MATH 4370/7370 - Linear Algebra and Matrix Analysis

Factorisations, canonical forms and decompositions

Julien Arino

Fall 2025

Outline

Unitary matrices and QR factorisation

Schur's Form

Consequences of Schur's triangularisation theorem

Normal Matrices

Jordan Canonical Form

Unitary matrices and QR factorisation

Schur's Form

Consequences of Schur's triangularisation theorem

Normal Matrices

Jordan Canonical Form

Let $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{C}^n$. We say that $\mathbf{x}_1, \dots, \mathbf{x}_k$ is an orthogonal list if $\mathbf{x}_i^* \mathbf{x}_j = 0$ for all $i \neq j$. If, in addition, we have that $\mathbf{x}_i^* \mathbf{x}_i = 1$, then we say that the list is orthonormal

Theorem 4.2

Every orthonormal list of vectors in \mathbb{C}^n is linearly independent

Remark 4.3

In Theorem 4.2, if we have "only" orthogonal vectors, we need to replace "list of vectors" by "list of non-zero vectors" in the statement

Let $U \in \mathcal{M}_n$, we say that U is an unitary matrix if $U^*U = \mathbb{I}$. Furthermore, we say that $U \in \mathcal{M}_n(\mathbb{R})$ is a (real) orthogonal matrix if $U^TU = \mathbb{I}$

Theorem 4.5

Let $U \in \mathcal{M}_n$. TFAE:

- 1. *U* is unitary
- 2. U is non-singular and $U^* = U^{-1}$
- 3. $UU^* = \mathbb{I}$
- 4. U* is unitary
- 5. the columns of U are orthonormal
- 6. the rows of U are orthonormal
- 7. for all $\mathbf{x} \in \mathbb{C}^n$ we have $\|\mathbf{x}\|_2 = \|U\mathbf{x}\|_2$

A linear transformation $T: \mathbb{C}^n \to \mathbb{C}^n$ is a Euclidean isometry if $\|\mathbf{x}\|_2 = \|T\mathbf{x}\|_2$ for all $\mathbf{x} \in \mathbb{C}^n$

Corollary 4.7

Let $U \in \mathcal{M}_n$. U is a Euclidean isometry if and only if U is unitary

Remark 4.8

Let $U, V \in \mathcal{M}_n$ are unitary matrices (respectively real orthogonal), then UV is unitary (respectively real orthogonal).

Indeed,
$$U, V$$
 unitary $\Leftrightarrow U^{-1}, V^{-1}$ exist and $U^{-1} = U^*, V^{-1} = V^*$. Then

$$UV \ unitary \Leftrightarrow (UV)^*UV = \mathbb{I}$$
$$\Leftrightarrow V^*U^*UV = \mathbb{I}$$
$$\Leftrightarrow \mathbb{I} = \mathbb{I}$$

Notation: $GL(n,\mathbb{F})$ is the general linear group, where the elements are non-singular matrices in $\mathcal{M}_n(\mathbb{F})$

The set of unitary (respectively real orthogonal) matrices in \mathcal{M}_n forms a group, the $n \times n$ unitary (respectively real orthogonal) subgroup of $GL(n, \mathbb{C})$ (respectively $GL(n, \mathbb{R})$)

Theorem 4.10 (Selection Principle)

Suppose that we have a sequence of unitary matrices $U_1, U_2 \ldots, \in \mathcal{M}_n$. Then there exists a subsequence $U_{k_1}, U_{k_2} \ldots$ such that the entries of U_{k_i} converge to entries of a unitary matrix as $i \to \infty$

Lemma 4.11

Let $U \in \mathcal{M}_n$ be a unitary matrix partitioned as

$$U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix},$$

with $U_{ii} \in \mathcal{M}_k$. Then $\operatorname{rank} U_{12} = \operatorname{rank} U_{21}$ and $\operatorname{rank} U_{22} = \operatorname{rank} U_{11} + n - 2k$. If, furthermore, $U_{21} = 0$ and $U_{12} = 0$, then U_{11} and U_{22} are unitary

Theorem 4.12 (QR factorisation)

Let $A \in \mathcal{M}_{nm}$

- 1. If $n \ge m$, there is a $Q \in \mathcal{M}_{nm}$ with orthogonormal columns and upper triangular $R \in \mathcal{M}_m$ with non-negative main diaginal entries such that A = QR
- 2. If rankA = m then the factors Q and R in (1) are uniquely determined and the main diagonal entries of R are all positive
- 3. If n = m, Then the factor Q in (1) is unitary
- 4. There is a unitary $Q \in \mathcal{M}_n$ and an upper triangular $R \in \mathcal{M}_{nm}$ with nonnegative diagonal entries such that A = QR
- 5. If A is real, then Q and R are in (1), (2), (3), and (4) may be taken to be real

Unitary matrices and QR factorisation

Schur's Form

Consequences of Schur's triangularisation theorem

Normal Matrices

Jordan Canonical Form

For a unitary matrix U, $U^* = U$, so the transformation $A \mapsto U^*AU$ is a similarity transformation, provided that U is unitary. This is a unitary similarity

Definition 4.13 (Unitarily similar matrices)

Let $A, B \in \mathcal{M}_n$. We say that A is unitarily similar to B if there exists $U \in \mathcal{M}_n$ unitary such that

$$A = U^*BU$$

If U can be taken real (i.e., if U is real orthogonal) than A is real orthogonal similar to B (if $A = U^T B U$)

Remark 4.14

- 1. Unitary similarity is an equivalence relation
- 2. Unitary similarity implies similarity. However, the converse is not true
- 3. Similarity is a change of bases. Unitary similarity is a change of orthonormal bases

Definition 4.15 (Householder matrix)

Let $0 \neq \omega \in \mathbb{C}^n$. The Householder matrix $U_{\omega} \in \mathcal{M}_n$ is

$$U_{\omega} = \mathbb{I} - 2(\omega^*\omega)^{-1}\omega\omega^*$$

Remark 4.16

- 1. If $\|\omega\| = 1$ then $U_{\omega} = \mathbb{I} 2\omega\omega^*$
- 2. Householder matrix are unitary and Hermitian, thus $U_{\omega}^{-1} = U_{\omega}$.
- 3. The eigenvalues of a Householder matrix are $-1,1,\ldots,1$ and $|U_{\omega}|=1$

Let $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ and assume that $\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2 > 0$

- If $\mathbf{y} = e^{i\theta}\mathbf{x}$ for some $\theta \in \mathbb{R}$ [x, y are linearly dependent], define $U(\mathbf{y}, \mathbf{x}) = e^{i\theta}\mathbb{I}$
- Otherwise, let $\phi \in [0, 2\pi)$ be such that $\mathbf{x}^*\mathbf{y} = e^{i\phi}|\mathbf{x}^*\mathbf{y}|$ (taking $\phi = 0$ if $\mathbf{x}^*\mathbf{y} = 0$). Let $\omega = e^{i\phi}\mathbf{x} \mathbf{y}$ and define

$$U(\mathbf{y},\mathbf{x})=e^{i\phi}U_{\omega}$$

where $U_{\omega} = \mathbb{I} - 2(\omega^*\omega)^{-1}\omega\omega^*$ is Householder

- 1. U(y,x) unitary and essentially Hermitian
- 2. U(y,x)x = y
- 3. $U(y, x)z \perp y$, when $z \perp y$
- 4. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, then $U(\mathbf{y}, \mathbf{x})$ is real and $U(\mathbf{y}, \mathbf{x}) = \mathbb{I}$ if $\mathbf{y} = \mathbf{x}$ and $U(\mathbf{y}, \mathbf{x}) = U_{\mathbf{x} \mathbf{y}} \in \mathcal{M}_n(\mathbb{R})$ otherwise

Remark 4.18

For all $A \in \mathcal{M}_n$, $U(y, x)^*AU(y, x) = U_{\omega}^*AU_{\omega}$. This is called a Householder transformation.

Theorem 4.19 (Schur's Form)

Let $A \in \mathcal{M}_n$ with eigenvalues $\lambda_1, \ldots, \lambda_n$ in any prescribed order (including multiplicities). Let $x \in \mathbb{C}^n$, ||x|| = 1, be such that $Ax = \lambda_1 x$

- 1. There exists $U = [x u_2 \dots u_n] \in \mathcal{M}_n$ unitary such that $U^*AU = T$, where T is upper triangular such that $t_i i = \lambda_i$, $i = 1, \dots, n$.
- 2. If $A \in \mathcal{M}_n(\mathbb{R})$ and has real eigenvalues, then x can be chosen to be real and there exists

$$Q = [x q_2 \dots q_n] \in \mathcal{M}_n(\mathbb{R})$$

real orthogonal and such that $Q^TAQ = T$, with T upper triangular with $t_{ii} = \lambda_1$ i = 1, ..., n.

Theorem 4.20 (Schur version 2)

Let $A \in \mathcal{M}_n$ with eigenvalues $\lambda_1, \ldots, \lambda_n$ (including mutiplicities). Then there esists $U \in \mathcal{M}_n$ such that

$$U^*AU = egin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & & dots \\ 0 & & \ddots & * \\ 0 & & & \lambda_n \end{pmatrix}$$

Remark 4.21

The decomposition is not unique

Let $U \in \mathcal{M}_n$, A, $B \in \mathcal{M}_n$. Suppose A is unitarily similar to B, then

$$\sum_{i,j=1}^{n} |a_{ij}|^2 = \sum_{i,j} |b_{ij}|^2$$

Corollary 4.23

Let $A \in \mathcal{M}_n$ have eigenvalues $\lambda_1, \ldots, \lambda_n$, $T = UAU^*$ upper triangular. Then

$$\sum_{i=1}^{n} |\lambda_1|^2 = \sum_{i,j=1}^{n} |a_{ij}|^2 - \sum_{i < j} |t_{ij}|^2 \le \sum_{i,j=1} |a_{ij}|^2 = \operatorname{tr} AA^*$$

with equality if T is diagonal.

Unitary matrices and QR factorisation

Schur's Form

Consequences of Schur's triangularisation theorem

Normal Matrices

Jordan Canonical Form

Theorem 4.24 (Cayley-Hamilton)

Let $A \in \mathcal{M}_n$ and $p_A(t)$ is the characteristic polynomial of A, then $p_A(A) = 0$.

Theorem 4.25 (Sylvester's theorem – pole placement)

Assume $A \in \mathcal{M}_n$ has eigenvalues $\lambda_1, \ldots, \lambda_n$ with multiplicities n_1, \ldots, n_d $(\sum_{i=1}^n n_i = n)$. Then A is unitary similar to a $d \times d$ block upper triangular matrix T, where $T_{i,j} \in \mathcal{M}_{n_i m_j}$, $T_{ij} = 0$ if i > i, T_{ii} upper triangular with diagonal λ_i , $T_{ii} = \lambda \mathbb{I} + R_i$, R_i strictly upper triangular, and A is similar to a matrix to $\bigoplus_{i=1}^d T_{ii}$ [standard similarity, not unitary]

(Every square matrix is almost diagonalisble) Let $A \in \mathcal{M}_n$ for all $\varepsilon > 0$, there exists $A(\varepsilon)[a_{ij}(\varepsilon)] \in \mathcal{M}$ with distinct eigenvalues such that

$$\sum_{i,j} |a_{ij} - a_{ij}(\varepsilon)|^2 < \varepsilon$$

Theorem 4.27

If $A \in \mathcal{M}_n$ for all $\varepsilon > 0$ there exists $S(\varepsilon) \in \mathcal{M}_n$ non-singular such that

$$S^{-1}(\varepsilon)AS(\varepsilon) = T(\varepsilon),$$

where $T(\varepsilon)$ is upper triangular and $|t_{ij}(\varepsilon)| < \varepsilon$ for all i, j, with i < j.

Lemma 4.28

Let $(A_k)_{k\in\mathbb{N}}$ a sequence of matrices such that $\lim_{k\to\infty}A_k=A$ (entry-wise). Then there

exists $k_1 < k_2 < \dots$ and $U_{k_i} \in \mathcal{M}$ such that

- 1. $T_i = U_{k_i}^* A_{k_i} U_{k_i}$ upper triangular
- 2. $U + \lim_{i \to \infty} U_{k_i}$ exists and is unitary
- 3. $T = U^*AU$ upper triangular
- 4. $\lim_{i\to\infty} T_i = T$

Let $(A_k)_{k\in\mathbb{N}}$ a sequence of matrices such that $\lim_{k\to\infty}A_k=A$ (entry-wise). Then let

$$\lambda(A) = \begin{bmatrix} \lambda_1(A) & \dots & \lambda_n(A) \end{bmatrix}^T$$

and

$$\lambda(A_k) = \begin{bmatrix} \lambda_1(A_k) & \dots & \lambda_n(A_k) \end{bmatrix}^T$$

be presentations of the eigenvalues of A and A_k . Define

$$S_n\{\pi \mid \pi \text{ is a permutation of } \{1,\ldots,n\}\}.$$

Then for all $\varepsilon > 0$ there exists $N(\varepsilon) \in \mathbb{N} \setminus \{0\}$ such that

$$\min_{\pi \in S_n} \max_{i=1,...} \{ |\lambda_{\pi(i)}(A_k) - \lambda_i(A)| \} \le \varepsilon \qquad \forall k \ge N(\varepsilon)$$

Recall that if \mathbf{x}, \mathbf{y} are two (column) vectors in \mathbb{F}^n , then $\mathbf{x}\mathbf{y}^*$ is a rank 1 matrix in $\mathcal{M}_n(\mathbb{F})$. (Show it as an exercise.) The following is a famous result that quantifies the effect on the spectrum of a matrix of a perturbation built thusly

Theorem 4.30 (Brauer)

Suppose $A \in \mathcal{M}_n$ has eigenvalues $\lambda, \lambda_2, \dots, \lambda_n$. Let **x** be an eigenvector associated to λ . Then for every vector $\mathbf{v} \in \mathbb{C}^n$, the eigenvalues of $A + \mathbf{x}^*\mathbf{v}$ are $\lambda + \mathbf{v}^*\mathbf{x}, \lambda_2, \dots, \lambda_n$.

Unitary matrices and QR factorisation

Schur's Forn

Consequences of Schur's triangularisation theorem

Normal Matrices

Jordan Canonical Form

Definition 4.31 (Normal matrix)

A matrix $A \in \mathcal{M}_n$ is **normal** if $AA^* = A^*A$

All unitary, Hermitian or skew-Hermitian and diagonal matrices are normal

Let $A \in \mathcal{M}_n$ with eigenvalues $\lambda_1, \ldots, \lambda_n$. TFAE:

- 1. A is normal
- 2. A is unitary diagonalisable
- 3. $\sum_{i,j} |a_{i,j}|^2 = \sum_{i} |\lambda_i|^2$
- 4. A has n orthogonal eigenvectors

Let $A \in \mathcal{M}_n$ be a hermitian matrix with eigenvalues $\lambda_1, \dots, \lambda_n$. Let

$$\Lambda = \mathsf{diag}(\lambda_1, \dots, \lambda_n)$$

Then

- 1. $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$
- 2. A is unitary diagonalisable
- 3. there exists $U \in \mathcal{M}_n$ such that $A = U\Lambda U^*$

Unitary matrices and QR factorisation

Schur's Forn

Consequences of Schur's triangularisation theorem

Normal Matrices

Jordan Canonical Form

A Jordan block $J_k(\lambda)$ is a $k \times k$ upper triangular matrix of the form

$$\begin{pmatrix} \lambda & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \lambda & 1 \\ 0 & \dots & 0 & \lambda \end{pmatrix}$$

Let $A \in \mathcal{M}_n$ then there exists $S \in \mathcal{M}_n$ non-singular such that

$$A=S^{-1}egin{bmatrix} J_{n_1}(\lambda_1) & 0 & 0 \ & \ddots & \ 0 & J_{n_k}(\lambda_k) \end{bmatrix}S^{-1}=Sigoplus_{i=1}^k J_{n_i}(\lambda_i)S^{-1}$$

Theorem 4.36

Let $A \in \mathcal{M}_n$ with real eigenvalues. Then there exists a basis of generalised eigenvectors for \mathbb{R}^n , and if $\{v_1, \ldots, v_n\}$ is a basis of generalised eigenvectors of \mathbb{R}^n , then $P = \begin{bmatrix} v_1 & \ldots & v_n \end{bmatrix}$ is non-singular and A = D + N where $P^{-1}DP = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ and N = A - D is nilpotent¹ of order k < n, and D and N commute.

p. 24 - Jordan Canonical Form

References I