MATH 4370/7370 - Linear Algebra and Matrix Analysis

Julien Arino

Fall 2025

Outline

Definitions and some preliminary results

The Perron-Frobenius theorem

Stochastic matrices

p. 1 -

Definitions and some preliminary results
Definitions and notation
Zero-nonzero structure of a matrix

The Perron-Frobenius theorem

Definitions and some preliminary results
Definitions and notation

The Perron-Frobenius theorem

Definition 6.1 (Nonnegative/positive matrix)

A matrix $A \in \mathcal{M}_{mn}(\mathbb{R})$ is a nonnegative matrix if $a_{ij} \geq 0$ for all i = 1, ..., m and j = 1, ..., n. We write $A \geq \mathbf{0}$ or, often here, $\mathbf{0} \leq A \in \mathcal{M}_n(\mathbb{R})$

A is a positive matrix if $a_{ij} > 0$ for all i = 1, ..., m and j = 1, ..., n. We write $A > \mathbf{0}$ or, often here, $\mathbf{0} < A \in \mathcal{M}_n(\mathbb{R})$

Unless otherwise specified, all matrices here have real entries, so read \mathcal{M}_n as meaning $\mathcal{M}_n(\mathbb{R})$

Another (nicer in my view) notation

Remark 6.2

In other references, you will see

- $ightharpoonup A \geq \mathbf{0} \iff a_{ii} \geq 0$
- $ightharpoonup A > \mathbf{0} \iff A \geq \mathbf{0} \text{ and } A \neq \mathbf{0} \text{ (i.e., there exists } (i,j), a_{ij} > 0)$ [positive]
- $ightharpoonup A \gg \mathbf{0} \iff a_{ij} > 0 \text{ for all } i,j$ [strongly positive]

I favour this notation over the one used in these notes, but since the former is more common in matrix theory, I use the notation of Definition 6.1 here

p. 2 - Definitions and some preliminary results

Notation

Let $A, B \in \mathcal{M}_{mn}(\mathbb{R})$. Nonnegativity and positivity are used to define partial orders on $\mathcal{M}_{mn}(\mathbb{R})$

- \triangleright $A \ge B \iff A B \ge \mathbf{0}$
- \triangleright $A > B \iff A B > 0$

The same is used for vectors $\mathbf{x},\mathbf{y}\in\mathbb{R}^n$: $\mathbf{x}\geq\mathbf{y}$ and $\mathbf{x}>\mathbf{y}$ if, respectively, $\mathbf{x}-\mathbf{y}\geq\mathbf{0}$ and $\mathbf{x}-\mathbf{y}>\mathbf{0}$

Note that the order is only partial: if $A \ge \mathbf{0}$ and $B \ge \mathbf{0}$, for instance, it is not necessarily possible to decide on the ordering of A and B with respect to one another

p. 3 - Definitions and some preliminary results

Let A and B be nonnegative matrices of appropriate sizes. Then A+B and AB are nonnegative. If $A>\mathbf{0}$ and $B\geq\mathbf{0}$, $B\neq\mathbf{0}$, then $AB\geq\mathbf{0}$ and $AB\neq\mathbf{0}$

Corollary 6.4

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ be such that $\mathbf{x} \geq \mathbf{y}$ and $\mathbf{0} \leq A \in \mathcal{M}_{mn}$. Then $A\mathbf{x} \geq A\mathbf{y}$. Assume additionally that $\mathbf{x} \geq \mathbf{y}$, $\mathbf{x} \neq \mathbf{y}$ and $A > \mathbf{0}$. Then $A\mathbf{x} > A\mathbf{y}$

a. 4 – Definitions and some preliminary results

Definitions and notation

Zero-nonzero structure of a matrix

The Perron-Frobenius theorem

Definition 6.5

Let $P, Q \in \mathcal{M}_{mn}(\mathbb{F})$. P and Q have the same **zero-nonzero structure** if for all $i, j, p_{ij} \neq 0 \iff q_{ij} \neq 0$

Zero-nonzero structure defines an equivalence relation. Therefore, as with all equivalence relations, one only needs one representative from the equivalence class. One typical representative is defined using Boolean matrices

. 5 - Definitions and some preliminary results

Definition 6.6

A Boolean matrix is a matrix whose entries are Boolean $\{0,1\}$ and use Boolean arithmetics:

$$ightharpoonup 0 + 0 = 0$$

$$ightharpoonup 1+0=0+1=1$$

$$1+1=1$$

$$ightharpoonup 0 \cdot 0 = 0 \cdot 1 = 1 \cdot 0 = 0$$

$$1.1 = 1$$

Definition 6.7

Let $A \in \mathcal{M}_{mn}(\mathbb{F})$. Then A_B denotes the Boolean representation of A, defined as follows. If $A = [a_{ij}]$, then $A_B = [\alpha_{ij}]$ with

$$\alpha_{ij} = \begin{cases} 1 & \text{if } a_{ij} \neq 0 \\ 0 & \text{if } a_{ij} = 0 \end{cases}$$

The Perron-Frobenius theorem

The Perron-Frobenius Theorem for irreducible matrices
Proof of a result of Perron for positive matrices
Proof of the Perron-Frobenius theorem for irreducible matrices
Primitive matrices
The Perron-Frobenius Theorem for nonnegative matrices
The Perron-Frobenius Theorem (revamped)
Application of the Perron-Frobenius Theorem

The Perron-Frobenius theorem

The Perron-Frobenius Theorem for irreducible matrices

Proof of a result of Perron for positive matrices

Proof of the Perron-Frobenius theorem for irreducible matrices

Primitive matrices

The Perron-Frobenius Theorem for nonnegative matrices

The Perron-Frobenius Theorem (revamped

Application of the Perron-Frobenius Theoren

Theorem 6.15 (Perron-Frobenius)

Let $0 \le A \in \mathcal{M}_n$ be irreducible. Then the spectral radius $\rho(A) = \max\{|\lambda|, \lambda \in \sigma(A)\}$ is an eigenvalue of A. It is simple (has algebraic multiplicity 1), positive and is associated with a positive eigenvector. Furthermore, there is no nonnegative eigenvector associated to any other eigenvalue of A

Remark 6.16

We often say that $\rho(A)$ is the Perron root of A; the corresponding eigenvector is the Perron vector of A

The Perron-Frobenius theorem

The Perron-Frobenius Theorem for irreducible matrices

Proof of a result of Perron for positive matrices

Proof of the Perron-Frobenius theorem for irreducible matrices

The Perron-Frobenius Theorem for nonnegative matrices

The Perron-Frobenius Theorem (revamped

Application of the Perron-Frobenius Theoren

Lemma 6.17 (Perron)

Let $\mathbf{0} < A \in \mathcal{M}_n$. Then $\rho(A)$ is a positive eigenvalue of A and there is only one linearly independent eigenvector associated to $\rho(A)$, which can be taken to be positive

Lemma 6.18

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{R}_+ \setminus \{0\}$ and $v_1, \ldots, v_n \in \mathbb{C}$. Then

$$\left| \sum_{i=1}^{n} \alpha_i v_i \right| \le \sum_{i=1}^{n} \alpha |v_i| \tag{1}$$

with equality if and only if there exists $\eta \in \mathbb{C}$, $|\eta| = 1$, such that $\eta v_i \geq 0$ for all $i = 1, \ldots, n$

The Perron-Frobenius theorem

The Perron-Frobenius Theorem for irreducible matrices Proof of a result of Perron for positive matrices

Proof of the Perron-Frobenius theorem for irreducible matrices

Primitive matrices

The Perron-Frobenius Theorem for nonnegative matrices The Perron-Frobenius Theorem (revamped) Application of the Perron-Frobenius Theorem

Let $A \in \mathcal{M}_n$ and f(x) a polynomial. Then

$$\sigma(f(A)) = \{f(\lambda_1), \ldots, f(\lambda_n), \lambda_i \in \sigma(A)\}\$$

If we have $g(\lambda_i) \neq 0$ for $\lambda_i \in \sigma(A)$, for some polynomial g, then the matrix g(A) is non-singular and

$$\sigma\left(f(A)g(A)^{-1}\right) = \left\{\frac{f(\lambda_1)}{g(\lambda_1)}, \dots, \frac{f(\lambda_n)}{g(\lambda_n)}, \lambda_i \in \sigma(A)\right\}$$

If $x \neq 0$ eigenvector of A associated to $\lambda \in \sigma(A)$, then x is also an eigenvector of f(A) and $f(A)g(A)^{-1}$ associated to eigenvalue $f(\lambda)$ and $f(\lambda)/g(\lambda)$, respectively

p. 9 – The Perron-Frobenius theorem

Lemma 6.20 (Schur's lemma)

Let $A \in \mathcal{M}_n$ and $\lambda \in \sigma(A)$. Then λ is simple if and only if both the following conditions are statisfied:

- 1. There exists only one linear independent eigenvector of A associated to λ , say \mathbf{u} , and thus only one linear independent eigenvector of A^T associated to λ , say \mathbf{v}
- 2. Vectors \mathbf{u} and \mathbf{v} in (1) satisfy $\mathbf{v}^T \mathbf{u} \neq 0$

The Perron-Frobenius theorem

The Perron-Frobenius Theorem for irreducible matrices
Proof of a result of Perron for positive matrices
Proof of the Perron-Frobenius theorem for irreducible matrices

Primitive matrices

The Perron-Frobenius Theorem for nonnegative matrices
The Perron-Frobenius Theorem (revamped)
Application of the Perron-Frobenius Theorem

Definition 6.21

Let $\mathbf{0} \leq A \in \mathcal{M}_n$. We say that A is primitive with primitivity index $k \in \mathbb{N}_+ \setminus \{0\}$ if there exists $k \in \mathbb{N}_+ \setminus \{0\}$ such that

$$A^{k} > 0$$

with k the smallest integer for which this is true. We say that a matrix is **imprimitive** if it is not primitive

Remark 6.22

Primitivity implies irreducibility. The converse is not true

A sufficient condition for primitivity of $\mathbf{0} \leq A \in \mathcal{M}_n$ is irreducibility with at least one positive diagonal entry

Here d is the index of imprimitivity (i.e., the number of eigenvalues that have the same modulus as $\lambda_p = \rho(A)$). If d = 1, then A is primitive. We have that $d = \gcd$ of all the lengths of closed walks in G(A)

Theorem 6.24

Let $\mathbf{0} < A \in \mathcal{M}_n$. If A is primitive, then $A^k > \mathbf{0}$ for some $0 < k < (n-1)n^n$

Let $\mathbf{0} \le A \in \mathcal{M}_n$ be primitive. Suppose the shortest simple directed cycle in G(A) has length s, then the primitivity index of A is $\le n + s(n-1)$

Theorem 6.26 (Wielandt's Theorem)

Let $\mathbf{0} \leq A \in \mathcal{M}_n$. A is primitive if and only if $A^{n^2-2n+2} > \mathbf{0}$

Theorem 6.27

Let $\mathbf{0} \le A \in \mathcal{M}_n$ be irreducible. Suppose that A has d positive entries on the diagonal. Then the primitivity index of A is < 2n - d - 1

The Perron-Frobenius theorem

The Perron-Frobenius Theorem for irreducible matrices
Proof of a result of Perron for positive matrices
Proof of the Perron-Frobenius theorem for irreducible matrices
Primitive matrices

The Perron-Frobenius Theorem for nonnegative matrices

The Perron-Frobenius Theorem (revamped)
Application of the Perron-Frobenius Theorer

Let $\mathbf{0} \leq A \in \mathcal{M}_n$. Then there exists $\mathbf{0} \neq \mathbf{v} \geq \mathbf{0}$ such that $A\mathbf{v} = \rho(A)\mathbf{v}$

The Perron-Frobenius theorem

The Perron-Frobenius Theorem for irreducible matrices

Proof of a result of Perron for positive matrices

Proof of the Perron-Frobenius theorem for irreducible matrice

Primitive matrices

The Perron-Frobenius Theorem for nonnegative matrices

The Perron-Frobenius Theorem (revamped)

Application of the Perron-Frobenius Theorem

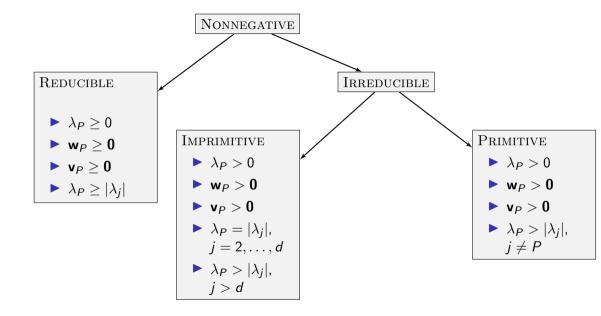
Let us restate the Perron-Frobenius theorem, taking into account the different cases. The classification in the result below follows the presentation in [?].

Theorem 6.29

Let $\mathbf{0} \leq A \in \mathcal{M}_n$. Denote λ_P the Perron root of A, i.e., $\lambda_P = \rho(A)$, \mathbf{v}_P and \mathbf{w}_P the corresponding right and left Perron vectors of A, respectively

Denote d the index of imprimitivity of A (with d=1 when A is primitive) and $\lambda_j \in \sigma(A)$ the spectrum of A, with $j=2,\ldots,n$ unless otherwise specified (assuming $\lambda_1 = \lambda_P$)

Conclusions of the Perron-Frobenius Theorem can be summarised as in the graph on the next slide



The Perron-Frobenius theorem

The Perron-Frobenius Theorem for irreducible matrices

Proof of a result of Perron for positive matrices

Proof of the Perron-Frobenius theorem for irreducible matrices

Primitive matrices

The Perron-Frobenius Theorem for nonnegative matrices

The Perron-Frobenius Theorem (revamped

Application of the Perron-Frobenius Theorem

Let $\mathbf{0} < A \in \mathcal{M}_n$ be irreducible and $h \in \mathbb{N}_+$. TFAE:

- 1. There exists exactly h distinct eigenvalues such that $|\lambda| = \rho(A)$
- 2. There exists P a permutation matrix such that

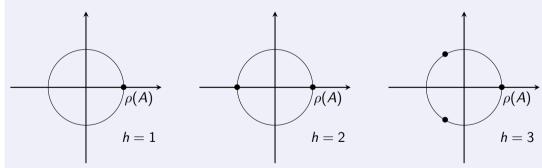
$$PAP^{T} = \begin{pmatrix} 0 & A_{12} & 0 & \dots & 0 \\ \vdots & & A_{23} & \ddots & \vdots \\ \vdots & & & \ddots & 0 \\ \vdots & & & & A_{h-1,h} \\ A_{h1} & 0 & \dots & \dots & 0 \end{pmatrix}$$

where the diagonal blocks are square, and there does not exists other permutation matrix giving less than h horizontal blocks.

- 3. The greatest common divisor of the lengths of all cycles in G(A) is h
- 4. h is the maximal positive integer k such that $\sigma(e^{2\pi i/k}A) = \sigma(A)$

Corollary 6.31

Let $0 \le A \in \mathcal{M}_n$ be irreducible with exactly h distinct eigenvalues of modulus $\rho(A)$. Then these eigenvalues are the vertices of a regular polygon of h sides with centre at the origin and are of the vertices being $\rho(A)$



Remark 6.32

For Fiedler, a primitive matrix is defined as an irreducible nonnegative matrix such that h=1

Let $\mathbf{0} \leq A \in \mathcal{M}_n$, $n \geq 2$. TFAE

- 1. $A^n = 0$
- 2. There exists $\mathbb{N} \ni k > 0$ such that $A^k = \mathbf{0}$
- 3. G(A) is acyclic
- 4. $\exists P$, permutation matrix, s.t. PAP^T is upper-triangular with zeros on main diagonal
- 5. $\rho(A) = 0$

Theorem 6.34

Let $\mathbf{0} \leq A \in \mathcal{M}_n$. Assume that A has a positive eigenvector. Then that eigenvector is the Perron vector and is associated to $\rho(A)$

The Perron-Frobenius theorem

Stochastic matrices

Row- and column-stochastic matrices Doubly stochastic matrices

The Perron-Frobenius theorem

Stochastic matrices

Row- and column-stochastic matrices

Doubly stochastic matrices

Definition 6.35 (Stochastic matrix)

The matrix $A \in \mathcal{M}_n$ is row stochastic (sometimes right stochastic) if

-
$$A \ge \mathbf{0}$$
 [The matrix is nonnegative]

-
$$A1 = 1$$
, $1 = (1, ..., 1)^T$ [All rows sum to 1]

The matrix $A \in \mathcal{M}_n$ is column stochastic (sometimes left stochastic) if

-
$$A \ge \mathbf{0}$$
 [The matrix is nonnegative]

-
$$\mathbb{1}^T A = \mathbb{1}^T$$
 [All columns sum to 1]

The matrix $A \in \mathcal{M}_n$ is **stochastic** if it is either row or column stochastic. The matrix is **doubly stochastic** if it is both row and column stochastic

Let $A \in \mathcal{M}_n$ be stochastic. Then $\rho(A) = 1$

Theorem 6.37

Let $\mathbf{0} \leq P \in \mathcal{M}_n$. Assume that P has a positive eigenvector \mathbf{u} and that $\rho(P) > 0$. Then there exists D, diagonal matrix with diag $(D) > \mathbf{0}$, and $0 < k \in \mathbb{R}$ such that

$$A = kDPD^{-1}$$

is stochastic, with $k = \rho(P)^{-1}$

Let $A, B \in \mathcal{M}_n$ be stochastic. Then AB is stochastic

Theorem 6.39

Let A be stochastic and primitive. Then $A^k \to \mathbb{1}\mathbf{v}^T$, $k \to \infty$, where $\mathbb{1}\mathbf{v}^T$ has rank 1 and \mathbf{v} is the (left) eigenvector of A^T associated to $\rho(A) = 1$ and normalised so that $\mathbf{v}^T \mathbb{1} = 1$

Remark 6.40

This is a result that is used to compute the limit of a regular Markov chain

The Perron-Frobenius theorem

Stochastic matrices

Row- and column-stochastic matrices

Doubly stochastic matrices

Definition 6.41

The matrix $\mathbf{0} \leq A \in \mathcal{M}_n$ is doubly stochastic if $A\mathbb{1} = \mathbb{1}$ and $\mathbb{1}^T A = \mathbb{1}^T$

Remark 6.42

Here $\rho(A) = 1$ is associated to $\mathbb{1}$ for A and for A^T

Consider E the Euclidean space. A set K of points in E is convex if A_1 , A_2 points in K, $\lambda_1, \lambda_2 \in \mathbb{R}_+$ such that $\lambda_1 + \lambda_2 = 1$, then

$$\lambda_1 A_1 + \lambda_2 A_2 \in K.$$

A convex polyhedron K is the set of all points of the form

$$\sum_{i=1}^{N} \lambda_i A_i$$

where A_i are points in E and $\lambda_1 \in \mathbb{R}_+$

Let $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{R})$. Consider this matrix as a point in E with coordinates $[a_{11}, a_{12}, \ldots, a_{nn}]$ (dim $E = n^2$)

Let $A \in \mathcal{M}_n$, $A = [a_{ij}]$, if A is doubly stochastic, then this forms an $(n-1)^2$ dimensional subspace of $\tilde{E} = \mathbb{R}^{n^2}$

Theorem 6.44 (Birkhoff)

In the space $\tilde{E} = R^{n^2}$, the set of doubly stochastic matrices of order n is a convex polyhedron in E (the subspace of stochastic matrices). The vertices of the polyhedron are the points corresponding to all the permutation matrices

References I