MATH 4370/7370 - Linear Algebra and Matrix Analysis

Essentially nonnegative matrices and M-matrices

Julien Arino

Fall 2025

Outline

Essentially nonnegative matrices

Z-matrices

Class K₀

M-matrices

p. 1 -

Essentially nonnegative matrices

Z-matrices

Class K_0

M-matrices

The Perron-Frobenius can be applied not only to nonnegative matrices, but also to matrices that are *essentially nonnegative*, in the sense that they are nonnegative except perhaps along the main diagonal

Definition 7.1

A matrix $A \in \mathcal{M}_n$ is essentially nonegative (or quasi-positive) if there exist $\alpha \in \mathbb{R}$ such that $A + \alpha \mathbb{I} > 0$

Remark 7.2

An essentially nonnegative matrix A has non-negative off-diagonal entries. The sign of the diagonal entries is not relevant

Remark 7.3

Irreducibility of a matrix is not affected by the nature of its diagonal entries. Indeed, consider an essentially nonnegative matrix A. The existence of a directed path in G(A) does not depend on the existence of "self-loops". The same is not true of primitive matrices, where the presence of negative entries on the main diagonal has an influence on the values of A^k and thus ultimately, on the capacity to find k such that $A^k > 0$

So we can apply the "weak" versions of the Perron-Frobenius Theorem (the imprimitive cases in Theorem $\ref{eq:constraint}$) to $A+\alpha\mathbb{I}$, which is a nonnegative matrix (potentially irreducible). One important ingredient is a result that was proved as Theorem $\ref{eq:constraint}$? Namely, that perturbations of the entire diagonal by the same scalar lead to a shift of the spectrum; this is summarised as

$$\sigma(A + \alpha \mathbb{I}) = \{\lambda_1 + \alpha, \dots, \lambda_n + \alpha, \lambda_i \in \sigma(A)\}\$$

Definition 7.4 (Spectral abscissa)

Let $A \in \mathcal{M}_n$. The spectral abscissa of A, s(A), is

$$s(A) = \max\{\text{Re}(\lambda), \lambda \in \sigma(A)\}$$

Theorem 7.5

Let $A \in \mathcal{M}_n(\mathbb{R})$ be essentially nonnegative. Then s(A) is an eigenvalue of A and is associated to a nonnegative eigenvector. If, additionally, A is irreducible, then s(A) is simple and is associated to a positive eigenvector

p. 4 - Essentially nonnegative matrices

Essentially nonnegative matrices

Z-matrices

Class K_0

M-matrice:

Definition 7.6

A matrix is of class Z_n if it is in $\mathcal{M}_n(\mathbb{R})$ and such that $a_{i,j} \leq 0$, $i \neq j$, $i,j = 1,\ldots,n$

$$Z_n = \{A \in \mathcal{M}_n : a_{i,j} \le 0, i \ne j\}$$

We also say that $A \in \mathbb{Z}_n$ has the \mathbb{Z} -sign pattern

Theorem 7.7 ([?])

Let $A \in Z_n$. TFAE

- 1. There is a nonnegative vector x such that Ax > 0
- 2. There is a positive vector x such that Ax > 0
- 3. There is a diagonal matrix diag(D) > 0 such that the entries in $AD = [w_{ik}]$ are such that

$$w_{ii} > \sum_{k \neq i} |w_{ik}| \forall i$$

- 4. For any $B \in Z_n$ such that $A \ge A$, then B is nonsingular
- 5. Every real eigenvalue of any principal submatrix of A is positive.
- 6. All principal minors of A are positive

- 7. For all k = 1, ..., n, the sum of all principal minors is positive
- 8. Every real eigenvalue of A is positive
- 9. There exists a matrix $C \geq 0$ and a number $k > \rho(A)$ such that $A = k\mathbb{I} C$
- 10. There exists a splitting A = P Q of the matrix A such that $P^{-1} \ge 0$, $Q \ge 0$, and $\rho(P^{-1}Q < 1)$
- 11. A is nonsingular and $A^{-1} > 0$
- 12. ...
- 18 The real part of any eigenvalue of A is positive

Notation: $A \in \mathbb{Z}_n$ such that any (and therefore all) of these properties holds is a matrix of class K (or a nonsingular M-matrix).

Theorem 7.8

Let $A \in Z = \bigcap_{i=1,...} Z_n$ be symmetric. Then $A \in K$ if and only if A is positive define.

Essentially nonnegative matrices

Z-matrices

Class K₀

M-matrice:

Theorem 7.9

Let $A \in Z_n$. TFAE

- 1. $A + \varepsilon \mathbb{I} \in K$ for all $\varepsilon > 0$
- 2. Every real eigenvalue of a principal submatrix of A is nonnegative
- 3. All principal minors of A are nonnegative
- 4. The sum of all principal minors of order k = 1, ..., n is nonnegative
- 5. Every real eigenvaue of A is nonegative
- 6. There exists $C \geq 0$ and $k \geq \rho(C)$ such that $A = k\mathbb{I} C$
- 7. Every eigenvalue of A has nonnegative real part

 $A \in Z_n$ such that any of these properties holds is a matrix of class K_0

Theorem 7.10

Let $A \in Z_n$. Assume $A \in K_0$. Then $A \in K \iff A$ nonsingular

Essentially nonnegative matrices

Z-matrices

Class K₀

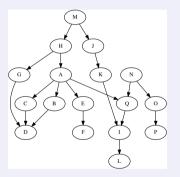
M-matrices

Definition 7.11 (Signature matrix)

A signature matrix is is a diagonal matrix S with diagonal entries ± 1

Theorem 7.12 ([?])

Let $A \in \mathcal{M}_n$. Then for each fixed letter \mathcal{C} representing one of the following conditions, conditions \mathcal{C}_i are equivalent for each i. Moreover, letting \mathcal{C} then represent any of the equivalent conditions \mathcal{C}_i , the following implication tree holds:



If $A \in Z_n$, each of the following conditions is equivalent to the statement "A is a nonsingular M-matrix"

- (A_1) All the principal minors of A are positive
- (A_2) Every real eigenvalue of each principal submatrix of A is positive
- (A₃) For each $\mathbf{x} \neq \mathbf{0}$ there exists a positive diagonal matrix D such that

$$\mathbf{x}^T A D \mathbf{x} > 0$$

 (A_4) For each $\mathbf{x} \neq \mathbf{0}$ there exists a nonnegative diagonal matrix D such that

$$\mathbf{x}^T A D \mathbf{x} > 0$$

- (A₅) A does not reverse the sign of any vector; that is, if $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{y} = A\mathbf{x}$, then for some subscript i, $x_iy_i > 0$
- (A_6) For each signature matrix S, there exists an $x \gg 0$ such that

$$SASx \gg 0$$

- (B_7) The sum of all the $k \times k$ principal minors of A is positive for k = 1, ..., n
- (C_8) A is nonsingular and all the principal minors of A are nonnegative
- (C₉) A is nonsingular and every real eigenvalue of each principal submatrix of A is nonnegative
- (C_{10}) A is nonsingular and A+D is nonsingular for each positive diagonal matrix D
- (C_{11}) A + D is nonsingular for each nonnegative diagonal matrix D
- (C_{12}) A is nonsingular and for each $\mathbf{x} \neq \mathbf{0}$ there exists a nonnegative diagonal matrix D such that

$$\mathbf{x}^T D \mathbf{x} \neq 0$$
 and $\mathbf{x}^T A D \mathbf{x} > 0$

- (C_{13}) A is nonsingular and if $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{y} = A\mathbf{x}$, then for some subscript $i, x_i \neq 0$ and $x_i y_i \geq 0$.
- (C_{14}) A is nonsingular and for each signature matrix S there exists a vector $\mathbf{x} > \mathbf{0}$ such that

- (D_{15}) $A + \alpha \mathbb{I}$ is nonsingular for each $\alpha \geq 0$
- (D_{16}) Every real eigenvalue of A is positive
- (E_{17}) All the leading principal minors of A are positive
- (E_{18}) There exists lower and upper triangular matrices L and U, respectively, with positive diagonals such that

$$A = LU$$

 (F_{19}) There exists a permutation matrix P such that PAP^T satisfies (E_{17}) or (E_{18})

- (G_{20}) A is positive stable; that is, the real part of each eigenvalue of A is positive
- (G₂₁) There exists a symmetric positive definite matrix W such that

$$AW + WA^T$$

is positive definite.

 (G_{22}) $A + \mathbb{I}$ is nonsingular and

$$G = (A + \mathbb{I})^{-1}(A - \mathbb{I})$$

is convergent

 (G_{23}) $A + \mathbb{I}$ is nonsingular and for

$$G=(A+\mathbb{I})^{-1}(A-\mathbb{I})$$

there exists a positive definite matrix W such that

$$W - G^T WG$$

is positive definite

 (H_{24}) There exists a positive diagonal matrix D such that

$$AD + DA^T$$

is positive definite

 (H_{25}) The exists a positive diagonal matrix E such that for $B = E^{-1}AE$, the matrix

$$(B + B^{T})/2$$

is positive definite

(H₂₆) For each positive semidefinite matrix Q, the matrix QA has a positive diagonal element

- (l_{27}) A is semipositive; that is, there exists $x \gg 0$ with $Ax \gg 0$
- (I_{28}) There exists $\mathbf{x} > \mathbf{0}$ with $A\mathbf{x} \gg \mathbf{0}$
- (I_{29}) There exists a positive diagonal matrix D such that AD has all positive row sums
- (J_{30}) There exists $\mathbf{x} \gg \mathbf{0}$ with $A\mathbf{x} > \mathbf{0}$ and

$$\sum_{i=1}^{n} a_{ij} x_j > 0, \quad i = 1, \dots, n$$

 (K_{31}) There exists a permutation matrix P such that PAP^T satisfies (J_{30})

(L₃₂) There exists $\mathbf{x} \gg \mathbf{0}$ with $\mathbf{y} = A\mathbf{x} > \mathbf{0}$ such that if $y_{i_0} = 0$, then there exists a sequence of indices i_1, \ldots, i_r with $a_{i_{r-1}i_j} \neq 0$, $j = 1, \ldots, r$ and with $y_{i_r} \neq 0$

(L₃₃) There exists $\mathbf{x}\gg\mathbf{0}$ with $\mathbf{y}=A\mathbf{x}>\mathbf{0}$ such that the matrix $\hat{A}=[\hat{a}_{ij}]$ defined by

$$\hat{a}_{ij} = egin{cases} 1 & \textit{if } a_{ij}
eq 0 \textit{ or } y_i
eq 0 \\ 0 & \textit{otherwise} \end{cases}$$

is irreducible

 (M_{34}) There exists $\mathbf{x} \gg \mathbf{0}$ such that for each signature matrix S

$$SASx \gg 0$$

 (M_{35}) A has all positive diagonal elements and there exists a positive diagonal matrix D such that AD is strictly diagonally dominant; that is

$$|a_{ii}d_i| > \sum_{i \neq i} |a_{ij}d_j|, \qquad i = 1, \ldots, n$$

 (M_{36}) A has all positive diagonal elements and there exists a positive diagonal matrix E such that $E^{-1}AE$ is strictly diagonally dominant

 (M_{37}) A has all positive diagonal elements and there exists a positive diagonal matrix D such that AD is lower semistrictly diagonally dominant; that is,

$$a_{ii}d_i \geq \sum_{j \neq i} |a_{ij}d_j|, \qquad i = 1, \dots, n$$

and

$$a_{ii}d_i > \sum_{i=1}^{i-1} |a_{ij}d_j|, \qquad i=2,\ldots,n.$$

 (N_{38}) A is inverse-positive; that is, A^{-1} exists and

$$A^{-1} \ge 0$$

 (N_{39}) A is monotone; that is,

$$Ax \ge 0 \Rightarrow x \ge 0$$
 for all $x \in \mathbb{R}^n$

 (N_{40}) There exists inverse-positive matrices B_1 and B_2 such that

$$B_1 \leq A \leq B_2$$

- (N_{41}) There exists an inverse-positive matrix $B \ge A$ such that $I B^{-1}A$ is convergent
- (N_{42}) There exists an inverse-positive matrix $B \ge A$ and A satisfies (I_{27}), (I_{28}) and (I_{29})

(N_{43}) There exists an inverse-positive matrix $B \ge A$ and a nonsingular M-matrix C such that

$$A = BC$$

 (N_{44}) There exists an inverse-positive matrix B and a nonsingular M-matrix C such that

$$A = BC$$

 (N_{45}) A has a convergent regular splitting; that is, A has a representation

$$A = M - N, \quad M^{-1} \ge 0, \quad N \ge 0$$

where $M^{-1}N$ is convergent

 (N_{46}) A has a convergent weak regular splitting; that is, A has a representation

$$A = M - N$$
, $M^{-1} \ge 0$, $M^{-1}N \ge 0$

where $M^{-1}N$ is convergent

- (O_{47}) Each weak regular splitting of A is convergent
- (P_{48}) Every regular splitting of A is convergent
- (Q_{49}) For each $y \ge 0$ the set

$$S_{\mathbf{v}} = \{\mathbf{x} \geq \mathbf{0} : A^T \mathbf{x} \leq \mathbf{y}\}$$

is bounded and A is nonsingular

 (Q_{50}) $S_0 = \{0\}$; that is, the inequalities $A^b x \leq 0$ and $\mathbf{x} \geq 0$ have only the trivial solution $\mathbf{x} = \mathbf{0}$ and A is nonsingular

References I