ Mmn be in row-echelon form. Then

▶ The row vectors (∈ Rn) with leading ones form a basis for the row space of A.

▶ The column vectors (∈ Rm) with leading ones form a basis for the column space
of A.
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Definition 2.108 (Product of vector spaces)

Let V1, . . . ,Vm be vector spaces over F. The product V1 × · · · × Vm is

V1 × · · · × Vm = {(v1, . . . , vm); v1 ∈ V1, . . . , vm ∈ Vm}

Theorem 2.109 (Products of vector spaces are vector spaces)

Let V1, . . . ,Vm be vector spaces over F. Define
▶ addition on V1 × · · · × Vm by

(u1, . . . ,um) + (v1, . . . , vm) = (u1 + v1, . . . ,um + vm)

▶ scalar multiplication on V1 × · · · × Vm by

λ(v1, . . . , vm) = (λv1, . . . , λvm)

With these operations, V1 × · · · × Vm is a vector space over F
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Theorem 2.110 (Dimension of product space)

Let V1, . . . ,Vm be finite-dimensional vector spaces. Then

dim(V1 × · · · × Vm) = dimV1 + · · ·+ dimVm < ∞
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Theorem 2.111 (Product spaces and direct sums)

Let U1, . . . ,Um ⊂ V be subspaces of V . Let

Γ : U1 × · · · × Um → U1 + · · ·+ Um

(u1, . . . ,um) 7→ u1 + · · ·+ um

Then
U1 + · · ·+ Um direct sum ⇔ Γ injective

Theorem 2.112 (NSC for direct sum)

Let V be a finite-dimensional vector space, U1, . . . ,Um subspaces of V . Then

U1 ⊕ · · · ⊕ Um ⇔ dim(U1 + · · ·+ Um) = dimU1 + · · ·+ dimUm
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Definition 2.113 (v + U)

Let V be a vector space, U a subspace of V and v ∈ V . Then v + U is the subset of
V defined by

v + U = {v + u;u ∈ U}

Definition 2.114 (Affine subset/Parallel affine subset)

Let V be a vector space

▶ An affine subset of V is a subset of V of the form v + U for some v ∈ V and
some subspace U of V

▶ For v ∈ V and U subspace of V , the affine subset v + U is parallel to U

p. 77 – Products and quotients of vector spaces



Definition 2.115 (Quotient space)

Let V be a vector space, U a subspace of V . The quotient space V /U is the set of
all affine subsets of V parallel to U, i.e.,

V /U = {v + U; v ∈ V }

Theorem 2.116 (2 affine subsets // to U are equal or disjoint)

Let V be a vector space, U subspace of V and v ,w ∈ V . TFAE

1. v −w ∈ U

2. v + U = w + U

3. (v + U) ∩ (w + U) ̸= ∅
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Definition 2.117 (Addition and scalar multiplication on V /U)

Let V be a vector space, U subspace of V . Then addition and scalar multiplication
on V /U are defined for v,w ∈ V and λ ∈ F by

(v + U) + (w + U) = (v +w) + U

and
λ(v + U) = (λv) + U

Theorem 2.118 (Quotient space is a vector space)

Let V be a vector space and U subspace of V . Equipped with addition and scalar
multiplication as above, V /U is a vector space
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Definition 2.119 (Quotient map)

Let V be a vector space, U subspace of V . The quotient map π is the linear map
π ∈ L(V ,V /U) defined by

π(v) = v + U

for v ∈ V

Theorem 2.120 (Dimension of quotient space)

Let V be a finite-dimensional vector space and U subspace of V . Then

dimV /U = dimV − dimU
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Definition 2.121 (T̃ )

Let V ,W be vector spaces, T ∈ L(V ,W ). Define T̃ by

T̃ : V /(nullT ) → W

T̃ (v + nullT ) = Tv

Theorem 2.122 (Null space and range of T̃ )

Let V ,W be vector spaces, T ∈ L(V ,W ). Then

1. T̃ ∈ L(V /nullT ,W )

2. T̃ injective

3. rangeT̃ = rangeT

4. V /nullT isomorphic to rangeT
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Definition 2.123 (Linear functional/form)

A linear functional (or linear form) on a vector space V is a linear map in L(V ,F)

Definition 2.124 (Dual space)

The dual space V ⋆ of V is the vector space V ⋆ = L(V ,F) of linear functionals on V

Theorem 2.125 (dimV ⋆ = dimV )

Suppose V is a finite-dimensional vector space. Then dimV ⋆ = dimV < ∞
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Definition 2.126 (Dual basis)

If v1, . . . , vn is a basis of the vector space V , then the dual basis of v1, . . . , vn is the
list φ1, . . . ,φn of elements of V ⋆, where for j = 1, . . . , n, φj is the linear functional on
V s.t.

φj(vk) =

{
1 if k = j

0 if k ̸= j

Theorem 2.127 (Dual basis is a basis of the dual space)

Suppose V is a finite-dimensional vector space. Then the dual basis of a basis of V is
a basis of V ⋆
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Definition 2.128 (Dual map)

Let V ,W be vector spaces, T ∈ L(V ,W ). The dual map of T is the linear map
T ⋆ ∈ L(W ⋆,V ⋆) defined by T ⋆(φ) = φ ◦ T for φ ∈ W ⋆

Property 2.129 (Algebraic properties of dual maps)

Let U,V ,W be vector spaces

▶ (S + T )⋆ = S⋆ + T ⋆ for all S ,T ∈ L(V ,W )

▶ (λT )⋆ = λT ⋆ for all λ ∈ F and all T ∈ L(V ,W )

▶ (ST )⋆ = T ⋆S⋆ for all T ∈ L(U,V ) and all S ∈ L(V ,W )
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Definition 2.130 (Annihilator)

Let V be a vector space, U ⊆ V . The annihilator U0 of U is defined by

U0 = {φ ∈ V ⋆ : ∀u ∈ U, φ(u) = 0F}

Theorem 2.131 (The annihilator is a subspace)

Let V be a vector space and U ⊆ V . Then the annihilator U0 is a subspace of V ⋆

Theorem 2.132 (Dimension of the annihilator)

Let V be a finite-dimensional vector space, U ⊆ V a subspace of V . Then

dimU + dimU0 = dimV
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Theorem 2.133 (Null space of T ⋆)

Let V ,W be finite-dimensional vector spaces, T ∈ L(V ,W ). Then

1. nullT ⋆ = (rangeT )0

2. dim nullT ⋆ = dimnullT + dimW − dimV

Theorem 2.134 (T surjective ⇔ T ⋆ injective)

Let V ,W be finite-dimensional vector spaces, T ∈ L(V ,W ). Then

T surjective ⇔ T ⋆ injective
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Theorem 2.135 (Range of T ⋆)

Let V ,W be finite-dimensional vector spaces, T ∈ L(V ,W ). Then

1. dim rangeT ⋆ = dim rangeT

2. rangeT ⋆ = (nullT )0

Theorem 2.136 (T injective ⇔ T ⋆ surjective)

Let V ,W be finite-dimensional vector spaces, T ∈ L(V ,W ). Then

T injective ⇔ T ⋆ surjective
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Theorem 2.137 (Matrix of T ⋆ is transpose of matrix of T )

Let V ,W be vector spaces, T ∈ L(V ,W ). Then M(T ⋆) = M(T )T , where T denotes
the transpose
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Definition 2.138 (Invariant subspace)

Let V be a vector space, T ∈ L(V ). A subspace U of V is invariant under T if

u ∈ U ⇒ Tu ∈ U

In other words, U invariant under T if T |U ∈ L(U) [see Definition 2.144]

Definition 2.139 (Eigenvalue)

Let V be a vector space, T ∈ L(V ). A scalar λ ∈ F is an eigenvalue of T if

∃v ∈ V , v ̸= 0V , s.t. T (v) = λv.

I use the notation T (v) instead of Tv to emphasise that T ∈ L(V ).
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Theorem 2.140 (Conditions equivalent to being an eigenvalue)

Let V be a finite-dimensional vector space, T ∈ L(V ) and λ ∈ F. Denote IL(V ) the
identity operator, IL(V ) ∈ L(V ) s.t. ∀v ∈ V , IL(V )v = v. TFAE:

1. λ eigenvalue of T

2. T − λIL(V ) not injective

3. T − λIL(V ) not surjective

4. T − λIL(V ) not invertible

Definition 2.141 (Eigenvector)

Let V be a vector space, T ∈ L(V ) and λ ∈ F be an eigenvalue of T . A vector v ∈ V
is an eigenvector of T corresponding to λ if v ̸= 0 and T (v) = λv
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Theorem 2.142 (Linearly independent eigenvectors)

Let V be a vector space, T ∈ L(V ). Suppose λ1, . . . , λm are distinct eigenvalues of T
with corresponding eigenvectors v1, . . . , vm. Then v1, . . . , vm linearly independent

Theorem 2.143 (Number of eigenvalues)

Let V be a finite-dimensional vector space, T ∈ L(V ). Then T has at most dimV
distinct eigenvalues
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Definition 2.144 (Restriction and quotient operators)

Let V be a vector space, T ∈ L(V ) and U a subspace of V invariant under T
(Def. 2.138)

▶ The restriction operator T |U ∈ L(U) is defined by

T |U = Tu, u ∈ U

▶ The quotient operator T/U ∈ L(V /U) is defined by

(T/U)(v + U) = Tv + U, v ∈ V

For the quotient space L(V /U), see Definition 2.138 and the results that follow
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Definition 2.145

Let V be a vector space, T ∈ L(V ), m ∈ N \ {0}
▶ Tm = T · · ·T︸ ︷︷ ︸

m times

▶ T 0 = I , the identity operator on V

▶ If T invertible with inverse T−1, then T−m = (T−1)m

Definition 2.146

Let V be a vector space, T ∈ L(V ) and p ∈ P(F) be the polynomial

p(z) = a0 + a1z + · · ·+ amz
m, z ∈ F

Then p(T ) is the operator on L(V ) defined by

p(T ) = a0I + a1T + · · ·+ amT
m

where I is the identity operator
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Definition 2.147 (Product of polynomials)

Let p, q ∈ P(F), then pq ∈ P(F) is the polynomial

(pq)(z) = p(z)q(z), z ∈ F

Theorem 2.148 (Multiplicative properties)

Let p, q ∈ P(F), V a vector space and T ∈ L(V ). Then

1. (pq)(T ) = p(T )q(T )

2. p(T )q(T ) = q(T )p(T )
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Theorem 2.149 (Operators on complex v.s. have an eigenvalue)

Let V be a vector space over C with dimV = n < ∞. Assume T ∈ L(V ). Then V
has an eigenvalue
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Definition 2.150 (Matrix of an operator)

Let T ∈ L(V ), where V is a finite-dimensional vector space, let v1, . . . , vn be a basis
of V . The matrix of T with respect to the basis is the n × n matrix

M(T ) =

a11 · · · a1n
...

...
an1 · · · ann


with entries ajk defined by

Tvk = a1kv1 + · · ·+ ankvn

If basis is not clear from the context, write M(T , (v1, . . . , vn))
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Definition 2.151 (Diagonal of a matrix)

Let A = [aij ] ∈ Mn(F) be a square matrix. The diagonal of A consists of the entries
aii , i = 1, . . . , n

Definition 2.152 (Upper-triangular matrix)

Let A = [aij ] ∈ Mn(F) be a square matrix. The matrix A is upper-triangular if all
entries below the diagonal are 0, i.e.,

aij = 0, ∀i , j such that i > j
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Theorem 2.153 (Conditions for an upper-triangular matrix)

Let V be a finite-dimensional vector space, T ∈ L(V ) and v1, . . . , vn a basis of V .
TFAE:

1. M(T ) with respect to v1, . . . , vn is upper-triangular

2. Tvj ∈ span(v1, . . . , vj), ∀j = 1, . . . , n

3. span(v1, . . . , vj) invariant under T , ∀j = 1, . . . , n

Theorem 2.154 (Every operator over C has an UT matrix)

Let V be a finite-dimensional vector space over C, T ∈ L(V ). Then T has an
upper-triangular matrix with respect to some basis of V
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Theorem 2.155 (Determination of invertibility from UT matrix)

Let V be finite-dimensional vector space. Assume that T ∈ L(V ) has an
upper-triangular matrix with respect to some basis of V . Then

T invertible ⇔ ∀i = 1, . . . , n, aii ̸= 0

Theorem 2.156 (Determination of eigenvalues from UT matrix)

Let V be finite-dimensional vector space. Assume that T ∈ L(V ) has an
upper-triangular matrix with respect to some basis of V . Then

λ eigenvalue of T ⇔ λ ∈ {aii , i = 1, . . . , n}
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Definition 2.157 (Diagonal matrix)

Let A = [aij ] ∈ Mn(F) be a square matrix. A is a diagonal matrix if all entries of A
are zero except possibly on the diagonal, i.e.,

∀i , j , i ̸= j , aij = 0.

Definition 2.158 (Eigenspace)

Let V be a vector space, T ∈ L(V ), λ ∈ F. The eigenspace E (λ,T ) of T
corresponding to λ is defined by

E (λ,T ) = null(T − λI ).

Thus λ eigenvalue of T ⇔ E (λ,T ) ̸= {0V }.
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Theorem 2.159 (Sum of eigenspaces is a direct sum)

Let V be a finite-dimensional vector space, T ∈ L(V ). Assume λ1, . . . , λm are distinct
eigenvalues of T . Then

E (λ1,T ) + · · ·+ E (λm,T )

is a direct sum and

dimE (λ1,T ) + · · ·+ dimE (λm,T ) ≤ dimV
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Definition 2.160 (Diagonalisable operator)

Let V be a vector space, T ∈ L(V ). T is diagonalisable if T has a diagonal matrix
with respect to some basis of V .

Theorem 2.161 (Conditions equivalent to diagonalisability)

Let V be a finite-dimensional vector space, T ∈ L(V ). Let λ1, . . . , λm be distinct
eigenvalues of T . TFAE:

1. T diagonalisable

2. V has a basis consisting of eigenvectors of T

3. ∃U1, . . . ,Un 1-dimensional subspaces of V invariant under T s.t.

V = U1 ⊕ · · · ⊕ Un

4. V = E (λ1,T )⊕ · · · ⊕ E (λm,T )

5. dimV = dimE (λ1,T ) + · · ·+ dimE (λm,T )
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Theorem 2.162 (Sufficient condition for diagonalisability)

Let V be a vector space, T ∈ L(V ). If T has dimV distinct eigenvalues, then T
diagonalisable

p. 104 – Eigenspaces and diagonal matrices
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Definition 2.163 (Inner product)

Let V be a vector space over F. An inner product on V is a function
⟨·, ·⟩ : V × V → F having the following properties, ∀u, v,w ∈ V and ∀λ ∈ F,
▶ ⟨v, v⟩ ≥ 0 [positivity]

▶ ⟨v, v⟩ = 0 ⇔ v = 0V [definiteness]

▶ ⟨u+ v,w⟩ = ⟨u,w⟩+ ⟨v,w⟩ [additivity in first slot]

▶ ⟨λu, v⟩ = λ⟨u, v⟩ [homogeneity in first slot]

▶ ⟨u, v⟩ = ⟨v,u⟩ [conjugate symmetry]

Definition 2.164 (Inner product space)

An inner product space is a vector space V along with an inner product on V
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Theorem 2.165 (Basic properties of inner product)

Let V be an inner product space over F. Then
1. For each fixed u ∈ V , the function v 7→ ⟨v,u⟩ is a linear map from V to F
2. ∀u ∈ V , ⟨0V ,u⟩ = 0

3. ∀u ∈ V , ⟨u, 0V ⟩ = 0

4. ∀u, v,w ∈ V , ⟨u, v +w⟩ = ⟨u, v⟩+ ⟨u,w⟩
5. ∀u, v ∈ V and ∀λ ∈ F, ⟨u, λv⟩ = λ⟨u, v⟩
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Definition 2.166 (Norm)

Let V be an inner product space over F. For v ∈ V , the norm of v is defined by

∥v∥ =
√

⟨v, v⟩

Theorem 2.167 (Basic properties of the norm)

Let V be an inner product space, v ∈ V . Then

1. ∥v∥ = 0 ⇔ v = 0

2. ∀λ ∈ F, ∥λv∥ = |λ| ∥v∥
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Definition 2.168 (Orthogonality)

Let V be an inner product space over F. Two vectors u, v ∈ V are orthogonal if
⟨u, v⟩ = 0. We sometimes denote u ⊥ v

Theorem 2.169 (0 and orthogonality)

Let V be an inner product space over F. Then
1. 0V is orthogonal to every vector in V

2. 0V is the only vector in V that is orthogonal to itself

Theorem 2.170 (Pythagorean theorem)

Let V be an inner product space, u, v ∈ V s.t. u ⊥ v. Then

∥u+ v∥2 = ∥u∥2 + ∥v∥2
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Theorem 2.171 (An orthogonal decomposition)

Let V be an inner product space, u, v ∈ V with v ̸= 0. Let

c =
⟨u, v⟩
∥v∥2

(∈ F) and w = u− ⟨u, v⟩
∥v∥2

v (∈ V ).

Then
⟨w, v⟩ = 0 and u = cv +w.

Theorem 2.172 (Cauchy-Schwarz inequality)

Let V be an inner product space, u, v ∈ V . Then

|⟨u, v⟩| ≤ ∥u∥ ∥v∥

with |⟨u, v⟩| = ∥u∥ ∥v∥ ⇔ u = kv for some 0 ̸= k ∈ F.
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Theorem 2.173 (Triangle inequality)

Let V be an inner product space, u, v ∈ V . Then

∥u+ v∥ ≤ ∥u∥+ ∥v∥

with ∥u+ v∥ = ∥u∥+ ∥v∥ ⇔ u = kv for some 0 ≤ k ∈ R.

Theorem 2.174 (Parallelogram equality)

Let V be an inner product space, u, v ∈ V . Then

∥u+ v∥2 + ∥u− v∥2 = 2
(
∥u∥2 + ∥v∥2

)
.
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Definition 2.175 (Orthonormal list)

A list of vectors is orthonormal if each vector in the list has norm 1 and is orthogonal
to all other vectors in the list, i.e., the list e1, . . . , em of vectors in the inner product
space V is orthonormal if

⟨ej , ek⟩ =

{
1 if j = k

0 if j ̸= k

Theorem 2.176 (Norm of an orthonormal linear combination)

Let e1, . . . , em be an orthonormal list of vectors in an inner product space V . Then

∥a1e1 + · · ·+ amem∥2 = |a1|2 + · · ·+ |am|2

for all a1, . . . , am ∈ F.
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Theorem 2.177 (Orthonormal lists are LI)

Let e1, . . . , em be an orthonormal list of vectors in an inner product space V . Then
e1, . . . , em is linearly independent

Definition 2.178 (Orthonormal basis)

An orthonormal basis of an inner product space V is an orthonormal list of vectors in
V that is also a basis of V

Theorem 2.179 (Orthonormal list & orthonormal basis)

Let e1, . . . , em be an orthonormal list of vectors in an inner product space V . If
dimV = m, then e1, . . . , em orthonormal basis of V .
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Theorem 2.180 (Vector as LC of orthonormal basis)

Let e1, . . . , en be an orthonormal basis of the inner product space V , v ∈ V . Then

v = ⟨v, e1⟩e1 + · · ·+ ⟨v, en⟩en

and
∥v∥2 = |⟨v, e1⟩|2 + · · ·+ |⟨v, en⟩|2
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Theorem 2.181 (Gram-Schmidt procedure)

Let v1, . . . , vm be a linearly independent list of vectors in an inner product space V . Let

e1 =
v1

∥v1∥

For j = 2, . . . ,m, define ej inductively by

ej =
vj − ⟨vj , e1⟩e1 − · · · − ⟨vj , ej−1⟩ej−1

∥vj − ⟨vj , e1⟩e1 − · · · − ⟨vj , ej−1⟩ej−1∥

Then e1, . . . , em is an orthonormal list of vectors in V such that

span(v1, . . . , vj) = span(e1, . . . , ej), j = 1, . . . ,m
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Theorem 2.182 (Existence of orthonormal basis)

Let V be a finite-dimensional inner product space. Then V has an orthonormal basis

Theorem 2.183 (Extending orthonormal list to basis)

Let V be a finite-dimensional inner product space. Then every orthonormal list of
vectors in V can be extended to an orthonormal basis of V
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Theorem 2.184 (UT matrix wrt orthonormal basis)

Let V be a finite-dimensional inner product space, T ∈ L(V ). If T has an
upper-triangular matrix with respect to some basis of V , then T has an
upper-triangular matrix with respect to some orthonormal basis of V

Theorem 2.185 (Schur’s Theorem)

Suppose V is a finite-dimensional complex vector space, T ∈ L(V ). Then T has an
upper-triangular matrix with respect to some orthonormal basis of V
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Theorem 2.186 (Riesz representation Theorem)

Let V be a finite-dimensional inner product space, φ ∈ L(V ,F) a linear functional on
V . Then ∃u ∈ V unique s.t.

∀v ∈ V , φ(v) = ⟨v,u⟩.
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Definition 2.187 (Orthogonal complement)

Let V be an inner product space, U ⊂ V . The orthogonal complement U⊥ of U is
the set

U⊥ = {v ∈ V : ∀u ∈ U, ⟨v,u⟩ = 0}

Property 2.188 (Basic properties of orthogonal complement)

1. If U ⊂ V , then U⊥ subspace of V

2. {0V }⊥ = V

3. V⊥ = {0V }
4. If U ⊂ V , then U ∩ U⊥ ⊂ {0}
5. If U ⊂ W ⊂ V , then W⊥ ⊂ U⊥
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Theorem 2.189 (Direct sum U and U⊥)

Let U be a finite-dimensional subspace of V , inner product space. Then

V = U ⊕ U⊥

Theorem 2.190 (Dimension of U⊥)

Let V be a finite-dimensional inner product space, U subspace of V . Then

dimU⊥ = dimV − dimU

Theorem 2.191 (Orth. complement of orth. complement)

Let U be a finite-dimensional subspace of the inner product space V . Then(
U⊥

)⊥
= U
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Definition 2.192 (Orthogonal projection PU)

Let V be an inner product space, U a finite-dimensional subspace of V . The
orthogonal projection of V onto U is the operator PU ∈ L(V ) defined by

PUv = u,

where v ∈ V is written v = u+w, with u ∈ U and w ∈ U⊥
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Property 2.193 (Properties of the orthogonal projection PU)

Let V be an inner product space, U a finite-dimensional subspace of V , v ∈ V . Then

1. PU ∈ L(V )

2. ∀u ∈ U, PUu = u

3. ∀w ∈ U⊥, PUw = 0V

4. rangePU = U

5. nullPU = U⊥

6. v − PUv ∈ U⊥

7. P2
U = PU

8. ∥PUv∥ ≤ ∥v∥
9. for every orthonormal basis e1, . . . , em of U,

PUv = ⟨v, e1⟩e1 + · · ·+ ⟨v, em⟩em.
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Theorem 2.194 (Minimising distance to a subspace)

Let V be an inner product space, U a finite-dimensional subspace of V , v ∈ V , u ∈ U.
Then

∥v − PUv∥ ≤ ∥v − u∥

with equality if and only if u = PUv
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Definition 2.195 (Adjoint)

Let V ,W be finite-dimensional inner product spaces over F, T ∈ L(V ,W ). The
adjoint of T is the function T ⋆ : W → V such that

∀v ∈ V ,∀w ∈ W , ⟨Tv,w⟩ = ⟨v,T ⋆w⟩

Theorem 2.196 (Adjoint is a linear map)

Let V ,W be finite-dimensional inner product spaces over F, T ∈ L(V ,W ). Then

T ⋆ ∈ L(W ,V )
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Property 2.197 (Properties of the adjoint)

Let V ,W be finite-dimensional inner product spaces over F. Then
1. ∀S ,T ∈ L(V ,W ), (S + T )⋆ = S⋆ + T ⋆

2. ∀T ∈ L(V ,W ), ∀λ ∈ F, (λT )⋆ = λT ⋆

3. ∀T ∈ L(V ,W ), (T ⋆)⋆ = T

4. I ⋆ = I if I is the identity operator on V

5. Let U be an inner product space over F, then ∀T ∈ L(V ,W ) and ∀S ∈ L(W ,U),
(ST )⋆ = T ⋆S⋆
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Theorem 2.198 (Null space and range of T ⋆)

Let V ,W be finite-dimensional inner product spaces over F, T ∈ L(V ,W ). Then

1. nullT ⋆ = (rangeT )⊥

2. rangeT ⋆ = (nullT )⊥

3. nullT = (rangeT ⋆)⊥

4. rangeT = (nullT ⋆)⊥

Definition 2.199 (Conjugate transpose)

Let M ∈ Mmn(F), M = [mij ]. The conjugate transpose of M, often denoted M⋆, is
the matrix

M⋆ = [mji ] ∈ Mnm

i.e, the matrix obtained by transposing M then taking the (complex) conjugate of each
entry
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Theorem 2.200 (Matrix of T ⋆)

Let V ,W be finite-dimensional inner product spaces over F, T ∈ L(V ,W ). Let
e1, . . . , en and f1, . . . , fm be orthonormal bases of V and W , respectively. Then

M(T ⋆, (f1, . . . , fm), (e1, . . . , en))

is the conjugate transpose of

M(T , (e1, . . . , en), (f1, . . . , fm))
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Definition 2.201 (Self-adjoint operator)

Let V be an inner product space over F, T ∈ L(V ). T is self-adjoint (or Hermitian)
if

T = T ⋆

In other words, T ∈ L(V ) self-adjoint ⇐⇒

∀v,w ∈ V , ⟨Tv,w⟩ = ⟨v,Tw⟩

p. 129 – Self-adjoint and normal operators



Theorem 2.202 (Eigenvalues of self-adjoint operators are real)

Let V be an inner product space over F, T ∈ L(V ). Then all eigenvalues of T are real

Theorem 2.203

Let V be a complex inner product space, T ∈ L(V ). Then

(∀v ∈ V , ⟨Tv, v⟩ = 0) ⇒ T = 0

Theorem 2.204

Let V be a complex inner product space, T ∈ L(V ). Then

(T self-adjoint) ⇔ (∀v ∈ V , ⟨Tv, v⟩ ∈ R)
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Theorem 2.205

Let V be an inner product space, T ∈ L(V ) self-adjoint. Then

(∀v ∈ V , ⟨Tv, v⟩ = 0) ⇒ T = 0

p. 131 – Self-adjoint and normal operators



Definition 2.206 (Normal operator)

Let V be an inner product space, T ∈ L(V ). T is normal if

TT ⋆ = T ⋆T

In words, T is normal if it commutes with its adjoint

Theorem 2.207 (T normal ⇔ ∥Tv∥ = ∥T ⋆v∥)
Let V be an inner product space, T ∈ L(V ). Then

T normal ⇔ (∀v ∈ V , ∥Tv∥ = ∥T ⋆v∥)
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Theorem 2.208 (T normal and T ⋆ have same eigenvectors)

Let V be an inner product space, T ∈ L(V ) a normal operator. Then

(λ, v) eigenpair of T ⇔ (λ, v) eigenpair of T ⋆

Theorem 2.209 (Orthogonal eigenvectors for normal operators)

Let V be an inner product space, T ∈ L(V ) a normal operator. If (λ1, v1) and (λ2, v2)
eigenpairs of T with λ1 ̸= λ2, then v1 ⊥ v2.
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Theorem 2.210

Let V be an inner product space, T ∈ L(V ) self-adjoint and b, c ∈ R s.t. b2 < 4c .
Then T 2 + bT + cI invertible

Theorem 2.211 (Self-adjoint operators have eigenvalues)

Let V ̸= {0} and T ∈ L(V ) be self-adjoint. Then T has an eigenvalue

Theorem 2.212 (Self-adjoint operators & invariant subspaces)

Let V be an inner product space, T ∈ L(V ) be self-adjoint and U be a subspace of V
invariant under T . Then

1. U⊥ invariant under T

2. T |U ∈ L(U) self-adjoint

3. T |U⊥ ∈ L(U⊥) self-adjoint
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Theorem 2.213 (Complex spectral theorem)

Let V be an inner product space over F = C, T ∈ L(V ). TFAE:

1. T normal

2. V has an orthonormal basis consisting of eigenvectors of T

3. T has a diagonal matrix with respect to some orthonormal basis of V

Theorem 2.214 (Real spectral theorem)

Let V be an inner product space over F = R, T ∈ L(V ). TFAE:

1. T self-adjoint

2. V has an orthonormal basis consisting of eigenvectors of T

3. T has a diagonal matrix with respect to some orthonormal basis of V
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Definition 2.215 (Positive (semidefinite) operator)

Let V be an inner product space. An operator T ∈ L(V ) is positive (or positive
semidefinite) if T is self-adjoint and

∀v ∈ V , ⟨Tv, v⟩ ≥ 0

Definition 2.216 (Square root operator)

Let V be an inner product space. An operator R ∈ L(V ) is a square root of an
operator T ∈ L(V ) if

R2 = T

p. 136 – Positive (semidefinite) operators & Isometries



Theorem 2.217 (Characterisation of positive operators)

Let T ∈ L(V ), where V is an inner product space. TFAE:

1. T positive semidefinite

2. T self-adjoint and all eigenvalues of T are nonnegative

3. T has a positive semidefinite square root

4. T has a self-adjoint square root

5. ∃R ∈ L(V ) s.t. T = R⋆R

Theorem 2.218 (Uniqueness of positive semidefinite square root)

Let T ∈ L(V ) be a positive semidefinite operator on an inner product space V . Then
T has a unique positive semidefinite square root
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Definition 2.219 (Isometry)

Let V be an inner product space. S ∈ L(V ) is an isometry if

∀v ∈ V , ∥Sv∥ = ∥v∥
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Theorem 2.220 (Characterisation of isometries)

Let V be an inner product space, S ∈ L(V ). TFAE:

1. S isometry

2. ∀u, v ∈ V , ⟨Su, Sv⟩ = ⟨u, v⟩
3. ∀e1, . . . , en ∈ V orthonormal list, Se1, . . . ,Sen orthonormal

4. ∃e1, . . . , en orthonormal basis of V s.t. Se1, . . . ,Sen orthonormal

5. S⋆S = I

6. SS⋆ = I

7. S⋆ isometry

8. S invertible and S−1 = S⋆
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Theorem 2.221 (Isometries when F = C)

Let V be a complex inner product space, S ∈ L(V ). TFAE:

1. S isometry

2. ∃ orthonormal basis of V consisting of eigenvectors of S with corresponding
eigenvalues all having modulus 1

p. 140 – Positive (semidefinite) operators & Isometries
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Let T be a positive semidefinite operator, then denote
√
T the unique positive

semidefinite square root of T

Theorem 2.222 (Polar decomposition)

Let V be an inner product space, T ∈ L(V ). Then there exists an isometry S ∈ L(V )
s.t.

T = S
√
T ⋆T

p. 141 – Polar and Singular value decompositions



Definition 2.223 (Singular values)

Let V be an inner product space, T ∈ L(V ). The singular values of T are the
eigenvalues of

√
T ⋆T , with each eigenvalue λ repeated dimE (λ,

√
T ⋆T ) times. All

are nonnegative

Theorem 2.224 (Singular value decomposition – SVD)

Let V be an inner product space. Assume T ∈ L(V ) has singular values s1, . . . , sn.
Then ∃e1, . . . , en and f1, . . . , fn orthonormal bases of V s.t.

∀v ∈ V , Tv = s1⟨v , e1⟩f1 + · · ·+ sn⟨v, en⟩fn

Theorem 2.225 (SV without square root)

Let V be an inner product space. The singular values of T are the nonnegative square
roots of the eigenvalues of T ⋆T , with each eigenvalue λ repeated dimE (λ,T ⋆T ) times

p. 142 – Polar and Singular value decompositions
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Theorem 2.226 (Sequence of increasing null spaces)

Let V be a finite-dimensional vector space over F, T ∈ L(V ). Then

{0} = nullT 0 ⊂ nullT 1 ⊂ · · · ⊂ nullT k ⊂ nullT k+1 ⊂ · · ·

Theorem 2.227 (Equality in sequence of null spaces)

Let V be a finite-dimensional vector space over F, T ∈ L(V ). Assume m ∈ N \ {0} is
s.t.

nullTm = nullTm+1

Then
∀k ∈ N, nullTm+k = nullTm

p. 144 – Generalised eigenvectors & Nilpotent operators



Theorem 2.228 (Null spaces stop growing)

Let V be a finite-dimensional vector space over F with dimV = n, T ∈ L(V ). Then

∀k ∈ N, nullT n+k = nullT n

Theorem 2.229 (V = nullT dimV ⊕ rangeT dimV )

Let V be a finite-dimensional vector space over F with dimV = n, T ∈ L(V ). Then

V = nullT n ⊕ rangeT n

p. 145 – Generalised eigenvectors & Nilpotent operators



Definition 2.230 (Generalised eigenvector)

Let V be a finite-dimensional vector space over F, T ∈ L(V ), λ ∈ F an eigenvalue of
T . v ∈ V is a generalised eigenvector of T corresponding to λ if v ̸= 0 and

∃j ∈ N \ {0}, (T − λI )jv = 0V

Definition 2.231 (Generalised eigenspace)

Let T ∈ L(V ) and λ ∈ F. The generalised eigenspace G (λ,T ) of T corresponding
to λ is the set of all generalised eigenvectors of T corresponding to λ together with
the 0V vector

p. 146 – Generalised eigenvectors & Nilpotent operators



Theorem 2.232 (Description of generalised eigenspaces)

Let T ∈ L(V ) and λ ∈ F. Then

G (λ,T ) = null(T − λI )dimV

Theorem 2.233 (LI generalised eigenvectors)

Let T ∈ L(V ). Assume λ1, . . . , λm are distinct eigenvalues of T , v1, . . . , vm
corresponding generalised eigenvectors. Then v1, . . . , vm linearly independent.
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Definition 2.234 (Nilpotent operator)

An operator is nilpotent if ∃k ∈ N s.t. T k = 0

Theorem 2.235 (A loose upper bound on power required)

Let N ∈ L(V ) be nilpotent. Then

NdimV = 0

Theorem 2.236 (Matrix of a nilpotent operator)

Let N ∈ L(V ) be nilpotent. Then there exists a basis of V with respect to which
M(N) is strictly upper triangular, i.e.,

M(N) = [mij ] is s.t. mij = 0 if i ≥ j
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Theorem 2.237 ( & range of p(T ) invariant under T )

Let T ∈ L(V ) and p ∈ P(F). Then p(T ) and range p(T ) invariant under T

Theorem 2.238 (Description of operators when F = C)
Suppose V complex vector space, T ∈ L(V ). Assume λ1, . . . , λm be the distinct
eigenvalues of T . Then

1. V = G (λ1,T )⊕ · · · ⊕ G (λm,T )

2. each G (λj ,T ) invariant under T

3. ∀j = 1, . . . ,m, (T − λj I )|G(λj ,T ) nilpotent

Theorem 2.239 (Basis of generalised eigenvectors)

Let V be a complex vector space and T ∈ L(V ). Then there exists a basis of V
consisting of generalised eigenvectors of T

p. 149 – Decomposition of an operator



Definition 2.240 (Multiplicity of an eigenvalue)

Let T ∈ L(V ). The (algebraic) multiplicity of an eigenvalue λ of T is

▶ dimG (λ,T )

▶ dim (T − λI ))dimV

Theorem 2.241 (
∑

multiplicities = dimV )

Let V be a complex vector space, T ∈ L(V ). Let λ1, . . . , λn be distinct eigenvalues of
T with multiplicities d1, . . . , dn. Then

n∑
k=1

dk = dimV

p. 150 – Decomposition of an operator



Definition 2.242 (Block diagonal matrix)

Let A1, . . . ,Am be square matrices (not necessarily of the same size). A block matrix
is a matrix of the form

A =


A1 0

A2

. . .

0 Am


We also write

A = diag(A1, . . . ,Am)

You will also see (not in this book)

A = A1 ⊕ · · · ⊕ Am
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Theorem 2.243 (Block diagonal matrix with UT blocks)

Let V be a complex vector space, T ∈ L(V ). Let λ1, . . . , λm be the distinct
eigenvalues of T with multiplicities d1, . . . , dm. Then there exists a basis of V s.t. T
has a block diagonal matrix

diag(A1, . . . ,Am)

with each Aj a dj × dj upper-triangular matrix of the form

Aj =

λj ∗
. . .

0 λj
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Theorem 2.244 (Identity plus nilpotent has square root)

Let N ∈ L(V ) be nilpotent. Then I + N has a square root

Theorem 2.245 (T invertible has square root when F = C)
Let V be a complex vector space, T ∈ L(V ) invertible. Then T has a square root

p. 153 – Decomposition of an operator
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Definition 2.246 (Characteristic polynomial)

Let V be a complex vector space, T ∈ L(V ), λ1, . . . , λm the distinct eigenvalues of T
with multiplicities d1, . . . , dm. The characteristic polynomial of T is

(z − λ1)
d1 · · · (z − λm)

dm

Theorem 2.247 (Degree and zeros of char. polyn.)

V a complex vector space, T ∈ L(V ). Then

1. the characteristic polynomial of T has degree dimV

2. zeros of the characteristic polynomial of T are the eigenvalues of T

Theorem 2.248 (Cayley-Hamilton)

Let V be a complex vector space, T ∈ L(V ). Let q be the characteristic polynomial of
T . Then q(T ) = 0

p. 154 – Characteristic and minimal polynomials



Definition 2.249 (Monic polynomial)

A monic polynomial is a polynomial with highest degree coefficient equal to 1

Theorem 2.250 (Minimal polynomial)

Let T ∈ L(V ). Then there exists a unique monic polynomial p of smallest degree s.t.
p(T ) = 0

Definition 2.251 (Minimal polynomial)

Let T ∈ L(V ). The minimal polynomial of T is the unique monic polynomial p of
smallest degree s.t. p(T ) = 0

Theorem 2.252

Let T ∈ L(V ) and q ∈ P(F). Then q(T ) = 0 ⇔ q polynomial multiple of the minimal
polynomial of T

p. 155 – Characteristic and minimal polynomials



Theorem 2.253 (Char. polyn. is multiple of min. polyn.)

Assume V vector space over F = C, T ∈ L(V ). Then the characteristic polynomial of
T is a polynomial multiple of the minimal polynomial of T

Theorem 2.254 (Eigenvalues are zeros of min. polyn.)

Let T ∈ L(V ). Then the zeros of the minimal polynomial of T are precisely the
eigenvalues of T

p. 156 – Characteristic and minimal polynomials
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Theorem 2.255 (Basis corresponding to nilpotent operator)

Let N ∈ L(V ) be nilpotent. Then ∃v1, . . . , vn ∈ V and m1, . . . ,mn ∈ N s.t.

1. Nm1v1, . . . ,Nv1, v1,Nmnvn, . . . ,Nvn, vn is a basis of V

2. Nm1+1v1 = · · · = Nmn+1vn = 0

p. 157 – Jordan form



Definition 2.256 (Jordan basis)

Let T ∈ L(V ). A Jordan basis for T is a basis of V s.t. with respect to this basis, T
has a block diagonal matrix

diag(A1, . . . ,Ap)

where each Aj is an upper-triangular matrix of the form

Aj =


λj 1 0

. . .
. . .
. . . 1

0 λj



Theorem 2.257 (Jordan form)

Let V be a complex vector space. If T ∈ L(V ), then ∃ a Jordan basis for T

p. 158 – Jordan form



An algorithm for finding the Jordan form

An algorithm to compute the Jordan canonical form of an n × n matrix A [MM82].

1. Compute the eigenvalues of A. Let λ1, . . . , λm be the distinct eigenvalues of A
with multiplicities n1, . . . , nm, respectively.

2. Compute n1 linearly independent generalized eigenvectors of A associated with λ1

as follows. Compute
(A− λ1En)

i

for i = 1, 2, . . . until the rank of (A− λ1En)
k is equal to the rank of

(A− λ1En)
k+1. Find a generalized eigenvector of rank k , say u. Define

ui = (A− λ1En)
k−1u, for i = 1, . . . , k . If k = n1, proceed to step 3. If k < n1,

find another linearly independent generalized eigenvector with rank k . If this is
not possible, try k − 1, and so forth, until n1 linearly independent generalized
eigenvectors are determined. Note that if ρ(A− λ1En) = r , then there are totally
(n − r) chains of generalized eigenvectors associated with λ1.

3. Repeat step 2 for λ2, . . . , λm.

p. 159 – Jordan form



1. Let u1, . . . , uk , . . . be the new basis. Observe that Thus in the new basis, A has
the desired representation

2. The similarity transformation which yields J = Q−1AQ is given by
Q = [u1, . . . , uk , . . .].

p. 160 – Jordan form
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