
Nonnegative matrices

Julien Arino

Fall 2023



Outline

Definitions and some preliminary results

The Perron-Frobenius theorem

Stochastic matrices

p. 1 –



Definitions and some preliminary results
Zero-nonzero structure of a matrix

The Perron-Frobenius theorem

Stochastic matrices



Definition 6.1 (Nonnegative/positive matrix)

A matrix A ∈ Mmn(R) is a nonnegative matrix if aij ≥ 0 for all i = 1, . . . ,m and
j = 1, . . . , n. We write A ≥ 0. A is a positive matrix if aij > 0 for all i = 1, . . . ,m
and j = 1, . . . , n. We write A > 0

Remark 6.2

In other references, you will see

▶ A ≥ 0 ⇐⇒ aij ≥ 0

▶ A > 0 ⇐⇒ A ≥ 0 and there exists (i , j), aij > 0 [positive]

▶ A ≫ 0 ⇐⇒ aij > 0 for all i , j [strongly positive]

I tend to favour the latter notation over the one used in these notes, but since the
former is more common in matrix theory, I use the notation of Definition 6.1 here
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Notation

Let A,B ∈ Mmn(R). Nonnegativity and positivity are used to define partial orders on
Mmn(R)
▶ A ≥ B ⇐⇒ A− B ≥ 0

▶ A > B ⇐⇒ A− B > 0

The same is used for vectors x, y ∈ Rn: x ≥ y and x > y if, respectively, x− y ≥ 0 and
x− y > 0. Note that the order is only partial: if A ≥ 0 and B ≥ 0, for instance, it is
not necessarily possible to decide on the ordering of A and B with respect to one
another
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Theorem 6.3

Let A and B be nonnegative matrices of appropriate sizes. Then A+ B and AB are
nonnegative. If A > 0 and B ≥ 0, B ̸= 0, then AB ≥ 0 and AB ̸= 0

Corollary 6.4

Let x, y ∈ Rn be such that x ≥ y and A ∈ Mmn be nonnegative. Then Ax ≥ Ay.
Assume additionally that x ≥ y, x ̸= y and A > 0. Then Ax > Ay
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Definition 6.5

Let P,Q ∈ Mnm(F). P and Q have the same zero-nonzero structure if for all i , j ,
pij ̸= 0 ⇐⇒ qij ̸= 0

Zero-nonzero structure defines an equivalence relation. Therefore, as with all
equivalence relations, one only needs one representative from the equivalence class.
One typical representative is defined using Boolean matrices
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Definition 6.6

A Boolean matrix is a matrix whose entries are Boolean {0, 1} and use Boolean
arithmetics:

▶ 0 + 0 = 0

▶ 1 + 0 = 0 + 1 = 1

▶ 1 + 1 = 1

▶ 0 · 1 = 1 and 1 = 0 = 0 · 0
▶ 1 · 1 = 1

Definition 6.7

Let A ∈ Mnm(F). Then AB denotes the Boolean representation of A, defined as
follows. If A = [aij ], then AB = [αij ] with

αij =

{
1 if aij ̸= 0

0 if aij = 0

Theorem 6.8

Let P, ],Q ∈ Mn be nonnegative matrices. The zero-nonzero structure of the sum of
product of P and Q is uniquely determined by the zero-nonzero structure of P and Q.
Also,

(P + B)B = PB + QB

(PQ)B = PBQB

(with Boolean addition and multiplication on the right).

Theorem 6.9

Let A ∈ Mn be a nonnegative matrix, k ∈ N \ {0}. Then the (i , j) entry in Ak is
nonzero if and only if there is a directed walk of length exactly k from i to j in G (A),
the digraph associated to A.

Remark 6.10

The walk can go thought the same vertex more than once.

Theorem 6.11

Let A ∈ Mn be a nonnegative and irreducible, α0, α1, . . . , αn−1 ∈ R+ \ {0}. Then

α0I+ α1A+ · · ·+ αn−1A
n−1 > 0.

In particular, (I+ A)n−1 > 0.

Definition 6.12

Let A ∈ Mn(F). The matrix m(A) = [|aij |] is the modulus of A.

Lemma 6.13

A, B ∈ Mn(F), A potentially complex. Suppose m(A) < B. Then ρ(A) ≤ ρ(B). In
particular, ρ(A) ≤ ρ(m(A)).

Lemma 6.14

Let A ∈ Mn be a nonnegative matrix, 0 ̸= z ∈ Rn. If ∃b ∈ R such that Az > bz , then
ρ(A) > b.

Note that the latter result also holds true if > is replaced by ≥. See [?, Theorem
8.3.2] and a proof there in the latter case. Note, however, that the proof of [?,
Theorem 8.3.2] uses Perron’s Lemma. So it is better for our purpose here to use the
proof in [Fie08], where this result is Lemma 4.1.6.
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Theorem 6.15 (Perron-Frobenius)

Let A ≥ 0 ∈ Mn be irreducible. Then the spectral radius ρ(A) = max{|λ|, λ ∈ σ(A)}
is an eigenvalue of A. It is simple (has algebraic multiplicity 1), positive and is
associated with a positive eigenvector. Furthermore, there is no nonnegative
eigenvector associated to any other eigenvalue of A

Remark 6.16

We often say that ρ(A) is the Perron root of A; the corresponding eigenvector is the
Perron vector of A
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Lemma 6.17 (Perron)

Let Mn ∋ A > 0. Then ρ(A) is a positive eigenvalue of A and there is only one linearly
independent eigenvector associated to ρ(A), which can be taken to be positive

Lemma 6.18

Let α1, . . . , αn ∈ R∗
+ and v1, . . . , vn ∈ C. Then∣∣∣∣∣

n∑
i=1

αivi

∣∣∣∣∣ ≤
n∑

i=1

α|vi | (1)

with equality if and only if there exists η ∈ C, |η| = 1, such that ηvi ≥ 0 for all
i = 1, . . . , n
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Theorem 6.19

Let A ∈ Mn and f (x) a polynomial. Then

σ(f (A)) = {f (λ1), . . . , f (λn), λi ∈ σ(A)}

If we have g(λi ) ̸= 0 for λi ∈ σ(A), for some polynomial g , then the matrix g(A) is
non-singular and

σ
(
f (A)g(A)−1

)
=

{
f (λ1)

g(λ1)
, . . . ,

f (λn)

g(λn)
, λi ∈ σ(A)

}
If x ̸= 0 eigenvector of A associated to λ ∈ σ(A), then x is also an eigenvector of f (A)
and f (A)g(A)−1 associated to eigenvalue f (λ) and f (λ)/g(λ), respectively
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Lemma 6.20 (Schur’s lemma)

Let A ∈ Mn and λ ∈ σ(A). Then λ is simple if and only if both the following
conditions are statisfied:

1. There exists only one linear independent eigenvector of A associated to λ, say u,
and thus only one linear independent eigenvector of AT associated to λ, say v

2. Vectors u and v in (1) satisfy vTu ̸= 0
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Definition 6.21

Let Mn(R) ∋ A ≥ 0. We say that A is primitive (with primitivity index k ∈ N∗
+) if

there exists k ∈ N∗
+ such that

Ak > 0

with k the smallest integer for which this is true. We say that a matrix is imprimitive
if it is not primitive

Remark 6.22

Primitivity implies irreducibility. The converse is not true
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Theorem 6.23

A sufficient condition for primitivity is irreducibility with at least one positive diagonal
entry

Here d is the index of imprimitivity (i.e., the number of eigenvalues that have the same
modulus as λp = ρ(A)). If d = 1, then A is primitive. We have that d = gcd of all the
lengths of closed walks in G (A)

Theorem 6.24

Let A ∈ Mn be a non-negative matrix. If A is primitive, then Ak > 0 for some
0 < k ≤ (n − 1)nn

p. 11 – The Perron-Frobenius theorem



Theorem 6.25

Let A ≥ 0 primtive. Suppose the shortest simple directed cycle in G (A) has length s,
then primitivity index is ≤ n + s(n − 1)

Theorem 6.26

Let A ∈ Mn be a nonnegative matrix. A is primitive if and only if An2−2n+2 > 0

Theorem 6.27

Let A ∈ Mn be a nonnegative irreducible matrix . Suppose that A has d positive
entries on the diagonal. Then the primitivity index is ≤ 2n − d − 1
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Theorem 6.28

Let A ≥ 0 in Mn. Then there exists 0 ̸= v ≥ 0 such that Av = ρ(A)v
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Let us restate the Perron-Frobenius theorem, taking into account the different cases.
The classification in the following result is inspired by the presentation in [?].

Theorem 6.29

Let Mn ∋ A ≥ 0. Denote λP the Perron root of A, i.e., λP = ρ(A), vP and wP the
corresponding right and left Perron vectors of A, respectively. Denote d the index of
imprimitivity of A (with d = 1 when A is primitive) and λj ∈ σ(A) the spectrum of A,
with j = 2, . . . , n unless otherwise specified (assuming λ1 = λP). Then conclusions of
the Perron-Frobenius Theorem can be summarised as follows.
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Nonnegative

Reducible

▶ λP ≥ 0

▶ wP ≥ 0

▶ vP ≥ 0

▶ λP ≥ |λj |

Irreducible

Imprimitive

▶ λP > 0

▶ wP > 0

▶ vP > 0

▶ λP = |λj |,
j = 2, . . . , d

▶ λP > |λj |,
j > d

Primitive

▶ λP > 0

▶ wP > 0

▶ vP > 0

▶ λP > |λj |,
j ̸= P
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Theorem 6.30

Let A ∈ Mn be a nonnegative irreducible matrix and ∈ N+. Then the following ar
eequivalent:

1. there exists exactly h distinct eigenvalues such that |λ| = ρ(A).

2. there exists P a permutation matrix such that

PAPT =



0 A12 0 . . . 0
... A23

. . .
...

...
. . . 0

... Ah−1,h

Ah1 0 . . . . . . 0


where the diagonal blocks are square, and there does not exists other permutation
matrix giving less than h horizontal blocks.

3. the greatest common divisor of the lengths of all cycles in G (A) is h.

4. h is the maximal positive integer k such that

σ(e2πi/kA) = σ(A)
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Corollary 6.31

Let A ∈ Mn, A ≥ 0 irreducible with exactly h distinct eigenvalues of modulus ρ(A).
Then, we can consider this eigenvalues as points in the complex plan, the eigenvalues
are the vertices of a regular polygon of h sides with centre at the origin and are of the
vertices being ρ(A)

ρ(A)

h = 1

ρ(A)
••

h = 2

ρ(A)

•

•

•

h = 3
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Remark 6.32

For Fiedler, a primitive matrix is defined as an irreducible nonnegative matrix such that
h = 1
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Theorem 6.33

Let A ≥ 0 in Mn, n ≥ 2. TFAE

1. An = 0

2. there exists N ∋ k > 0 such that Ak = 0

3. G (A) acyclic

4. ∃P, permutation matrix, .t. PAPT is upper-triangular with zeros on main diagonal

5. ρ(A) = 0

Theorem 6.34

Let A ≥ 0 be a nonnegative matrix in Mn. Assume that A has a positive eigenvector.
Then that eigenvector is the Perron vector and is associated to ρ(A)
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Definition 6.35 (Stochastic matrix)

The matrix A ∈ Mn is stochastic if

- A ≥ 0 [The matrix is nonnegative]

- A1l = 1l, 1l = (1, . . . , 1)T [All rows sum to 1]

Equivalently, the matrix is stochastic if its column sums all equal 1

Definition 6.36

The matrix is row-stochastic or column-stochastic, respectively, if the rows or
columns sum to 1. The terms right stochastic and left stochastic are also used. If
both rows and columns sum to 1, then the matrix is doubly stochastic
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Theorem 6.37

Let A ∈ Mn be stochastic. Then ρ(A) = 1

Theorem 6.38

Let P ∈ Mn, P ≥ 0. Assume that P has a positive eigenvector u and that ρ(P) > 0.
Then there exists D, diagonal matrix with diag(D) > 0, and k > 0, k ∈ R such that

A = kDPD−1

is stochastic, with k = ρ(P)−1
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Theorem 6.39

Let A, B ∈ Mn be stochastic. Then AB is stochastic

Theorem 6.40

Let A be a primitive stochastic. Then Ak → 1lvT , k → ∞, where 1lvT has rank 1 and v
is the (left) eigenvector of AT associated to ρ(A) = 1 and normalised so that vT1l = 1

Remark 6.41

This is a result that is used to compute the limit of a regular Markov chain
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Definition 6.42

The matrix A ∈ Mn, A ≥ 0 is doubly stochastic if A1l = 1l and 1lTA = 1lT

Remark 6.43

Here ρ(A) = 1 is associated to 1l for A and for AT
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Consider E the Euclidean space. A set K of points in E is convex if A1, A2 points in
K , λ1, λ2 ∈ R+ such that λ1 + λ2 = 1, then

λ1A1 + λ2A2 ∈ K .

A convex polyhedron K is the set of all points of the form

N∑
i=1

λiAi

where Ai are points in E and λ1 ∈ R+

Let A = [aij ] ∈ Mn(R). Consider this matrix as a point in E with coordinates
[a11, a12, . . . , ann] (dimE = n2)
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Theorem 6.44

Let A ∈ Mn, A = [aij ], if A is doubly stochastic, then this forms an (n − 1)2

dimensional subspace of Ẽ = Rn2

Theorem 6.45 (Birkhoff)

In the space Ẽ = Rn2 , the set of doubly stochastic matrices of order n is a convex
polyhedron in E (the subspace of stochastic matrices). The vertices of the polyhedron
are the points corresponding to all the permutation matrices
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