MATH 4370/7370 - Linear Algebra and Matrix Analysis

Essentially nonnegative matrices and M -matrices

Julien Arino

Fall 2023

University ofManitoba

Outline

Essentially nonnegative matrices
Z-matrices
Class K_{0}

M-matrices

Essentially nonnegative matrices

Z-matrices

Class K_{0}

M-matrices

The Perron-Frobenius can be applied not only to nonnegative matrices, but also to matrices that are essentially nonnegative, in the sense that they are nonnegative except perhaps along the main diagonal

Definition 7.1

A matrix $A \in \mathcal{M}_{n}$ is essentially nonegative (or quasi-positive) if there exist $\alpha \in \mathbb{R}$ such that $A+\alpha \mathbb{I} \geq 0$

Remark 7.2

An essentially nonnegative matrix A has non-negative off-diagonal entries. The sign of the diagonal entries is not relevant

Remark 7.3

Irreducibility of a matrix is not affected by the nature of its diagonal entries. Indeed, consider an essentially nonnegative matrix A. The existence of a directed path in $G(A)$ does not depend on the existence of "self-loops". The same is not true of primitive matrices, where the presence of negative entries on the main diagonal has an influence on the values of A^{k} and thus ultimately, on the capacity to find k such that $A^{k}>0$

So we can apply the "weak" versions of the Perron-Frobenius Theorem (the imprimitive cases in Theorem ??) to $A+\alpha \mathbb{I}$, which is a nonnegative matrix (potentially irreducible). One important ingredient is a result that was proved as Theorem ??. Namely, that perturbations of the entire diagonal by the same scalar lead to a shift of the spectrum; this is summarised as

$$
\sigma(A+\alpha \mathbb{I})=\left\{\lambda_{1}+\alpha, \ldots, \lambda_{n}+\alpha, \quad \lambda_{i} \in \sigma(A)\right\}
$$

Definition 7.4 (Spectral abscissa)

Let $A \in \mathcal{M}_{n}$. The spectral abscissa of $A, s(A)$, is

$$
s(A)=\max \{\operatorname{Re}(\lambda), \lambda \in \sigma(A)\}
$$

Theorem 7.5

Let $A \in \mathcal{M}_{n}(\mathbb{R})$ be essentially nonnegative. Then $s(A)$ is an eigenvalue of A and is associated to a nonnegative eigenvector. If, additionally, A is irreducible, then $s(A)$ is simple and is associated to a positive eigenvector

Essentially nonnegative matrices

Z-matrices

Class K_{0}

M-matrices

Definition 7.6

A matrix is of class Z_{n} if it is in $\mathcal{M}_{n}(\mathbb{R})$ and such that $a_{i, j} \leq 0, i \neq j, i, j=1, \ldots, n$

$$
Z_{n}=\left\{A \in \mathcal{M}_{n}: a_{i, j} \leq 0, i \neq j\right\}
$$

We also say that $A \in Z_{n}$ has the Z-sign pattern

Theorem 7.7 ([Fie08])

Let $A \in Z_{n}$. TFAE

1. There is a nonnegative vector x such that $A x>0$
2. There is a positive vector x such that $A x>0$
3. There is a diagonal matrix $\operatorname{diag}(D)>0$ such that the entries in $A D=\left[w_{i k}\right]$ are such that

$$
w_{i i}>\sum_{k \neq i}\left|w_{i k}\right| \forall i
$$

4. For any $B \in Z_{n}$ such that $A \geq A$, then B is nonsingular
5. Every real eigenvalue of any principal submatrix of A is positive.
6. All principal minors of A are positive

Theorem 7.7 (Continued)

7. For all $k=1, \ldots, n$, the sum of all principal minors is positive
8. Every real eigenvalue of A is positive
9. There exists a matrix $C \geq 0$ and a number $k>\rho(A)$ such that $A=k \mathbb{I}-C$
10. There exists a splitting $A=P-Q$ of the matrix A such that $P^{-1} \geq 0, Q \geq 0$, and $\rho\left(P^{-1} Q<1\right)$
11. A is nonsingular and $A^{-1} \geq 0$
12. ...

18 The real part of any eigenvalue of A is positive

Notation: $A \in Z_{n}$ such that any (and therefore all) of these properties holds is a matrix of class K (or a nonsingular M-matrix).

Theorem 7.8

Let $A \in Z=\bigcap_{i=1, \ldots} Z_{n}$ be symmetric. Then $A \in K$ if and only if A is positive define.

Essentially nonnegative matrices

Z-matrices

Class K_{0}

M-matrices

Theorem 7.9

Let $A \in Z_{n}$. TFAE

1. $A+\varepsilon \mathbb{I} \in K$ for all $\varepsilon>0$
2. Every real eigenvalue of a principal submatrix of A is nonnegative
3. All principal minors of A are nonnegative
4. The sum of all principal minors of order $k=1, \ldots, n$ is nonnegative
5. Every real eigenvaue of A is nonegative
6. There exists $C \geq 0$ and $k \geq \rho(C)$ such that $A=k \mathbb{I}-C$
7. Every eigenvalue of A has nonnegative real part
$A \in Z_{n}$ such that any of these properties holds is a matrix of class K_{0}

Theorem 7.10

Let $A \in Z_{n}$. Assume $A \in K_{0}$. Then $A \in K \Longleftrightarrow A$ nonsingular

Essentially nonnegative matrices

Z-matrices

Class K_{0}

M-matrices

Definition 7.11 (Signature matrix)
A signature matrix is is a diagonal matrix S with diagonal entries ± 1

Theorem 7.12 ([BP94])

Let $A \in \mathcal{M}_{n}$. Then for each fixed letter \mathcal{C} representing one of the following conditions, conditions \mathcal{C}_{i} are equivalent for each i. Moreover, letting \mathcal{C} then represent any of the equivalent conditions \mathcal{C}_{i}, the following implication tree holds:

If $A \in Z_{n}$, each of the following conditions is equivalent to the statement " A is a nonsingular M-matrix"

Theorem 7.12 (Continued)

$\left(A_{1}\right)$ All the principal minors of A are positive
$\left(A_{2}\right)$ Every real eigenvalue of each principal submatrix of A is positive
$\left(A_{3}\right)$ For each $\mathbf{x} \neq \mathbf{0}$ there exists a positive diagonal matrix D such that

$$
\mathbf{x}^{T} A D \mathbf{x}>0
$$

$\left(A_{4}\right)$ For each $\mathbf{x} \neq \mathbf{0}$ there exists a nonnegative diagonal matrix D such that

$$
\mathbf{x}^{T} A D \mathbf{x}>0
$$

$\left(A_{5}\right) A$ does not reverse the sign of any vector; that is, if $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{y}=A \mathbf{x}$, then for some subscript $i, x_{i} y_{i}>0$
$\left(A_{6}\right)$ For each signature matrix S, there exists an $\mathbf{x} \gg \mathbf{0}$ such that

$$
S A S \mathbf{x} \gg \mathbf{0}
$$

Theorem 7.12 (Continued)
$\left(B_{7}\right)$ The sum of all the $k \times k$ principal minors of A is positive for $k=1, \ldots, n$
$\left(C_{8}\right) A$ is nonsingular and all the principal minors of A are nonnegative
$\left(C_{9}\right) A$ is nonsingular and every real eigenvalue of each principal submatrix of A is nonnegative
$\left(C_{10}\right) A$ is nonsingular and $A+D$ is nonsingular for each positive diagonal matrix D
$\left(C_{11}\right) A+D$ is nonsingular for each nonnegative diagonal matrix D
$\left(C_{12}\right) A$ is nonsingular and for each $\mathbf{x} \neq \mathbf{0}$ there exists a nonnegative diagonal matrix D such that

$$
\mathbf{x}^{T} D \mathbf{x} \neq 0 \quad \text { and } \quad \mathbf{x}^{T} A D \mathbf{x}>0
$$

$\left(C_{13}\right) A$ is nonsingular and if $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{y}=A \mathbf{x}$, then for some subscript $i, x_{i} \neq 0$ and $x_{i} y_{i} \geq 0$.
$\left(C_{14}\right) A$ is nonsingular and for each signature matrix S there exists a vector $\mathbf{x}>\mathbf{0}$ such that

$$
S A S \mathbf{x} \geq \mathbf{0}
$$

Theorem 7.12 (Continued)

$\left(D_{15}\right) A+\alpha \mathbb{I}$ is nonsingular for each $\alpha \geq 0$
$\left(D_{16}\right)$ Every real eigenvalue of A is positive
(E_{17}) All the leading principal minors of A are positive
$\left(E_{18}\right)$ There exists lower and upper triangular matrices L and U, respectively, with positive diagonals such that

$$
A=L U
$$

$\left(F_{19}\right)$ There exists a permutation matrix P such that PAP ${ }^{T}$ satisfies $\left(E_{17}\right)$ or $\left(E_{18}\right)$

Theorem 7.12 (Continued)

$\left(G_{20}\right) A$ is positive stable; that is, the real part of each eigenvalue of A is positive $\left(G_{21}\right)$ There exists a symmetric positive definite matrix W such that

$$
A W+W A^{T}
$$

is positive definite.
$\left(G_{22}\right) A+\mathbb{I}$ is nonsingular and

$$
G=(A+\mathbb{I})^{-1}(A-\mathbb{I})
$$

is convergent

Theorem 7.12 (Continued)

$\left(G_{23}\right) A+\mathbb{I}$ is nonsingular and for

$$
G=(A+\mathbb{I})^{-1}(A-\mathbb{I})
$$

there exists a positive definite matrix W such that

$$
W-G^{T} W G
$$

is positive definite

Theorem 7.12 (Continued)

$\left(H_{24}\right)$ There exists a positive diagonal matrix D such that

$$
A D+D A^{T}
$$

is positive definite
$\left(H_{25}\right)$ The exists a positive diagonal matrix E such that for $B=E^{-1} A E$, the matrix

$$
\left(B+B^{T}\right) / 2
$$

is positive definite
$\left(H_{26}\right)$ For each positive semidefinite matrix Q, the matrix $Q A$ has a positive diagonal element

Theorem 7.12 (Continued)

$\left(I_{27}\right) A$ is semipositive; that is, there exists $\mathbf{x} \gg \mathbf{0}$ with $A \mathbf{x} \gg \mathbf{0}$
(128) There exists $\mathbf{x}>\mathbf{0}$ with $A \mathbf{x} \gg \mathbf{0}$
$\left(I_{29}\right)$ There exists a positive diagonal matrix D such that $A D$ has all positive row sums
$\left(J_{30}\right)$ There exists $\mathbf{x} \gg \mathbf{0}$ with $A \mathbf{x}>\mathbf{0}$ and

$$
\sum_{j=1}^{n} a_{i j} x_{j}>0, \quad i=1, \ldots, n
$$

$\left(K_{31}\right)$ There exists a permutation matrix P such that $P A P^{T}$ satisfies $\left(J_{30}\right)$

Theorem 7.12 (Continued)

$\left(L_{32}\right)$ There exists $\mathbf{x} \gg \mathbf{0}$ with $\mathbf{y}=A \mathbf{x}>\mathbf{0}$ such that if $y_{i_{0}}=0$, then there exists a sequence of indices i_{1}, \ldots, i_{r} with $a_{i_{j-1} i_{j}} \neq 0, j=1, \ldots, r$ and with $y_{i_{r}} \neq 0$
$\left(L_{33}\right)$ There exists $\mathbf{x} \gg \mathbf{0}$ with $\mathbf{y}=A \mathbf{x}>\mathbf{0}$ such that the matrix $\hat{A}=\left[\hat{a}_{i j}\right]$ defined by

$$
\hat{a}_{i j}= \begin{cases}1 & \text { if } a_{i j} \neq 0 \text { or } y_{i} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

is irreducible

Theorem 7.12 (Continued)

$\left(M_{34}\right)$ There exists $\mathbf{x} \gg \mathbf{0}$ such that for each signature matrix S

$$
S A S \mathbf{x} \gg \mathbf{0}
$$

$\left(M_{35}\right) A$ has all positive diagonal elements and there exists a positive diagonal matrix D such that $A D$ is strictly diagonally dominant; that is

$$
a_{i i} d_{i}>\sum_{j \neq i}\left|a_{i j} d_{j}\right|, \quad i=1, \ldots, n
$$

$\left(M_{36}\right) A$ has all positive diagonal elements and there exists a positive diagonal matrix E such that $E^{-1} A E$ is strictly diagonally dominant

Theorem 7.12 (Continued)

$\left(M_{37}\right)$ A has all positive diagonal elements and there exists a positive diagonal matrix D such that $A D$ is lower semistrictly diagonally dominant; that is,

$$
a_{i i} d_{i} \geq \sum_{j \neq i}\left|a_{i j} d_{j}\right|, \quad i=1, \ldots, n
$$

and

$$
a_{i i} d_{i}>\sum_{j=1}^{i-1}\left|a_{i j} d_{j}\right|, \quad i=2, \ldots, n .
$$

Theorem 7.12 (Continued)

$\left(N_{38}\right) A$ is inverse-positive; that is, A^{-1} exists and

$$
A^{-1} \geq 0
$$

$\left(N_{39}\right) A$ is monotone; that is,

$$
A x \geq 0 \Rightarrow x \geq 0 \quad \text { for all } x \in \mathbb{R}^{n}
$$

$\left(N_{40}\right)$ There exists inverse-positive matrices B_{1} and B_{2} such that

$$
B_{1} \leq A \leq B_{2}
$$

(N_{41}) There exists an inverse-positive matrix $B \geq A$ such that $I-B^{-1} A$ is convergent $\left(N_{42}\right)$ There exists an inverse-positive matrix $B \geq A$ and A satisfies (I_{27}), (I28) and (I_{29})

Theorem 7.12 (Continued)

$\left(N_{43}\right)$ There exists an inverse-positive matrix $B \geq A$ and a nonsingular M-matrix C such that

$$
A=B C
$$

$\left(N_{44}\right)$ There exists an inverse-positive matrix B and a nonsingular M-matrix C such that

$$
A=B C
$$

$\left(N_{45}\right) A$ has a convergent regular splitting; that is, A has a representation

$$
A=M-N, \quad M^{-1} \geq 0, \quad N \geq 0
$$

where $M^{-1} N$ is convergent
$\left(N_{46}\right) A$ has a convergent weak regular splitting; that is, A has a representation

$$
A=M-N, \quad M^{-1} \geq 0, \quad M^{-1} N \geq 0
$$

where $M^{-1} N$ is convergent
$\left(O_{47}\right)$ Each weak regular splitting of A is convergent
$\left(P_{48}\right)$ Every regular splitting of A is convergent
$\left(Q_{49}\right)$ For each $\mathbf{y} \geq \mathbf{0}$ the set

$$
S_{\mathbf{y}}=\left\{\mathbf{x} \geq \mathbf{0}: A^{T} \mathbf{x} \leq \mathbf{y}\right\}
$$

is bounded and A is nonsingular
$\left(Q_{50}\right) S_{0}=\{\mathbf{0}\}$; that is, the inequalities $A^{b} x \leq \mathbf{0}$ and $\mathbf{x} \geq \mathbf{0}$ have only the trivial solution $\mathbf{x}=\mathbf{0}$ and A is nonsingular

References I

囯 Abraham Berman and Robert J Plemmons, Nonnegative matrices in the mathematical sciences, SIAM, 1994.

R- Miroslav Fiedler, Special matrices and their applications in numerical mathematics, Dover, 2008.

