MATH 4370/7370 - Linear Algebra and Matrix Analysis

Norms and Matrix Norms

Julien Arino

Fall 2023

University of Manitoba

Outline

Vector norms

Analytic properties of norms

Matrix Norms

Matrix norms and Singular values

Vector norms

Analytic properties of norms

Matrix Norms

Matrix norms and Singular values

Definition 5.1 (Norm)

Let V be a vector space over a field \mathbb{F}. A function $\|\cdot\|: V \rightarrow \mathbb{R}_{+}$is a norm if for all $\mathbf{x}, \mathbf{y} \in V$ and for all $c \in \mathbb{F}$

1. $\|\mathbf{x}\| \geq 0$
2. $\|\mathbf{x}\|=0 \Longleftrightarrow \mathbf{x}=\mathbf{0}$
3. $\|c \mathbf{x}\|=|c|\|\mathbf{x}\|$
4. $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$
[Nonnegativity] [Positivity] [Homogeneity]
[Triangle Inequality]

Remark 5.2

If we have 1, 3, and 4 but not 2, then we have a seminorm

Definition 5.3 (Inner product)

Let V be a vector space over \mathbb{F}. A function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{F}$ is an inner product if for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and all $c \in \mathbb{F}$

1. $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$
2. $\langle x, x\rangle=0 \Longleftrightarrow x=0$
3. $\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$
4. $\langle c \mathbf{x}, \mathbf{y}\rangle=c\langle\mathbf{x}, \mathbf{y}\rangle$
5. $\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle}$

Theorem 5.4 (Cauchy-Schwartz)

Let $\langle\cdot, \cdot\rangle$ be an inner product on a vector space V over \mathbb{F}, then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle|^{2} \leq\langle\mathbf{x}, \mathbf{x}\rangle\langle\mathbf{y}, \mathbf{y}\rangle
$$

Corollary 5.5

If $\langle\cdot, \cdot\rangle$ is an inner product on a real or complex vector space V, then $\|\cdot\|: V \rightarrow \mathbb{R}_{+}$ defined by $\|\mathbf{x}\|=\langle\mathbf{x}, \mathbf{x}\rangle^{1 / 2}$ is a norm on V

Remark 5.6

If $\langle\cdot, \cdot\rangle$ is a semi-inner product, then the resulting $\|\mathbf{x}\|=\langle\mathbf{x}, \mathbf{x}\rangle^{1 / 2}$ is a seminorm

Theorem 5.7

Consider the norm $\|\cdot\|$. Then $\|\cdot\|$ is derived from an inner product if and only if it satisfies the parallelogram identity

$$
\frac{1}{2}\left(\|\mathbf{x}+\mathbf{y}\|^{2}+\|\mathbf{x}-\mathbf{y}\|^{2}\right)=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}
$$

Theorem 5.8

If $\|\cdot\|$ is a nom on \mathbb{C}^{n} and a matrix $T \in \mathcal{M}_{n}$ which is non-singular. Then

$$
\|\mathbf{x}\|_{T}=\|T \mathbf{x}\|
$$

is also a norm on \mathbb{C}^{n}

Vector norms

Analytic properties of norms

Matrix Norms

Matrix norms and Singular values

Definition 5.9

Let V be a vector space over $\mathbb{F}=\mathbb{R}$ or \mathbb{C}. Take a norm $\|\cdot\|$ on V. The sequence $\left\{\mathbf{x}^{(k)}\right\}$ of vectors in V converges to $\mathbf{x} \in V$ with respect to the norm $\|\cdot\|$ if and only if $\left\|\mathbf{x}^{(k)}-\mathbf{x}\right\| \rightarrow 0$ as $k \rightarrow \infty$

We write $\lim _{k \rightarrow \infty} \mathbf{x}^{(k)}=\mathbf{x}$ with respect to $\|\cdot\|$ or

$$
\mathbf{x}^{(k)} \xrightarrow{\|\cdot\|} \mathbf{x}
$$

Theorem 5.10

Every (vector) norm in \mathbb{C}^{n} is uniformly continuous

Corollary 5.11

Let $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ be any two norms on a finite-dimensional vector space V. Then there exist $C_{m}, C_{r}>0$ such that

$$
C_{m}\|\mathbf{x}\|_{\alpha} \leq\|\mathbf{x}\|_{\beta} \leq C_{r}\|\mathbf{x}\|_{\alpha}, \forall \mathbf{x} \in V
$$

Corollary 5.12

Let $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ norms on a finite-dimensional vector space V over \mathbb{R} or $\mathbb{C},\left\{\mathbf{x}^{(k)}\right\}$ a given sequence in V, then

$$
\mathbf{x}^{(k)} \xrightarrow{\|\cdot\|_{\alpha}} \mathbf{x} \Longleftrightarrow \mathbf{x}^{(k)} \xrightarrow{\|\cdot\|_{\beta}} \mathbf{x}
$$

Definition 5.13 (Equivalent norms)

Two norms are equivalent if whenever a sequence $\left\{\mathbf{x}^{(k)}\right\}$ converges to \mathbf{x} with respect to one of the norm, it converges to x in the other norm

Theorem 5.14
 In finite-dimensional vector spaces, all norm are equivalent

Definition 5.15 (Dual norm)
Let f be a pre-norm on $V=\mathbb{R}^{n}$ or \mathbb{C}^{n}. The function

$$
f_{d}=(\mathbf{y}) \max _{f(\mathbf{x})=1} \operatorname{Re} \mathbf{y}^{*} \mathbf{x}
$$

is the dual norm of f

Remark 5.16

The dual norm is well defined. $\operatorname{Re} \mathbf{y}^{*} \mathbf{x}$ is a continuous function for all $\mathbf{y} \in V$ fixed. The set $\{f(\mathbf{x})=1\}$ is compact

Equivalent definition for dual norm: $f^{D}(\mathbf{y})=\max _{f(\mathbf{x})=1}\left|\mathbf{y}^{*} \mathbf{x}\right|$

Lemma 5.17 (Extension of Cauchy-Schwartz)

Let f be a prenorm on $V=\mathbb{R}^{n}$ or \mathbb{C}^{n} for all $\mathbf{x}, \mathbf{y} \in V$. Then

$$
\begin{aligned}
& \left|\mathbf{y}^{*} \mathbf{x}\right| \leq f(\mathbf{x}) f^{D}(\mathbf{y}) \\
& \left|\mathbf{y}^{*} \mathbf{x}\right| \leq f^{D}(\mathbf{x}) f(\mathbf{x})
\end{aligned}
$$

Remark 5.18

- The dual norm of a pre-norm is a norm
- The only norm that equals its dual norm is the Euclidean norm

Theorem 5.19

Let $\|\cdot\|$ be a norm on \mathbb{C}^{n} or \mathbb{R}^{n}, and $\|\cdot\|^{D}$ its dual, $c>0$ given. Then for all $\mathrm{x} \in V$, $\|\mathbf{x}\|=c\|\mathbf{x}\|^{d} \Longleftrightarrow\|\cdot\|=\sqrt{c}\|\cdot\|^{d}$. In particular, $\|\cdot\|=\|\cdot\|^{2} \Longleftrightarrow\|\cdot\|=\|\cdot\|_{2}$

Definition 5.20

Let $x \in \mathbb{F}^{n}$. Denote $|x|=\left[\left|x_{i}\right|\right]\left(|\cdot|\right.$ entry-wise), and write that $|x| \leq|y|$ if $\left|x_{i}\right| \leq\left|y_{i}\right|$ for all $i=1, \ldots, n$. Assume $\|\cdot\|$ is

1. monotone if $|\mathbf{x}| \leq|\mathbf{y}| \Longrightarrow\|\mathbf{x}\| \leq\|\mathbf{y}\|$ for all \mathbf{x}, \mathbf{y}
2. absloute if $\||\mathbf{x}|\|$ for all $\mathbf{x} \in V$

Theorem 5.21

Let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then

1. If $\|\cdot\|$ is absolute, then

$$
\|\mathbf{y}\|^{D}=\max _{\mathbf{x} \neq 0}=\frac{|\mathbf{y}|^{T}|\mathbf{x}|}{\|\mathbf{x}\|}
$$

for all $\mathbf{y} \in V$
2. If $\|\cdot\|$ absolute, then $\|\cdot\|^{D}$ is absolute and monotone
3. \| $\cdot \|$ absolute if and only if $\|\cdot\|$

Vector norms

Analytic properties of norms

Matrix Norms

Matrix norms and Singular values

Definition 5.22 (Matrix norm)

Let $\|\cdot\|$ be a function from $\mathcal{M}_{n} \rightarrow \mathbb{R}$. $\|\cdot\|$ is a matrix norm if for all $A, B \in \mathcal{M}_{n}$ and $c \in \mathbb{C}$, it satisfies the following

1. $\|A\| \geq 0$
2. $\|A\|=0 \Longleftrightarrow A=0$
3. $\|c A\|=|c|\|A\|$
4. $\|A+B\| \leq\|A\|+\|B\|$
[nonnegativity] [positivity]
[homogeneity]
[triangle inequality]
5. $\|A B\| \leq\|A\|\|B\|$

Remark 5.23

As with vector norms, if property 2 does not hold, |||||| is a matrix semi-norm

Remark 5.24

$\left\|A^{2}\right\|=\|A A\| \leq\|A\|^{2}$ [for any matrix norm].
If $A^{2}=A$, then

$$
\left\|A^{2}\right\|=\|A\| \leq\|A\|^{2} \Longrightarrow\|A\| \geq 1
$$

In particular, $\|I\| \geq 1$ for any matrix norm.
Assume that A is invertible, then $A A^{-1}=I$, thus

$$
\begin{align*}
& \|I\|=\left\|A A^{-1}\right\| \leq\|A\|\left\|A^{-1}\right\| \tag{1}\\
& \left\|A^{-1}\right\| \geq \frac{\|I\|}{\|A\|} \tag{2}
\end{align*}
$$

Definition 5.25 (Induced matrix norm)
Let $\|\cdot\|$ be a norm on \mathbb{C}^{n}. Define $\|\cdot\|$ on $\mathcal{M}_{n}(\mathbb{C})$ by

$$
\|A\|=\max _{\|\mathbf{x}\|=1}\|A \mathbf{x}\|
$$

Then $\|\cdot\| \|$ is the matrix norm induced by $\|\cdot\|$

Theorem 5.26

The function ||||| defined in Definition 5.25 has the following properties

1. $\| \mathbb{I I \|}=1$
2. $\|A \mathbf{y}\| \leq\|A\|\|\mathbf{y}\|$ for all $A \in \mathcal{M}_{n}(\mathbb{C})$ and all $\mathbf{y} \in \mathbb{C}^{n}$
3. $\left\|\left\|\left\|\|\right.\right.\right.$ is a matrix norm on $\mathcal{M}_{n}(\mathbb{C})$.
4. $\|A\|=\max _{\|x\|=\|y\|^{D}}\left|y^{*} A x\right|$

Definition 5.27 (Induced norm/Operator norm)
$\|\|\cdot\|$ defined from $\| \cdot \|$ by any of the previous methods is the matrix norm induced by
$\|\cdot\|$. It is also called the operator norm

Definition 5.28 (Unital norm)
A norm such that $\| \mathbb{I N}=1$ is unital

Remark 5.29

Every induced matrix norm is unital. Every induced norm is a matrix norm

Proposition 5.30

For all U, V unitary matrices, we have $\|U A V\|_{2}=\|A\|_{2}$

Theorem 5.31

Let $\|\cdot\| \|$ be a matrix norm in \mathcal{M}_{n} and let $S \in \mathcal{M}_{n}$ be nonsingular. Then for all $A \in \mathcal{M}_{n},\|A\|_{S}=\left\|S A S^{-1}\right\|$ is a matrix norm. Furthermore, if $\|\cdot\|$ on \mathbb{C}^{n}, then $\|\mathbf{x}\|_{S}=\|S \mathbf{x}\|$ induces $\|\cdot\|_{S}$ on \mathcal{M}_{n}

Theorem 5.32

Let $\|\cdot\|$ be a matrix norm on $\mathcal{M}_{n}, A \in \mathcal{M}_{n}$ and $\lambda \in \sigma(A)$. Then

1. $|\lambda| \leq \rho(A) \leq\|A\|$
2. If A is nonsingular, then

$$
\rho(A) \geq|\lambda| \geq \frac{1}{\left\|A^{-1}\right\|}
$$

Lemma 5.33

Let $A \in \mathcal{M}_{n}$. If there exists a norm $\|\cdot\|$ on \mathcal{M}_{n} such that $\|A\|<1$, then $\lim _{k \rightarrow \infty} A^{k}=0$ entry-wise

Remark 5.34

When $\|A\|<1$ for some norm, we say that A is convergent

Theorem 5.35

Let $A \in \mathcal{M}_{n}$, then

$$
\lim _{k \rightarrow \infty} A^{k}=0 \Longleftrightarrow \rho(A)<1
$$

Theorem 5.36 (Gelfand Formula)

Let $\|\cdot\|$ be a matrix norm on \mathcal{M}_{n}, let $A \in \mathcal{M}_{n}$. Then

$$
\rho(A)=\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k}
$$

Theorem 5.37

Let R be the radius of convergence of the (scalar) power series $\sum_{k=0}^{\infty} a_{k} z^{k}$ and $A \in \mathcal{M}_{n}$. Then the matrix power series $\sum_{k=1}^{\infty} a_{k} A^{k}$ converges if $\rho(A)<R$

Remark 5.38

The convergence condition for the matrix power series is "there exists a matrix norm $\|\cdot\|$ such that $\|A\|<R^{\prime \prime}$

Corollary 5.39

Let $A \in \mathcal{M}_{n}$ be nonsingular, if there $\|\cdot\|$ matrix norm such that $\|\mathbb{I}-A\| \leq 1$

Corollary 5.40

Let $A \in \mathcal{M}_{n}$ is such that $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$ for all $i=1, \ldots, n$. Then A is invertible

Vector norms

Analytic properties of norms

Matrix Norms

Matrix norms and Singular values

Let $V=\mathcal{M}_{m n}(\mathbb{C})$ with Frobenius inner product

$$
\langle A, B\rangle_{F}=\operatorname{tr}\left(B^{*} A\right)
$$

The norm derived from the Frobenius inner product is

$$
\|A\|_{2}=\left(\operatorname{tr}\left(A^{*} A\right)\right)^{1 / 2}
$$

is the $\ell-2$ norm (or Frobenius norm)

The spectral norm $\|\cdot\|$ defined on \mathcal{M}_{n} by

$$
\|A\|_{2}=\sigma_{1}(A)
$$

where $\sigma_{1}(A)$ is the largest singular value of A is induced by the $\ell-2$ norm on \mathbb{C}^{n}. Inded, from the singular value decomposition theorem, let

$$
A=V \Sigma W^{*}
$$

be a singular value decomposition of A, where V, W unitary, $\Sigma=\sigma\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and $\sigma_{1} \geq \cdots \geq \sigma_{n} \geq 0$ are the non-increasingly ordered singular values of A

From unitary invariance and monotonicity of the Euclidean norm, we say that

$$
\begin{aligned}
\max \|A x\|_{1} & =\max _{\|x\|_{1}}\left\|V \Sigma W^{*}\right\|_{2} \\
& =\max _{\|x\|_{2}}\left\|\Sigma W^{*} x\right\|_{2} \\
& =\max _{\|W y\|_{2}=1}\|\Sigma y\|_{2} \\
& =\max _{\|y\|_{2}}\|\Sigma y\|_{2} \\
& \leq \max _{\|y\|_{2}}\left\|\sigma_{1} y\right\|_{2} \\
& =\sigma_{1} \max _{\|y\|_{2}}\|y\|_{2} \\
& =\sigma_{1}
\end{aligned}
$$

Since $\|\Sigma y\|_{2}=\sigma_{1}$ for $y=e_{1}$,

$$
\max _{\|x\|_{2}=1}\|A x\|_{2}=\sigma_{1}(A)
$$

We could have used

$$
\begin{aligned}
\max _{\|x\|_{2}=1}=\|A x\|_{2}^{2} & =\max _{\|x\|_{2}=1} x^{*} A^{*} A X \\
& =\lambda_{\max }\left(A^{*} A\right) \\
& =\sigma_{1}(A)
\end{aligned}
$$

Remark 5.41

For all U, V unitary \mathcal{M}_{n} matrices, for all $A \in \mathcal{M}_{n},\|U A V\|_{2}=\|A\|_{2}$

References

