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Unitary matrices and QR factorisation



Definition 4.1

Let x1,...,x, € C". We say that x1,...,X, is an if x7x; = 0 for all
i # j. If, in addition, we have that x}x; = 1, then we say that the list is

Theorem 4.2

Every orthonormal list of vectors in C" is linearly independent

Remark 4.3

In Theorem 4.2, if we have “only” orthogonal vectors, we need to replace “list of
vectors” by ‘list of non-zero vectors” in the statement

p. 1 — Unitary matrices and QR factorisation



Definition 4.4

Let U € M,, we say that U is an if U*U = 1. Furthermore, we say
that U € M,(R) is a if UTU=1
Theorem 4.5

Let U e M,. TFAE:
1. U is unitary
U is non-singular and U* = U1
uur =1
U* is unitary
the columns of U are orthonormal

the rows of U are orthonormal

SUNCEROIE-SRRCORNIS

for all x € C" we have ||x|2 = || Ux||2

p. 2 — Unitary matrices and QR factorisation



Definition 4.6

A T:C"—C"isa if [[x|[2 = || Tx]|2 for
allx e C"
Corollary 4.7

Let U e M. U is a Euclidean isometry if and only if U is unitary

p. 3 — Unitary matrices and QR factorisation



Remark 4.8

Let U, V € M, are unitary matrices (respectively real orthogonal), then UV is unitary
(respectively real orthogonal )
Indeed, U,V unitary < UL, V™! exist and U1 = U*, V™1 = V*. Then

UV unitary < (UV)"UV =1
< VIUrUV =1
SI=1

Notation: GL(n,F) is the general linear group, where the elements are non-singular
matrices in M ,(IF)

p. 4 — Unitary matrices and QR factorisation



The set of unitary (respectively real orhogonal) matrices in M, forms a group, the
n x n unitary (respectively real orthogonal) subgroup of GL(n, C) (respectively
GL(n, R))

Suppose that we have a sequence of unitary matrices Uy, Us ..., € M,. Then there
exists a subsequence Uy, , Uy, ... such that the entries of Uy, converge to entries of a
unitary matrix as i — 0o

p. 5 — Unitary matrices and QR factorisation



Let U € M, be a unitary matrix partitioned as

Un U12>
U= ,
<U21 Ux
with U; € M. Then rankU> = rankU>1 and rankUsy = rankUy1 + n — 2k. If,
furthermore, U>1 = 0 and Uip = 0, then Uy and Usp are unitary

p. 6 — Unitary matrices and QR factorisation



Theorem 4.12 (QR factorisation)
Let Ae Mpm

1. If n> m, there is a Q € M, with orthogonormal columns and upper triangular
R € M, with non-negative main diaginal entries such that A = QR

2. If rankA = m then the factors Q and R in (1) are uniquely determined and the
main diagonal entries of R are all positive

3. If n=m, Then the factor Q in (1) is unitary

4. There is a unitary Q € M, and an upper triangular R € M, with nonnegative
diagonal entries such that A = QR

5. If A is real, then Q and R are in (1), (2), (3), and (4) may be taken to be real

p. 7 — Unitary matrices and QR factorisation



Schur's Form



For a unitary matrix U, U* = U, so the transformation A — U*AU is a
, provided that U is unitary. This is a

Definition 4.13 (Unitarily similar matrices)

Let A, B € M,. We say that A is to B if there exists U € M,
unitary such that
A=U"BU

If U can be taken real (i.e., if U is real orthogonal) than A is real orthogonal similar to
B (if A= UT BU)

p. 8 — Schur's Form



Remark 4.14

1. Unitary similarity is an equivalence relation
2. Unitary similarity implies similarity. However, the converse is not true

3. Similarity is a change of bases. Unitary similarity is a change of orthonormal bases

Definition 4.15 (Householder matrix)
Let 0 # w € C". The Householder matrix U, € M, is

Uy =T — 2(w*w) tww*

p.- 9 - Schur's Form



1. If||w]| =1 then U, =1 — 2ww*
2. Householder matrix are unitary and Hermitian, thus U; = U,,.

3. The eigenvalues of a Householder matrix are —1,1,...,1 and |U,| =1

p. 10 — Schur’s Form



Theorem 4.17
Let x,y € C" and assume that ||x||2 = ||ly||2 > 0
> Ify = e for some 6 € R [x,y are linearly dependent], define U(y,x) = el

» Otherwise, let ¢ € [0, 27r) be such that x*y = e'?|x*y| (taking ¢ = 0 if x*y = 0).
Let w = e'®x — y and define

U(y,x) = U,

where U, = T — 2(w*w)~tww* is Householder
U(y, x) unitary and essentially Hermitian

Uly, x)x =y

U(y,x)z Ly, whenz Ly

Ifx,y € R", then U(y,x) is real and U(y,x) =1 ify = x and
U(y,x) = Ux—y € Mu(R) otherwise

> @ =

p. 11 — Schur's Form



Remark 4.18

For all A€ M, U(y, x)*AU(y, x) = USAU,. This is called a Householder
transformation.

Theorem 4.19 (Schur’s Form)
Let A € M, with eigenvalues \1,...,\, in any prescribed order (including
multiplicities). Let x € C", ||x|| = 1, be such that Ax = A\1x

1. There exists U = [x uy ... up| € M, unitary such that U*AU = T, where T is
upper triangular such that tii = \;, i =1,...,n.

2. If A€ M,(R) and has real eigenvalues, then x can be chosen to be real and there
exists

Q=[xq2...qn € My(R)

real orthogonal and such that QT AQ = T, with T upper triangular with t; = A\
i=1,...,n.

p. 12 — Schur's Form



Let A € M, with eigenvalues A1, ..., \, (including mutiplicities). Then there esists
U € M, such that

A1k ... %k
U*AU = A2

0 *

0 o

The decomposition is not unique

p. 13— Schur’s Form



Let U e My, A, Be M,. Suppose A is unitarily similar to B, then

n
> laglP = byl
i’j

i,j=1

Let A € M, have eigenvalues \1,...,\,, T = UAU"* upper triangular. Then

n n
STInaP =" 1P =D IR < > Jay2 = trAAT
i=1

i,j=1 i<j i,j=1

with equality if T is diagonal.

p. 14 - Schur’s Form



Consequences of Schur's triangularisation theorem



Let A€ M, and pa(t) is the characteristic polynomial of A, then pa(A) = 0.

d
Assume A € M,, has eigenvalues A1, ..., \, with multiplicities ny,...,ng (> nj =n).
i=1

Then A is unitary similar to a d x d block upper triangular matrix T, where
Tij € Mnm;, Tij =0 if i > i, T upper triangular with diagonal A;, Tjj = A\l + R;, R;
d
strictly upper triangular, and A is similar to a matrix to @ T;; [standard similarity, not
i=1
unitary]

p. 15 — Consequences of Schur’s triangularisation theorem



(Every square matrix is almost diagonalisble) Let A € M,, for all £ > 0, there exists
A(e)[ajj(e)] € M with distinct eigenvalues such that

D laj—ay(e)P < e
¥

If Ae M, for all e > 0 there exists S(¢) € M, non-singular such that
STH(e)AS(e) = T(e),

where T () is upper triangular and |t(e)| < e for all i, j, with i < j.

p. 16 — Consequences of Schur’s triangularisation theorem



Lemma 4.28
Let (Ak)ken a sequence of matrices such that kIme Ak = A (entry-wise). Then there
exists ki < ko < ... and Uy, € M such that

i, Tp= U;,-Ak; Uy, upper triangular

. U+ lim Uy, exists and is unitary
1—00

2
3. T = U*AU upper triangular
4. Iim T; =T

i—00

p. 17 — Consequences of Schur’s triangularisation theorem



Theorem 4.29

Let (Ak)ken a sequence of matrices such that klim Ak = A (entry-wise). Then let
—00

AA) = [M(A) . AlA)]T

and
AMA) = [M(A) - A(A)]T

be presentations of the eigenvalues of A and Ai. Define
Sp{m | ® is a permutation of {1,...,n}}.
Then for all € > 0 there exists N(¢) € N\ {0} such that

min max{|)\ V(Ak) = Ni(A)|} <e Vk > N(e)

eSSy i=1

p. 18 — Consequences of Schur’s triangularisation theorem



Recall that if x,y are two (column) vectors in F”, then xy* is a rank 1 matrix in
M, (F). (Show it as an exercise.) The following is a famous result that quantifies the
effect on the spectrum of a matrix of a perturbation built thusly

Theorem 4.30 (Brauer)

Suppose A € M, has eigenvalues A\, \a, ..., \,. Let x be an eigenvector associated to
A. Then for every vector v € C", the eigenvalues of A+ x*v are X\ + v*x, Ap, ..., Ap.

p. 19 — Consequences of Schur’s triangularisation theorem



Normal Matrices



Definition 4.31 (Normal matrix)
A matrix Ae M, is if AA* = A*A

All unitary, Hermitian or skew-Hermitian and diagonal matrices are normal

p. 20 — Normal Matrices



Let A € M, with eigenvalues \1,...,\,. TFAE:
1. A is normal
2. A is unitary diagonalisable

3. Y laiil> =2 NP
1

i

4. A has n orthogonal eigenvectors

p. 21 — Normal Matrices



Let A € M, be a hermitian matrix with eigenvalues A1, ..., \,. Let
A =diag(A1,...,An)

Then
1. Ag,..., ApER
2. A is unitary diagonalisable
3. there exists U € M,, such that A = UANU*

p. 22— Normal Matrices



Jordan Canonical Form



Definition 4.34

A Jk(X) is a k x k upper triagular matrix of the form
A1 ...0
: Al
0 0 A

p. 23 — Jordan Canonical Form



Theorem 4.35
Let A € M, then there exists S € M, non-singular such that

Iny (A1) 0

A— St ST=S Jn(M)S!
0 J,,k()\k) i=1

Theorem 4.36

Let A € M, with real eigenvalues. Then there exists a basis of generalised eigenvectors
for R", and if {v1,...,v,} is a basis of generalised eigenvectors of R", then

P= [vl vn] is non-singular and A = D + N where P-1DP = diag(A1,. .., An)
and N=A—-D is ni/potent1 of order k < n, and D and N commute.

p. 24 — Jordan Canonical Form



Singular values and the Singular value decomposition



Definition 4.37

Let A be a Hermitian matrix in M,. We say that A is if for all
0#£xeC" x*Ax > 0. We say that A is if for all x € C",
x#£0, x*Ax >0

Theorem 4.38

Let A € M, be a Hermitian matrix. Then
1. forall x € C*, x*Ax € R
2. 0o(A)CR
3. §*AS is Hermitian for any S € M,

Theorem 4.39
Each eigenvalue of a positive definite matrix (respectively positive semidefinite matrix)
is positive (respectively nonnegative)

p. 25 - Singular values and the Singular value decomposition



Let A be a positive semidefinite (respectively positive definite) matrix. Then tr(A),
det(A), the principal minors of A are all nonnegative (respectively positive). Also,
tr(A) =0 if and only if A= 0

Let A € M,, be a positive semidefinite matrix and x € C". Then

xXAx =0 < Ax=0

Let A € M, be a positive semidefinite matrix. Then A is positive definite if and only if
A is nonsingular

p. 26— Singular values and the Singular value decomposition



Let B € M, be a Hermitian matrix, y € C", and a € R. Let
_(By

Then
A1(A) < A1(B) < A2(A) < --- < Ap(A) < An(B) < Any1(A)

p. 27 - Singular values and the Singular value decomposition



Definition 4.44

The singular values of a matrix A are the (nonnegative) square roots of the eigenvalues
of A*A

Remark 4.45

A*A is positive semidefinite

p. 28 — Singular values and the Singular value decomposition



Let A € M, with nonzero singular values o1, ...,0,. Then there exists U € M, and

V € M,, unitary such that
D, 0
A=U ( 0 0) V,
0

where <% 0) € Mp, and D, = diag(o1,...,0.)

p. 29 — Singular values and the Singular value decomposition



Theorem 4.47 (H & J)

Let A€ Mpm , g =min{m, n}. Assume that the rank of A is n. Then
1. 3V € M, and W € M, unitary matrices and X4 € My = diag(o1,...,04q) s.t.

012022"'Zar>020r+1:"'20q

and
AXW

where
21, m=n

(Zq O) € Mpym, m>n

h
<Oq)€/\/l,,m, n>m

2. The parameters o1, ...,0, are the positive square roots of the decreasingly
ordered eigenvalues of A*A

Y =

p. 30 — Singular values and the Singular value decomposition



Let A€ Mp,,. Then A, A, AT, and A* have the same singular values

Let A € M, with singular values o1, ...,0,, then
01...0, = det(A)

and
o+ ...+ 02 =tr(A*A)

p. 31 — Singular values and the Singular value decomposition



Theorem 4.50

Let A€ Mpm, g =minm,n, and o1 > --- > 04 nonincresingly ordered singular values

of A. Define
0 A
4= (4 5)
to be a Hermitian matrix. Then the ordered eigenvalues of A are

_JlS...<_Uq§0:...:0|n_m’§0q<...<01
N —

p. 32 — Singular values and the Singular value decomposition



Theorem 4.51 (An interlacing result)

Let A€ Mpm, g = min{m, n} and A be the matrix obtained from A by deleting one
row and one column. Let oy > --- > 04 and 61 > --- > G4 be the nonsingular ordered
singular values of A and A, respectively, where 64 = 0 if n > m and a column is
deleted or if n > m and a row is deleted. Then

O'1>U’\12 > 2 qZO"\q.

Theorem 4.52 (von Neumann)
Let A, B € Mpp, g =min{m, n}, 01(A) > --- > 04(A) and 01(B) > --- > 04(B) the

non-increasingly singular values of A and B, respectively. Then

q
Retr(AB*) < ) 0i(A)oi(B).
i=1

p. 33 — Singular values and the Singular value decomposition



Theorem 4.53

Let Ac Mpm, g =minm,n, and o1 > --- > 04 nonincreasingly ordered singular
values of A, and « = {1,...,q}. Then

q

Retr(A) < Z of

i=1

with equality if and only if Alc] (principal leading submatrix of A) is positive
semidefinite and A has no nonzero entries outside Ala].

p. 34 — Singular values and the Singular value decomposition



Properties of Singular Values



> Let Ac M5

1
01,02 = 5 <(tI’A*A) F \/(trA*A)2 — 4|detA|2>

» The nilpotent matrix
0 aw

an—1,m

has singular values 0, |a12], . .., [an—1,n|-

p. 35 — Properties of Singular Values



Theorem 4.54

Let A1, Ay, - -+ € Mum given (infinite) sequence with limg_, .o Ax = A (entrywise). Let
q = min(m, n). Let 01(A) > --- > 04(A) and 01(Ax) > --- > 04(Ak) be the
non-increasinly ordered singular values of A and Ay, respectively (for all k). Then

kILrgo U,'(Ak) = U,'(A)

p. 36 — Properties of Singular Values



Theorem 4.55
Let A€ M, where n =rank A

1. A= AT if and only if there exists U € M,, unitary and a nonegative diagonal
matrix ¥. such that A= UXUT. Then the diagonal entries of ¥. are the singular

values of A
2. If A= —AT then n is even and there exists U € M, unitary and positive real
scalars sy, ...,s. /5 such that
U 0 s DD 0 Sr/2 uT
—s1 0 —Sr/g 0
The non-zero singular values of A are s1,s1,...,5./2,5/2. Conversely, any matrix

of the above form is skew-symetric

p. 37 — Properties of Singular Values
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