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Definition 3.1

Let A ∈ Mn(F). If λ ∈ C and v ̸= 0 ∈ Fn are such that Av = λv, then λ is an
eigenvalue of A associated to the eigenvector v. We also say that (λ, v) form an
eigenpair.

p. 1 – Eigenpairs



The eigenpair equation takes the form Av = λv, for v ̸= 0. Rewriting this,

Av = λv ⇐⇒ Av − λv = 0 ⇐⇒ Av − λIv = 0 ⇐⇒ (A− λI)v = 0

(We could also have obtained (λI− A)v = 0)

Hence, since we seek v ̸= 0, the homogeneous system (A− λI)v = 0 must have
non-trivial solutions; this implies that A− λI must be singular. So, if λ is an
eigenvalue, there must hold that det(A− λI) = 0

Remark 3.2

It is essential to remember that one seeks a nonzero vector v. Clearly, if v = 0, then
Av = λv for any λ, since this just means that 0 = 0

p. 2 – Eigenpairs



Often, we use normalised eigenvectors, ṽ = v/||v||, so that ∥ṽ∥ = 1

Also, for eigenvectors v that have all their components nonpositive, we typically use
−v, so that all components are nonnegative.

p. 3 – Eigenpairs



Definition 3.3 (Spectrum of a matrix)

The spectrum of A ∈ Mn is the set of all its eigenvalues and its denoted σ(A)

Theorem 3.4

0 ∈ σ(A) ⇐⇒ A is singular

Theorem 3.5

A ∈ Mn(F), λ, µ ∈ C given. Then λ ∈ σ(A) if and only if λ+ µ ∈ σ(A+ µI)

p. 4 – Eigenpairs
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Definition 3.6 (Characteristic polynomial/equation)

The characteristic polynomial of A ∈ Mn is

pA(z) = det(A− zI).

The characteristic equation of A is pA(z) = 0

By the Fundamental Theorem of Algebra, if pA(z) has degree n, then pA(z) has n
complex roots including multiplicity (or at most n roots if not counting multiplicity)

These roots are the eigenvalues of A and thus σ(A) has at most n elements in C

p. 5 – Characteristic equation and algebraic multiplicity



Theorem 3.7

Let A ∈ Mn. Then

tr(A) =
n∑

i=1

λi and det(A) =
n∏

i=1

λi

p. 6 – Characteristic equation and algebraic multiplicity



Theorem 3.8

Let p(T ) be a k-degree polynomial. If (λ, v) eigenpair of A ∈ Mn, then (p(λ), v) is an
eigenpair for p(A)

Definition 3.9 (Algebraic multiplicity of an eigenvalue)

Let A ∈ Mn. The (algebraic) multiplicity of λ ∈ σ(A) is its multiplicity as a zero of
the characteristic polynomial pA(λ)

p. 7 – Characteristic equation and algebraic multiplicity



Definition 3.10 (Spectral radius of a matrix)

The spectral radius of A ∈ Mn is

ρ(A) = max{|λ|, | λ ∈ σ(A)}

Proposition 3.11

For all λ ∈ σ(A), A ∈ Mn, λ lies in the closed bounded disk in C,

{z ∈ C : z | ≤ ρ(A)}

Theorem 3.12 (Every square matrix is close to nonsingular matrices)

Let A ∈ Mn, then there exists δ > 0 such that A+ εI is non-singular for 0 < |ε| < δ

p. 8 – Characteristic equation and algebraic multiplicity



Theorem 3.13

Let A ∈ Mn. Suppose that λ ∈ σ(A) has algebraic multiplicity k. Then

rank(A− λI) ≥ n − k

with equality when k = 1

p. 9 – Characteristic equation and algebraic multiplicity
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Definition 3.14 (Similarity/permutation similarity)

Let A, B ∈ Mn. We say that B is similar to A if there exists a nonsingular S ∈ Mn

such that
B = S−1AS

The transformation A 7→ S−1AS is a similarity transformation with similarity matrix
S . If S = P with P a permutation matrix and that B = PTAP, A and B are
permutation similar. In both cases, we denote “A similar to B” as A ∼ B

Theorem 3.15

Similarity is an equivalence relation, i.e., it is reflexive, symmetric, and transitive

p. 10 – Similarity



Theorem 3.16

Let A, B ∈ Mn. If A is similar to B, then they have the same characteristic
polynomial, i.e.,

pA(t) = pB(t)

Corollary 3.17

Let A, B ∈ Mn. If A ∼ B, then

1. A and B have the same eigenvalues

2. If B is a diagonal matrix, then the main diagonal entries are the eigenvalues of A

3. B = 0 ⇐⇒ A = 0

4. B = I ⇐⇒ A = I

p. 11 – Similarity



Definition 3.18

If A ∈ Mn. If A is similar to a diagonal matrix, then A is diagonalisable

p. 12 – Similarity



Theorem 3.19

Let A ∈ Mn.

1.

A ∼
(
Λ C
0 D

)
(1)

with Λ = diag(λ1, . . . , λk), D ∈ Mn−k , 1 ≤ k ≤ n ⇐⇒ k linear independent
vectors in Cn, each of which is an eigenvector of A

2. A diagonalisable ⇐⇒ there are n linearly independent eigenvectors of A

p. 13 – Similarity



Theorem 3.19 (continued)

3. If x (1), . . . , x (n) are linear independent eigenvectors of A, define

S = [x (1) . . . x (n)].

Then S−1AS is diagonal.

4. If

A ∼
(
Λ C
0 D

)
,

then the diagonal entries of Λ are eigenvalues of A, if A ∼ Λ = diag(λ1, . . . , λn),
then λ1, . . . , λn are the eigenvalues of A

p. 14 – Similarity



Lemma 3.20

Let λ1, . . . , λk , k ≥ 2 be k distinct eigenvalue of A. Let x (i) be an eigenvector
associated to λi , i = 1, . . . , k. Then x (1), . . . , x (k) are linear independent

Theorem 3.21

If A ∈ Mn has n distinct eigenvalues, then it is diagonalisable

Lemma 3.22

Let B =
d⊕

i=1
Bii . Then B is diagonalisable if and only if each of the Bii is diagonalisable

p. 15 – Similarity



Definition 3.23

Two matrices A and B in Mn are simultaneously diagonalisable if there exists a
matrix S ∈ Mn non-singular such that S−1AS and S−1BS are diagonal

Theorem 3.24

Let A, B ∈ Mn be diagonalisable. Then A and B commute if and only if A and B are
simultaneously diagonalisable

Remark 3.25

See Definition 1.3.16 and following for commuting families and simultaneously
diagonalisable families

p. 16 – Similarity
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Theorem 3.26

Let A ∈ Mn, then

1. σ(A) = σ(AT )

2. σ(A∗) = σ(A)

Definition 3.27

Take A ∈ Mn, for a given λ ∈ σ(A), the set of x ∈ Cn such that Ax = λx is the
eigenspace associated to λ. Every non-zero vector in the eigenspace associated to
λ ∈ σ(A) is an eigenvector of A associated to λ

p. 17 – Left and right eigenvectors, geometric multiplicity



Definition 3.28

Let A ∈ Mn and λ ∈ σ(A). The dimension of the eigensapce associated to λ is the
geometric multiplicity of λ. We say that λ is simple if its algebraic multiplicity is
one, it is semisimple if its algebraic and geometric multiplicities are equal

Proposition 3.29

Let λ be an eigenvalue of A. We have that the algebraic multiplicity is greater of equal
to the geometric multiplicity. Furthermore, if the algebraic multiplicity is one the the
geometric multiplicity is one as well

p. 18 – Left and right eigenvectors, geometric multiplicity



Definition 3.30

Let A ∈ Mn. We say that A is

▶ defective if the geometric multiplicity is less then the algebraic multiplicity for
some eigenvalue

▶ non-defective if for all eigenvalues, the geometric multiplicity equals the
algebraic multiplicity

▶ non-derogatory if for all eigenvalues, the geometric multiplicity is one

▶ derogatory otherwise

Theorem 3.31

Let A ∈ Mn

1. A is diagonalisable if and only if it is nondefective

2. A has distinct eigenvalues if and only if A is nonderogatory and non-defective

p. 19 – Left and right eigenvectors, geometric multiplicity



Remark 3.32

σ(A) = σ(AT ), however they might have different spaces associated to each eigenvalue

Definition 3.33 (Left wigenvector)

Let 0 ̸= y ∈ Cn, then we say that y is a left eigenvector of A ∈ Mn associated to
λ ∈ σ(A) if y∗A = λy∗

Theorem 3.34

Let 0 ̸= x ∈ Cn, A ∈ Mn. Assume that Ax = λx for some λ. If x∗A = µx∗, then λ = µ

p. 20 – Left and right eigenvectors, geometric multiplicity



Remark 3.35

y is a left eigenvector associated to λ is also a right eigenvector of A∗ associated to λ̄.
ȳ eigenvector of AT associated to λ

Let A ∈ Mn diagonalisable, S non-singular matrix, S−1AS = Λ. Partition
S = [x1, . . . , xn] and S−∗ = [y1, . . . , yn], where xi and yi are the right and left
eigenvectors associated to λi , respectively.

p. 21 – Left and right eigenvectors, geometric multiplicity



Theorem 3.36

Let A ∈ Mn, x, y ∈ Cn, λ, µ ∈ C. Assume Ax = λx and y∗A = µy∗

1. If λ ̸= µ, then y∗x = 0, then x ⊥ y

2. If λ = µ and y∗x ̸= 0, then there exists S non-singular of the form S = [xS1] such

that S−∗ = [y/(x∗y)Z1] and A = S

(
λ 0
0 B

)
S−1

Conversely, if A is similar to a block matrix of the form(
λ 0
0 B

)
,B ∈ Mn−1

then it has a non-orthogonal pair of left and right eigenvectors associated to λ

p. 22 – Left and right eigenvectors, geometric multiplicity



Theorem 3.37

Let A, B ∈ Mn, with A ∼ B with similarity matrix S. If (λ, x) is an eigenpair of B,
then (λ,Sx) is an eigenpair of A. If (λ, y) is a left eigenpair of B, then (λ,S−∗y) is a
left eigenpair of A

Theorem 3.38

Let A ∈ Mn, λ ∈ C, x, y ∈ Cn non-zero. Suppose that λ ∈ σ(A) and Ax = λx and
y∗A = λy∗

1. If λ has algebraic multiplicity 1, then y∗x ̸= 0

2. If λ has geometric multiplicity 1, then it has algebraic multiplicity 1 if and only if
y∗x ̸= 0.

p. 23 – Left and right eigenvectors, geometric multiplicity
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This section is based mostly on Varga’s book Geřsgorin and His Circles [Var10], which
is highly recommended reading if you enjoy matrix theory.
Let A ∈ Mn(C). Denote N = {1, . . . , n}. For i ∈ N, define

ri (A) =
∑

j∈N\{i}

|aij |

to be the ith deleted row sums of A. Assume that ri (A) = 0 if n = 1. Let

Γi (A) = {z ∈ C | |z − aii | ≤ ri (A)} i ∈ N

be the ith Gershgorin disk of A and

Γ(A) =
⋃
i∈N

Γi (A)

be the Gershgorin set of A. Γi and Γ are closed and bounded in C. Γi (A) is a disk
centred at aii and with radius ri (A), i ∈ N.

p. 24 – The Geřsgorin Theorem



Theorem 3.39 (Gershgorin, 1931)

For all A ∈ Mn(C) and for all λ ∈ σ(A), there exists k ∈ N such that

|λ− akk | ≤ rk(A)

i.e., λ ∈ Γk(A) and thus λ ∈ Γ(A). Since this is true for all λ, we have

σ(A) ⊆ Γ(A)

Remark 3.40

This also works with deleted column sums; indeed, just consider AT in this case.
However, this typically gives different disks

p. 25 – The Geřsgorin Theorem



Corollary 3.41

Let A ∈ Mn(C), then

ρ(A) = max{|λ|, λ ∈ σ(A)} ≤ max
i∈N

∑
j∈N

|aij |

Definition 3.42 (Strictly diagonally dominant matrix)

A ∈ Mn(C) is strictly diagonally dominant (SDD) if

∀i ∈ N, |aii | > ri (A)

Theorem 3.43

Let A ∈ Mn(C). If A SDD then A is nonsingular

p. 26 – The Geřsgorin Theorem



Let x ∈ Rn, x > 0, i.e., x = (x1, . . . , xn) is such that xi > 0 for all i. Let
X = diag(x) = diag(x1, . . . , xn) such that X is invertible. Let A ∈ Mn(C), then

X−1AX =

[
aijxj
xi

]
i ,j∈N

. Also X−1AX similar to A, so σ(X−1AX ) = σ(A).b

Let r xii (A) = ri (X
−1AX ) =

∑
j∈N\{i}

|aij |xj
xi

be the ith weighted rows sums of A. Let

Γr
x

i = {z ∈ C, |z − aii | ≤ r xi (A)}

and
Γr

x
=

⋃
i∈N

Γr
x

i

be the ith weighted Gershgorin disk and the weighted Gershgorin setof A,
respectively

p. 27 – The Geřsgorin Theorem



Corollary 3.44

For any matrix A ∈ Mn(C) and x ∈ Rn, x > 0,

σ(A) ⊂ Γr
x
(A)

Question: How many eigenvalues are contained in each “component”?
Assume n ≥ 2. Let S be a proper subset of N, i.e., ∅ ≠ S ⊊ N, with |S | its cardinality.

p. 28 – The Geřsgorin Theorem



Let A ∈ Mn(C), x > 0 in Rn and

F rx

S =
⋃
i∈S

Γr
x

i (A)

Then
Γr

x

S (A) ∩ Γr
x

N\S(A) = ∅

Theorem 3.45

For all A ∈ Mm(C), for all x ∈ Rn, x > 0 for which

Γr
x

S (A) ∩ Γr
x

N\S(A) = ∅

for some proper subset S of N, then Γr
x

S (A) contains exactly |S | eigenvalues of A

p. 29 – The Geřsgorin Theorem
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The Geřsgorin Theorem

Extensions of Geřsgorin disks using graph theory



We have seen that a matrix A that is SDD is nonsingular. Can we weaken this? What
if diagonal dominance is not strict, i.e., |aii | = ri (A) for some i ∈ N, |aii | ≥ ri (A) for all
i ∈ N. This is not sufficient for nonsingularity. If we take the matrix(

2 1
2 2

)
is DD and singular, however, (

1 0
0 0

)
is DD and singular.

p. 30 – Extensions of Geřsgorin disks using graph theory



Definition 3.46 (Reducible/irreducible matrices)

A ∈ Mn(C) is reducible if there exists a permutation matrix P ∈ Mn(R) and
r ∈ N = {1, . . . , n} such that

PAPT =

(
A11 A12

0 A22

)
where A11 ∈ Mr , A22 ∈ Mn−r . If there is no such P, then we say that A is irreducible

p. 31 – Extensions of Geřsgorin disks using graph theory



Remark 3.47

If A ∈ M1, then A irreducible if a11 ̸= 0

In the reducible case, we can continue the process and find a matrix P (permutation)
such that

PAPT =


R11 R12 . . . R1m

0 R22 . . . R2m

. . .

0 . . . Rnm


with the diagonal block Rii irreducible. This is the normal reduced form of A

p. 32 – Extensions of Geřsgorin disks using graph theory



Remark 3.48

Establishing irreducibility this way is hard. If no obvious permutation of rows and
columns gives rise to a matrix in reduced form, then deciding on irreducibility requires
to exhaust all possible permutation matrices to assert none exists. There are n!
permutation matrices of size n × n...

p. 33 – Extensions of Geřsgorin disks using graph theory



Let A ∈ Mn(C). Let {v1, . . . , vn} be n distinct points called vertices

For any (i , j), i , j ∈ N, for which aij ̸= 0, connect vj to vj using a directed arc −→vivj

If aii ̸= 0, there is a loop from vi to vj

The collection of all the directed arcs (and loops) obtained thusly is called the
directed graph (or digraph) associated to A and is denoted G(A)

p. 34 – Extensions of Geřsgorin disks using graph theory



A directed path in G(A) is a collection of directed arcs from vi to vj , i.e.,

−−→vi1vi2 , . . . ,
−−−−→vin−1vin

Along a directed path
n−1∏
k=1

aikaik+1
̸= 0

Remark 3.49

Given a graph G, the matrix A such that G(A) = G is the adjacency matrix of G

p. 35 – Extensions of Geřsgorin disks using graph theory



Definition 3.50

Let G be a digraph with vertex set {v1, . . . , vn}. G is strongly connected if for all
ordered pairs (vi , vj) of vertices, there is a directed path from vi to vj in G

Remark 3.51

If G(A) is strongly connected, then A cannot have a row with only zero off-diagonal
entries. Indeed, suppose G(A) is strongly connected. Without loss of generality,
assume row 1 in A has only zero off-diagonal entries. Then because of the way G(A) is
constructed, this means there are no directed arcs terminating in v1 and as a
consequence, there is no directed path terminating in v1, contradicting strong
connectedness of G(A).

p. 36 – Extensions of Geřsgorin disks using graph theory



Remark 3.52

G(A) is strongly connected if and only if for any permutation matrix P, we have that
G(PTAP) is strongly connected. [Because permutation is a relabelling of vertices.]

Theorem 3.53

Let A ∈ Mn(C). Then A is irreducible if and only G(A) is strongly connected

p. 37 – Extensions of Geřsgorin disks using graph theory



Definition 3.54 (Irreducibly diagonally dominant matrix)

A ∈ Mn(C) is irreducibly diagonally dominant (IDD) if A is irreducible, diagonally
dominant, i.e.,

∀i ∈ N, |aii | ≥ ri (A)

and there exists i ∈ N for which diagonal dominance is strict, i.e., there exists i such
that |aii | = ri (A).

Theorem 3.55 (Taussky 1949 [Tau49])

For any A ∈ Mn(C), A IDD ⇒ A non-singular

p. 38 – Extensions of Geřsgorin disks using graph theory



Another result of Taussky

Theorem 3.56

Let A ∈ Mn(C) be irreducible. Suppose λ ∈ σ(A) be such that ∀i ∈ N, λ ̸∈ Int Γi (A)
Then

∀i ∈ N, |λ− aii | = ri (A) (2)

In particular, if λ ∈ ∂Γ(A) [the boundary of Γ(A)] for some λ ∈ σ(A), then (2) holds
for λ

p. 39 – Extensions of Geřsgorin disks using graph theory
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