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Definition 5.1 (Norm)

Let V be a vector space over a field F. A function ∥ · ∥ : V → R+ is a norm if for all
x, y ∈ V and for all c ∈ F
1. ∥x∥ ≥ 0 [Nonnegativity]

2. ∥x∥ = 0 ⇐⇒ x = 0 [Positivity]

3. ∥cx∥ = |c | ∥x∥ [Homogeneity]

4. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ [Triangle Inequality]

Remark 5.2

If we have 1, 3, and 4 but not 2, then we have a seminorm
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Definition 5.3 (Inner product)

Let V be a vector space over F. A function ⟨·, ·⟩ : V × V → F is an inner product if
for all x, y, z ∈ V and all c ∈ F
1. ⟨x, x⟩ ≥ 0

2. ⟨x, x⟩ = 0 ⇐⇒ x = 0

3. ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩
4. ⟨cx, y⟩ = c⟨x, y⟩
5. ⟨x, y⟩ = ⟨y, x⟩

Theorem 5.4 (Cauchy-Schwartz)

Let ⟨·, ·⟩ be an inner product on a vector space V over F, then

|⟨x, y⟩|2 ≤ ⟨x, x⟩⟨y, y⟩
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Corollary 5.5

If ⟨·, ·⟩ is an inner product on a real or complex vector space V , then ∥ · ∥ : V → R+

defined by ∥x∥ = ⟨x, x⟩1/2 is a norm on V

Remark 5.6

If ⟨·, ·⟩ is a semi-inner product, then the resulting ∥x∥ = ⟨x, x⟩1/2 is a seminorm

p. 3 – Vector norms



Theorem 5.7

Consider the norm ∥ · ∥. Then ∥ · ∥ is derived from an inner product if and only if it
satisfies the parallelogram identity

1

2

(
∥x+ y∥2 + ∥x− y∥2

)
= ∥x∥2 + ∥y∥2

Theorem 5.8

If ∥ · ∥ is a nom on Cn and a matrix T ∈ Mn which is non-singular. Then

∥x∥T = ∥Tx∥

is also a norm on Cn
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Definition 5.9

Let V be a vector space over F = R or C. Take a norm ∥ · ∥ on V . The sequence
{x(k)} of vectors in V converges to x ∈ V with respect to the norm ∥ · ∥ if and only if
∥x(k) − x∥ → 0 as k → ∞

We write lim
k→∞

x(k) = x with respect to ∥ · ∥ or

x(k)
∥·∥−−→ x
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Theorem 5.10

Every (vector) norm in Cn is uniformly continuous

Corollary 5.11

Let ∥ · ∥α and ∥ · ∥β be any two norms on a finite-dimensional vector space V . Then
there exist Cm,Cr > 0 such that

Cm∥x∥α ≤ ∥x∥β ≤ Cr∥x∥α,∀x ∈ V
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Corollary 5.12

Let ∥ · ∥α and ∥ · ∥β norms on a finite-dimensional vector space V over R or C, {x(k)}
a given sequence in V , then

x(k)
∥·∥α−−→ x ⇐⇒ x(k)

∥·∥β−−→ x
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Definition 5.13 (Equivalent norms)

Two norms are equivalent if whenever a sequence {x(k)} converges to x with respect
to one of the norm, it converges to x in the other norm

Theorem 5.14

In finite-dimensional vector spaces, all norm are equivalent
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Definition 5.15 (Dual norm)

Let f be a pre-norm on V = Rn or Cn. The function

fd = (y) max
f (x)=1

Re y∗x

is the dual norm of f

Remark 5.16

The dual norm is well defined. Re y∗x is a continuous function for all y ∈ V fixed. The
set {f (x) = 1} is compact

Equivalent definition for dual norm: f D(y) = max
f (x)=1

|y∗x |
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Lemma 5.17 (Extension of Cauchy-Schwartz)

Let f be a prenorm on V = Rn or Cn for all x, y ∈ V . Then

|y∗x |≤ f (x)f D(y)

|y∗x| ≤ f D(x)f (x)

Remark 5.18

▶ The dual norm of a pre-norm is a norm

▶ The only norm that equals its dual norm is the Euclidean norm
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Theorem 5.19

Let ∥ · ∥ be a norm on Cn or Rn, and ∥ · ∥D its dual, c > 0 given. Then for all x ∈ V ,
∥x∥ = c∥x∥d ⇐⇒ ∥ · ∥ =

√
c∥ · ∥d . In particular, ∥ · ∥ = ∥ · ∥2 ⇐⇒ ∥ · ∥ = ∥ · ∥2

Definition 5.20

Let x ∈ Fn. Denote |x | = [|xi |] (| · | entry-wise), and write that |x | ≤ |y | if |xi | ≤ |yi |
for all i = 1, . . . , n. Assume ∥ · ∥ is

1. monotone if |x| ≤ |y| =⇒ ∥x∥ ≤ ∥y∥ for all x, y

2. absloute if ∥|x|∥ for all x ∈ V
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Theorem 5.21

Let ∥ · ∥ be a norm on Fn. Then

1. If ∥ · ∥ is absolute, then

∥y∥D = max
x̸=0

=
|y|T |x|
∥x∥

for all y ∈ V

2. If ∥ · ∥ absolute, then ∥ · ∥D is absolute and monotone

3. ∥ · ∥ absolute if and only if ∥ · ∥
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Definition 5.22 (Matrix norm)

Let |||·||| be a function from Mn → R. |||·||| is a matrix norm if for all A,B ∈ Mn and
c ∈ C, it satisfies the following

1. |||A||| ≥ 0 [nonnegativity]

2. |||A||| = 0 ⇐⇒ A = 0 [positivity]

3. |||cA||| = |c | |||A||| [homogeneity]

4. |||A+ B||| ≤ |||A|||+ |||B||| [triangle inequality]

5. |||AB||| ≤ |||A||||||B||| [submultiplicativity]

Remark 5.23

As with vector norms, if property 2 does not hold, |||·||| is a matrix semi-norm
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Remark 5.24

|||A2||| = |||AA||| ≤ |||A|||2 [for any matrix norm].
If A2 = A, then

|||A2||| = |||A||| ≤ |||A|||2 =⇒ |||A||| ≥ 1.

In particular, |||I ||| ≥ 1 for any matrix norm.
Assume that A is invertible, then AA−1 = I , thus

|||I ||| = |||AA−1||| ≤ |||A||||||A−1||| (1)

|||A−1||| ≥ |||I |||
|||A|||

(2)
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Definition 5.25 (Induced matrix norm)

Let ∥ · ∥ be a norm on Cn. Define |||·||| on Mn(C) by

|||A||| = max
∥x∥=1

∥Ax∥

Then |||·||| is the matrix norm induced by ∥ · ∥

Theorem 5.26

The function |||·||| defined in Definition 5.25 has the following properties

1. |||I||| = 1

2. ∥Ay∥ ≤ |||A|||∥y∥ for all A ∈ Mn(C) and all y ∈ Cn

3. |||·||| is a matrix norm on Mn(C).
4. |||A||| = max

∥x∥=∥y∥D
|y∗Ax|
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Definition 5.27 (Induced norm/Operator norm)

|||·||| defined from ∥ · ∥ by any of the previous methods is the matrix norm induced by
∥ · ∥. It is also called the operator norm

Definition 5.28 (Unital norm)

A norm such that |||I||| = 1 is unital

Remark 5.29

Every induced matrix norm is unital. Every induced norm is a matrix norm
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Proposition 5.30

For all U, V unitary matrices, we have |||UAV |||2 = |||A|||2

Theorem 5.31

Let |||·||| be a matrix norm in Mn and let S ∈ Mn be nonsingular. Then for all
A ∈ Mn, |||A|||S = |||SAS−1||| is a matrix norm. Furthermore, if |||·||| on Cn, then
∥x∥S = ∥Sx∥ induces |||·|||S on Mn

Theorem 5.32

Let |||·||| be a matrix norm on Mn, A ∈ Mn and λ ∈ σ(A). Then

1. |λ| ≤ ρ(A) ≤ |||A|||
2. If A is nonsingular, then

ρ(A) ≥ |λ| ≥ 1

|||A−1|||
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Lemma 5.33

Let A ∈ Mn. If there exists a norm |||·||| on Mn such that |||A||| < 1, then lim
k→∞

Ak = 0

entry-wise

Remark 5.34

When |||A||| < 1 for some norm, we say that A is convergent

Theorem 5.35

Let A ∈ Mn, then
lim
k→∞

Ak = 0 ⇐⇒ ρ(A) < 1
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Theorem 5.36 (Gelfand Formula)

Let |||·||| be a matrix norm on Mn, let A ∈ Mn. Then

ρ(A) = lim
k→∞

|||Ak |||1/k

Theorem 5.37

Let R be the radius of convergence of the (scalar) power series
∞∑
k=0

akz
k and A ∈ Mn.

Then the matrix power series
∞∑
k=1

akA
k converges if ρ(A) < R
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Remark 5.38

The convergence condition for the matrix power series is “there exists a matrix norm
|||·||| such that |||A||| < R”

Corollary 5.39

Let A ∈ Mn be nonsingular, if there |||·||| matrix norm such that |||I− A||| ≤ 1

Corollary 5.40

Let A ∈ Mn is such that |aii | >
∑
j ̸=i

|aij | for all i = 1, . . . , n. Then A is invertible
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Let V = Mmn(C) with Frobenius inner product

⟨A, B⟩F = tr(B∗A)

The norm derived from the Frobenius inner product is

∥A∥2 = (tr(A∗A))1/2

is the ℓ-2 norm (or Frobenius norm)
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The spectral norm |||·||| defined on Mn by

|||A|||2 = σ1(A),

where σ1(A) is the largest singular value of A is induced by the ℓ-2 norm on Cn.
Inded, from the singular value decomposition theorem, let

A = VΣW ∗

be a singular value decomposition of A, where V , W unitary, Σ = σ(σ1, . . . , σn) and
σ1 ≥ · · · ≥ σn ≥ 0 are the non-increasingly ordered singular values of A
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From unitary invariance and monotonicity of the Euclidean norm, we say that

max ∥Ax∥1 = max
∥x∥1

∥VΣW ∗∥2

= max
∥x∥2

∥ΣW ∗x∥2

= max
∥Wy∥2=1

∥Σy∥2

= max
∥y∥2

∥Σy∥2

≤ max
∥y∥2

∥σ1y∥2

= σ1max
∥y∥2

∥y∥2

= σ1

Since ∥Σy∥2 = σ1 for y = e1,

max
∥x∥2=1

∥Ax∥2 = σ1(A)
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We could have used

max
∥x∥2=1

= ∥Ax∥22 = max
∥x∥2=1

x∗A∗AX

= λmax(A
∗A)

= σ1(A)

Remark 5.41

For all U, V unitary Mn matrices, for all A ∈ Mn, |||UAV |||2 = |||A|||2
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