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Why do this?

This work is mostly about dynamics

Looping back to our first few lectures: matrices are everywhere!

This is a (rather abstract) problem in theoretical ecology (or mathematical ecology?)

We will be using a surprising number of results we have already seen



Position of the problem



Rael & Taylor (2018)

A flow network model for animal movement on a landscape with application to invasion, Theoretical Ecology

N
P! = —I—Zaj,Pm (Pj, Pi) = P; > aym(P;, P;)

where
max{O, 7T(P,') — W(PJ)}

dij

djj distance from / to j, K; carrying capacity

m(P,-, Pj) =

Pi
B(P;) = r (1 — K,-) sources

—r; sinks

p. 2 — Position of the problem
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Position of the problem

Assume a metapopulation of patches connected through transport of individuals
between them

Some patches are sources, others are sinks:
» Population tends to persist in sources

» Population tends to vanish in sinks

Ceteris paribus, does there exist a ratio of the number of source to sink patches s.t.
the population of the coupled system persists?

p. 4 — Position of the problem



Something like this...




Obvious special cases

p. 6 — Position of the problem



This should not be good for the species

p. 7 — Position of the problem



This is probably good for the species

p. 8 — Position of the problem



A metapopulation of sources and sinks with explicit movement



Model for N patches

W.l.o.g.: S > 0 first patches are sources, N — S remaining are sinks [w.l.o.g. but not
that trivial nonetheless]

Sources:
P,{Zr;P"<1_’)+ mjPj, i=1,...,5 (1a)
K; =
Sinks:
N
Pl=—rPi+> miP, i=S+1...N (1b)
j=1
N
mijj = — Z mjj
j=1
JAi

p.- 9 — A metapopulation of sources and sinks with explicit movement



Vector form (v1)
P=(Py,....Pn)"

where

p. 10 — A metapopulation of sources and sinks with explicit movement

N
- > mj mi2 miy
I
J#1
N
moy —> mjp - mop
J=1
J#
N
mp1 mp2 — > min
=1
JAN

...,—rN>




Vector form (v2)

Ps=(P1,...,Ps)" (sources), P;=(Psi1,...,Pn) (sinks)

P, = Gs(Ps)Ps + MPs + MyP;
P; = —D:P; + MPs + MP;

G;(Ps) = diag <r1 <1 - 2) e fs <1_ ZZ))

Dt = diag(r5+l7' . '7rN)

M, My
<Mts M)‘M (2)

where

p. 11 — A metapopulation of sources and sinks with explicit movement



Main result we want to get to

Theorem 8.1

3 a unique critical interval Sj,y C (0, N) C R s.t. if the number of source patches
S < min(Sjnt), the population-free equilibrium (PFE) (Py,...,Pyn) = (0,...,0) of (1)
is locally asymptotically stable and if S > max(S;nt), the PFE is unstable

If, additionally, the digraph of patches is strongly connected, then S;,; reduces to a
single point S¢ and the PFE is globally asymptotically stable in the case that S < 5¢;
in the case that S > S€, there is a unique component-wise positive equilibrium P* that
is GAS with respect to RY \ {0}

p. 12 — A metapopulation of sources and sinks with explicit movement



The movement matrix



Properties of the movement matrix M

0 € o(M) corresponding to left e.v. 17 [o spectrum]
—M is a singular M-matrix

0=s(M)ea(M) [s spectral abscissa]
If M irreducible, then s(M) has multiplicity 1

> W =

p. 13 — The movement matrix



Proof of Lemma 8.2

1. The result is obvious: all column sums of M equal zero, i.e., 1" M = 017

3. Using the Gershgorin Disk Theorem A.3 on M indicates that all Gershgorin disks
are tangent to the imaginary axis at (0,0). As 0 is an eigenvalue of M, it follows that

s(M)=0

4. This is a direct consequence of using the Perron-Frobenius Theorem A.5 on the
essentially nonnegative matrix M

p. 14 — The movement matrix



Proof of Lemma 8.2 (cont'd)

2. From the Gershgorin Disk Theorem A.3, all eigenvalues of —M belong to disks
that lie to the right of the imaginary axis and, from the zero column sums, are tangent
to that axis at (0, 0)

Now consider —M + ¢l for € > 0. This shifts the centers of all Gershgorin disks to
the right by € Theorem A.1 but does not change their radii, so all disks now lie strictly
to the right of the imaginary axis

Thus all eigenvalues of —M + I have positive real parts

Furthermore, —M and —M + ¢l are of class Z, (Definition A.6). Theorem A.7(18)
= —M +¢lis of class K, i.e., an M-matrix. Since this is true for all ¢ > 0,
Theorem A.8(1) implies that —M is of class Ky. So —M is an M-matrix and it is
singular

p. 15 — The movement matrix



Properties of the movement matrix M (cont'd)

Proposition 8.3 (D a diagonal matrix)

1. s(M+dI) =d, ¥d € R

2. s(M + D) € 6(M + D) associated tov > 0. If M irreducible, s(M + D) has
multiplicity 1 and is associated to v > 0

3. diag(D) >0 = D — M invertible M-matrix and (D — M)~! >0

4. M irreducible and diag(D) > 0 = D — M nonsingular irreducible M-matrix and
(D-M)"1>0

p. 16 — The movement matrix



Proof of Proposition 8.3

1. From Lemma 8.2(3), s(M) = 0. Therefore, using a “spectrum shift” Theorem A.1,
s(M+dl)=d

2. These are direct consequences of applying the Perron-Frobenius Theorem A.5 to the
essentially nonnegative matrix M + D

p. 17 — The movement matrix



Proof of Proposition 8.3 (cont'd)

3. Define d = min;—;__ndii. Then
diag(D) >0 = d >0 = M <dl-M<D-M

From Theorem A.8(5), dI — M is an M-matrix. Since s(M) = 0, using a “spectrum
shift”, all eigenvalues of dl — M have real parts larger than d, so dl — M is a
nonsingular M-matrix. In turn, Theorem A.7(4) = D — M nonsingular M-matrix
and Theorem A.7(11) leads to the conclusion

4. Suppose M irreducible. Let d = max;—1,_nd; > 0. Then D — M is irreducible
and diagonally dominant with all columns k = 1,..., N such that dy = d satisfying
the strict diagonal dominance requirement. (Other columns with nonzero entries in D
also satisfy the requirement.) As a consequence, [Varga, 2010, Theorem 1.11] implies
that D — M nonsingular and inverse positivity follows from Theorem A.9

p. 18 — The movement matrix



—M is also the Laplacian matrix of a digraph

Note that —M is also the Laplacian matrix of a directed graph

As such, finer estimates of the location of eigenvalues are available; see, e.g.,
[Agaev and Chebotarev, 2005]

However, the main concern here is with the spectral abscissa, so this is not needed

p. 19 — The movement matrix



Local analysis of the model



The population-free equilibrium (PFE)
We find the PFE P, =P, =0

At the PFE,

where Ds = G4(0) = diag(r, ..., rs)

The matrix

Ds ® —D; = diag(r, ..., rs, —rs1,...

has S diagonal entries > 0 and N — S diagonal entries < 0

p. 20 — Local analysis of the model

a_rN)



Mechanism of the existence proof

Start with S = 0 (only sinks)
= Ds vacuous and Ds & —D; = diag(—r1,...,—rn)
= s(J3re) <0

Finish with S = N (only sources)
— D vacuous and Ds & —D; = diag(r, ..., rn)
= s(Jprg) > 0

Eigenvalues of JSFE depend continuously of entries of JSFE, so s(JSFE) changes signs,
we are done.. if we are happy with a lot of uncertainty about behaviour of s(JSpg)

p. 21 — Local analysis of the model



Continuous perturbation of the spectrum

We have assumed that patches are ordered so that the first S patches are sources and
the remaining N — S are sinks

From previous argument, as S varies from 0 to N, there should be a point where
s(J3pg) changes signs

Thinking about it, s(J3pg) can probably be made to vary continuously

We need to describe a continuous perturbation of the spectrum of JSFE as S varies
from 0 to N

p. 22 — Local analysis of the model



For Se{0,....,N -1}

0 S S+1 N
[ L2 L @
€
0 S S+1 N
[ *—0—0——©
€
0 S S+1 N
[ L L 4 .
€
JPS,;E = M +diag(r,...,rs,6,—rsio, ..., —In)

where € € [~rsy1,rs,1] is in (S + 1)™ position

p. 23 — Local analysis of the model



For S € [0, N]

Brp =SS5y, with =S|, e=2(S—[S])ri—r

where i = |S|+1if S<Nandi= N when S=N

Generally we vary ¢ continuously in each [—rsy1, rsy1]

S,—rsy1 _ S S,rsq1 . S+1
Jpig =Jppg and Jppp" = Jppg

(4) translates a continuous value of S into a pair (§,¢) giving the actual (integer)
number & of source patches and an “offset” ¢

p. 24 — Local analysis of the model



The spectral abscissa s(Jgpg) switches signs

Let r = i -
etr ._r{unN{r,}

i=1,...,

Then s(J%.z) < —r <0 and s(JNop) > r >0
PFE PFE

p. 25 — Local analysis of the model



Proof of Lemma 8.4

If S =0, then
Jl(:)’FE = M + diag(—rl, ey —rN)

From Proposition 8.2(3), s(M) = 0. Note that this follows from using the Gershgorin
Disk Theorem A.3, where for M, all Gershgorin disks are left of the imaginary axis
and tangent to origin of the complex plane

Then the centres of the Gershorin disks of M + diag(—r1, ..., —ry) are shifted left by
r,...,ry while the radii remain the same

As a consequence, the closest disk(s) to the origin of the complex plane have centre(s)
—r and thus s(M + diag(—r1,...,—ry)) < —r <0

p. 26 — Local analysis of the model



Proof of Lemma 8.4 (cont'd)

If S =N, then
Iep = M + diag(r, ..., ry)

Fori=1,...,N, define ¢, = r; — r > 0, then
Iop = M + rI + diag(ey, . . ., en)

where, by Proposition 8.3(1), s(M 4+ rl) =r >0

p. 27 — Local analysis of the model



Proof of Lemma 8.4 (cont'd)

First, assume M irreducible
Then JQ’FE is an irreducible essentially nonnegative matrix

Since JPp > M + rl, Theorem A.10(3) =
s(Jprp) = sM +rI) =1

with the inequalities being strict if there exists at least one ¢; > 0

p. 28— Local analysis of the model



Proof of Lemma 8.4 (cont'd)

Now assume that M reducible

Then 3 permutation matrix P such that PT MP is block upper triangular with
irreducible blocks on the diagonal

Call C the number of such blocks, i.e., the number of strong components in the
digraph of patches

Fori=1,...,C, denote n(i) the number of patches in strong component i and
k(1),...,k(n(i)) their indices

By abuse of notation, denote M; the corresponding diagonal block in the reduced
form of M

p. 29 - Local analysis of the model



Proof of Lemma 8.4 (cont'd)

Applying the permutation matrix P to Jé,VFE gives a block upper triangular matrix
PT NP
with, for i =1,..., C, the n(i) x n(i) diagonal blocks M;; + E; being irreducible and

with
Ej = rl + diag (ex(1); - - - » €(n(i)))

p. 30 — Local analysis of the model



Proof of Lemma 8.4 (cont'd)

Fix i=1,...,C and let v be a positive right eigenvector of M;; + E; corresponding to
the spectral abscissa s; and w be a positive left eigenvector of M;; + rl corresponding
to the spectral abscissa s,. Then

51WTV =w’ (M,’,‘ + I+ diag(ek(l), R ek(,,(,-)))) v
=w! (M + v + wTdiag(ek(l), C s k(n(i)) )V

= sw/ v+ wTdiag(ek(l), o Ek(n(i)))V
> 52wTv
the inequality being strict if at least one of the ey, j = 1,...,n(i), is positive. Hence

s1 > s, i.e., s(Mj;i + E;) > s(M;; + rI). This is true for all diagonal blocks. Now,
since PTJf,VFEP is block upper triangular,

s(Bpg) = s(PT HppP) = max{s(M11 + E1),...,s(Mcc + Ec)}

p. 31 — Local analysis of the model



Proof of Lemma 8.4 (cont'd)

As PT(M + rI)P is also block upper triangular,

r=s(M+ rll) = max{s(Mi1 + rl),...,s(Mi1 + rl)}

As a consequence, s(J{;VFE) >r>0

p. 32 — Local analysis of the model



Thus, S€ necessarily lies in the open interval (0, N). The following lemma is of interest
and the method of proof of the second assertion is used again later

Lemma 8.5

1. Forall S € (0,N) CR,
SrE < JPpg < JPrE (5)

2. JIgFE is an increasing function of S, in the sense that

V51,5 € [0, N] C R such that S; < Sy, Jhp < J22p (6)

p. 33 — Local analysis of the model



Proof of Lemma 8.5

1. Let S € (0, N) be fixed. Using (4), we get a pair (§,¢) € {0,..., N} x [—rj, ri], for
i=1...N, such that JSp, = J55,. We have

Jf)’liE — JgFE =M +diag(r,...,re,e,—reqo, ..., —rn)
- M —diag(—ri,...,—rn)
=diag(2n,...,2r, e+ re41,0,...,0)
>0

since € € [—req1, req1)

Computing J{DVFE — Jé,’EE at the other endpoint works similarly, giving (5)

p. 34 — Local analysis of the model



Proof of Lemma 8.5 (cont'd)

2. Use (4) again to obtain two pairs (£1,¢1) and (&2, 2), where, by the assumption
51 <5, & < &. First, assume that & < &. Then

Jﬁ?ﬁ% - Jé,lF’% = diag(ri, ..., re, €2, = g2, - —IN)
—diag(r, ..., re, €1, —re 42, —IN)
=diag(0,...,0, re,41 — €1, 21425 - -, 21y, €2 + re541,0,...,0)

>0

since €1 € [_rf1+1’ r§1+1]7 and &2 € [_r§2+1’ r§2+1]

Now assume &1 = &. Then, since 51 < Sy, we find that 1 < g and the diagonal
matrix in the subtraction Jf,zF’% — JIEZF’% takes the form

diag(0,...,0,e2 — £1,0,...,0) > 0. So (6) holds

p. 35 — Local analysis of the model



M reducible = s(J2p5) nondecreasing for S € [0, N]
M irreducible = s(J2py) increasing for S € [0, N]

= 3Sint C (0, N) (resp. S€ € (0, N)) s.t. PFE LAS if S < min(Sin) (resp. S < S°)
and PFE unstable if S > max(Sin:) (resp. S > S°)

p. 36— Local analysis of the model



Proof of Proposition 8.6

First, assume M is irreducible. Then, by Lemma 8.5 and the fact that M is irreducible
(and thus so is Jopg), Theorem A.10(3) gives the result

p. 37 — Local analysis of the model



Proof of Proposition 8.6 (cont’'d)

Now, assume that M is reducible. = 3 permutation matrix P such that PT MP
block upper triangular. Consider S € [0, N] C R and use (4) to obtain a corresponding
pair (§,¢) € {0,..., N} x [—re, re]. Apply the same permutation to Jf)f:E, giving

M+ E Mo Min
0 Mo+ Ep
T [ _
P" JpepP = _
0 e 0 Mcc+ Ec
where C is the number of strong components in the digraph of patches and

EiLd-- P Ec= PTdiag(rl, N (X TR £ PII —fN)P

with matrix on right hand side having ¢ as (¢ 4 1) diagonal entry. As in the proof of
Lemma 8.4, we have denoted M; the diagonal blocks in the reduced form of M

p. 38 — Local analysis of the model



Proof of Proposition 8.6 (cont’'d)

For j=1,...,C, each of the matrices M;; is irreducible; C — 1 of the matrices E; are
diagonal with entries —r; and r; on the diagonal (with some having only —r;, some
having only r; and some having both types of entries)

The remaining E; matrix is diagonal, with potentially —r; and r; as the others, but also
e. Calln € {1,..., C} the index of the strong component containing the matrix with ¢

As a consequence, for all j =1,...,C, Mj; + E; are irreducible essentially nonnegative
matrices, with only matrix M., + E,, having an ¢ added to one of its diagonal entries

p. 39 — Local analysis of the model



Proof of Proposition 8.6 (cont’'d)
As PTJIE’EEP is block upper triangular, we have

s (PTJ%EEP) = max{s(Mi1+ E1),...,s(Mcc + Ec)}

Except for M,,,, + E,, all matrices M;; 4 E; have fixed spectral abscissa. Concerning
matrix M,,, + E,, it is clear that the reasoning in the proof of Lemma 8.5(2) carries

through and thus,

£ £
V€1,€2 S [—r5+1, r5+1], g1 < &y — JE’F}E < JfDFfE

Hence s(Jé,’IiE) is the maximum of a set of C functions, C — 1 of which are constant in
€ and one of which is increasing in €. It now follows that s(JSFE) is a nondecreasing

function of S, as desired

p. 40 — Local analysis of the model



We now can do Part 1 of Theorem 8.9

As JSFE is essentially nonnegative, its spectral abscissa s(JSFE) is an eigenvalue.
Eigenvalues of J2pp depend continuously on S (Theorem A.2). By Lemma 8.4,
s(Spg) < 0 and s(J.p) > 0, so by the Intermediate Value Theorem, there exists at
least one point S¢ € (0, N) such that s(Jgpg) = 0

In the case where M is irreducible, s(J}S,FE) is increasing by Proposition 8.6 and as a
consequence, S€ is unique. In the case where M is reducible, s(Jopg) is
nondecreasing, therefore there exists an interval Sj,:, possibly reduced to a single
point, such that s(Jspg) = 0 for all S € Sy

The usual criteria for local asymptotic stability and instability of equilibria then imply
the first part of Theorem 8.9 for S < §€ and S > 5S¢ (irreducible case) or
S < min(Sjpt) and S > max(Sjyt) (reducible case)

p. 41 — Local analysis of the model



» M reducible: 3Sj,; C (0, N) s.t. PFE LAS if S < min(Sj,:) and PFE unstable if
S > max(Sint)
» M irreducible: 35¢ € (0, N) s.t. PFE LAS if S < 5¢ and PFE unstable if S > S°¢

S(Jf’l'E)

—re

p. 42 — Local analysis of the model



Spectral abscissa s(Jprg)
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As indicated by [Deutsch and Neumann, 1985], perturbation of the diagonal leads to
convex changes in the spectral abscissa on each sub-interval

p. 46 — Local analysis of the model



We have a reproduction number when M irreducible

Proposition 8.7

Suppose M irreducible. Define the basic reproduction number
_ =il
RO =p ((Ms + Mst(Dt - Mt) 1-A/ll's) Ds)

where Mg, M, Mg, Mys are defined as in (2), Ds = diag(ri,...,rs) and
D; = diag(rs4+1,.-.,rn). Then

s(J2pg) <0 <= R <1 and s(Jppg) >0 <= Ro > 1

p. 47 — Local analysis of the model



Proof of Proposition 8.7

Write (3) as ) _
JSFE :M+D5_Dt

where Dy = Ds @ Opy_sxn—s and D; = 0545 @ Dy. Let —a be the spectral abscissa of
M + Ds — D;. From Proposition 8.3(2), there is a vector v > 0 such that

(M +Ds —Di)v = —av

In other words, y y
av = (Dt — M)v — Dgv

p. 48 — Local analysis of the model



Proof of Proposition 8.7 (cont’d)

By the assumption of irreducibility of M, it follows from Proposmon 8.3(4) that
D¢ — M is an irreducible nonsingular M-matrix and (D; — M)~1 >0

Then
1 ~

o (75,5 — /\/l)_lv =v-— (ﬁt —/\/l)_ Dsv
with the matrix (D; — M)~1Dg > 0

As a consequence, from the Perron-Frobenius Theorem A.5, the spectral radius of
(Dt M)~ 1D, is an eigenvalue and is associated to a nonnegative eigenvector

p. 49 — Local analysis of the model



Proof of Proposition 8.7 (cont’d)

Let u be such an eigenvector, normalised so that u’v=1. Then

ou’ (25,_ —./\/l)_lv =u'v (1 —p{(ﬁt —M)_lﬁs}>

Thus y -
a>0 « p{(Bi-M)" D} <1

and
a<0 p{(f)t—M)_lﬁs} >1

p. 50 — Local analysis of the model



Proof of Proposition 8.7 (cont’d)

From the structure of 155, the spectral radius of (f?t — M)_lﬁs is the spectral radius of

~ -1
(Dt - M)[ll] Ds

where (D; — M)} is the (1,1) block in (Dy — M)™1

-1
[11]

Writing M as (2), we have by the formula for the inverse of a 2 x 2 block matrix that

-1

(De ~ M)[n] = (~Ms = Mot(De = M) " M) ™

p. 51 — Local analysis of the model



Proof of Proposition 8.7 (cont’d)

Clearly,

p ((—Ms — Mo(Dy — M) M)t

giving the result

p. 52— Local analysis of the model

D)

=p ((Ms + Mt (D — Mt)flMts)flps)



Global behaviour



So..

we are done!

.. Are we? The result is only local, can we go further?

p. 53 — Global behaviour



System (1) is cooperative

Jacobian of (1):

_ [ G4(Ps)Ps + Gs(Ps) + M, Mt
J(P57Pt) - < Mts *Dt+Mt
where
/ —diae [ L s
G.(Ps) = diag < Ky Ks>
Thus

J(Ps,Pt) = M + ((G,(Ps)Ps + Gs(Ps)) & —Dx)
with GL(Ps)Ps 4+ Gs(Ps) and —D; diagonal

= system (1) is cooperative

p. 54 — Global behaviour

)



A theorem of Hirsch

So, to move forward, we would like to apply the following result

Theorem 8.8 (Th. 6.1 in Hirsch (1984) — BAMS 11(1))

Let F be a C* vector field in R" with flow ¢ preserving R? for t > 0 and strongly
monotone in R’} . Suppose that the origin is an equilibrium and all trajectories in R"|
are bounded. Suppose the matrix-valued map DF : R} — R"*" is strictly
antimonotone, i.e.,

x >y = DF(x) < DF(y)

Then either all trajectories in Rl go to the origin, or there exists a unique equilibrium
P* ¢ IntR” and all trajectories in R'} \ {0} limit to P*

p. 55 — Global behaviour



OK, nice, but..

Take
P =(0,...,0,%,...,x) and P, = (0,...,0,%,...,%)

have their first S entries zero, i.e., P1 = (05, P}) and Py = (05, P?); assume Py > P,

ie., Pl > P2
Then
J(05,P}) = M + ((GL(05)0s + G5(05)) @ — D)
= J(05,P?)
ie.,
B, =,

= (1) is not strictly antimonotone

p. 56 — Global behaviour



(non) lasciate ogne sperenza, voi ch’intrate

Except for strict antimonotonicity of F, all hypotheses of [Hirsch (1984) — Th. 6.1] are
satisfied:

» in the case M irreducible, (1) is strongly monotone (by [Hirsch (1984) — Th. 1.7])
P the origin is an equilibrium

> all solutions of (1) are bounded in RY (not shown here, but not hard)

= by other results (e.g., Hirsch ibid), there exists P* > 0

What is the use of strict antimonotonicity in the proof of [Hirsch (1984) — Th. 6.1]7 ..
To show uniqueness of P*

p. 57 — Global behaviour



More precisely: let z € (0, P*), where P* > 0 is a nontrivial equilibrium

Strict antimonotonicity = F(z) > 0, and we can then proceed with the remainder
of the proof of [Hirsch (1984) — Th. 6.1]

Let us show that we indeed have F(z) > 0 for (1), despite the lack of strict
antimonotonicity

As in [Hirsch (1984) — Th. 6.1]: for i =1,..., N, let

8i: [07 1] —+R
s Fi(sP¥)

p. 58 — Global behaviour



Then gi(0) =gi(1) =0fori=1,...,N and, for i =S+ 1,..., N (sinks),

N N
g,‘(S) = —I‘,'SPIfk + Z m,JsPJ* = r,-P;k + Z m’JPJ* s=0
Jj=1 j=1
However, for i = 1,...,S (sources),

N
sP* N .
gi(s)=r <1 - Kf > sP; + Z m;;jsP;
j=1
Hal

2r; P2
gl'(s) = — r’K' <0, i=1,....S

= fori=1,...,S, gi(s) >0 when s € (0,1)
= when S >0, F(z) > 0, Vz € (0, P*)

p. 59 — Global behaviour



And we can then carry on with the remainder of the proof of [Hirsch (1984) — Th. 6.1]

To finish, the case S = 0 is easy:

N ! N
(ZP,’) :—Zr,'P,'<O
i=1

i=1

since at least one of the P;(0) >0
— (T P) 50 = lime o Pi(t) =0fori=1,...,N

Et hop! OI
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To conclude (mathematically)

Theorem 8.9

There exists a critical interval Sipe C (0, N) C R s.t.
» S < min(Sijn:) = PFE LAS
» S > max(Sin:) = PFE instable

Additionally, if the patch digraph is strongly connected, then
» S;.: is reduced to a point S¢€
> S < 5° = PFE GAS
> S >S5 = JIP* > 0 GAS forR_’X\{O}

p. 61 — Global behaviour



An interesting special case



In the 2 figures that follow:

> N =50
> r:r,',vi:]-a“'7N
> mj=mVij=1....,Nst m;>0

» plot is value of S€ as a function of m and r

Figure 1: ring of patches

Figure 2: complete digraph
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Case of complete homogeneous movement

Proposition 8.10

Suppose that the movement digraph is complete and that mjj = m fori,j =1,...

i 7
Suppose that S € {1,...,N — 1}, that fori =1,...,S, ri = rs and that for
i=S+1,....N, ri=r

Then
c mNry — rsry
m(rs + re)
If re =rt =r, then
N r
5= ——- —
2 2m

p. 65 — An interesting special case
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Proof of Prop 8.10 uses equitable partitions

Section 9.3 in Algebraic Graph Theory, Godsil & Royle (2013)

An equitable partition 7 splits a graph X into cells C;, i = 1,...,r, s.t. for a vertex
u in cell C;, the number of neighbours in cell C; is a constant b;; that does not depend
on u

<= the subgraph of X induced by each cell is regular [vertices have same degree]
and edges joining two distinct cells form a semiregular bipartite graph [vertices have
same degree in each bipartite component]

The digraph with the r cells of 7 as vertices and the bj; arcs from the i™ to the j* cell
of 7 is the quotient X /7 of X on . The adjacency matrix of X /7 is A(X/7) = [bj]
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Characterising an equitable partition

X graph, A(X) its adjacency matrix, ™ a partition of V(X) with characteristic matrix
P. Then

T equitable <= column space of P is A-invariant
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Write

JS mJ — NmI + r1 mJ
PFE — mJ mJ — Nml — r I

with J matrix of all 1's
Consider (12) as the adjacency matrix of a digraph G

Suppose partition 7 splits G in two cells, {S;}i=1_ s (sources) and {T;}i=s41,..n
(sinks)

The characteristic matrix of 7 is the N x 2-matrix
1s 0s >
C =
(0/\1_5 Iyn-s

p. 69 — An interesting special case

(12)



We have

1 rs1
S S S S
Jorel = Jprr (11N5> = <_rts]lNS>

Thus the column space of C is JPS)FE—invariant = 7 is equitable

p. 70 — An interesting special case



Properties of equitable partitions

T equitable partition of graph X with characteristic matrix P, and B = A(X /7). Then
AP = PB and B = (PTP)"1PTAP

m equitable partition of graph X = characteristic polynomial of A(X/x) divides
characteristic polynomial of A(X)
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= the quotient matrix BSFE satisfies

Birg = (CTC) 1 CT S C

s _ (mS—mN+r, m(N-2S)
= Bire = ( mS —(mS +rs)

And U(BgFE) C U(JPS’FE)
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Bipyp essentially nonnegative (and clearly irreducible)
— v, > 0s.t. BippVp = A\pVp = S(BRpp)Vp
Then J3ppC = CB3pg
So
JrE CVp = CBRppvp = ApCvyp

and Cv,, is an eigenvector of J3pp that is also >> 0

As the only eigenvector > 0 of JSFE corresponds to s(JgFE), we have
S(JgFE) = S(BgFE)
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To compute S€¢, recall S€ is value of S where PFE loses stability

Consider B3y. We have tr(B3pg) = —mN + rs — ry and

det(Bipg) = —mS(rs + rt) — rsrt + mNr,

One shows easily that det(-) gouverns stability

mNry — rsr:

e SC —
m(rs + r¢)
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Mathematical w.l.o.g. # numerical w.l.o.g.



Ordering of vertices is important

To show mathematical results, we have assumed (without loss of generality) that
sources came first

When digraph is complete, no problem

When digraph not complete, not that clear

p. 75 — Mathematical w.l.o.g. # numerical w.l.o.g.



Digraphs for investigation of effect of vertex order

Q\. o
@ —p
e
\ o )
o A

@
€ ){/
® o //(V:/
N
@ e ©
Consider 10! = 3,628,800 vertex permutations on each graph

p. 76 — Mathematical w.l.o.g. # numerical w.l.o.g.
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Appendix — Used results



[Horn and Johnson, 2013]

Let A€ M, and X € C be given. Suppose that the eigenvalues of A are A1, ..., An.
Explain why pasxi(t) = pa(t — A\) and deduce from this identity that the eigenvalues
of A+ Al are A1+ A,..., A\p+ A
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Theorem A.2 ([Horn and Johnson, 2013, Theorem 2.4.9.2])

Let an infinite sequence A1, Az, ... € M, be given and suppose that limy_... Ax = A
(entrywise convergence)

Let A(A) = [M(A) - An(A)]T and M(Ax) = [M(Ak) - - - Aa(Ak)]T be given
presentations of the eigenvalues of A and Ay, respectively, for k =1,2,.... Let

Sp = {m : 7 is a permutation of {1,2,...,n}}. Then for each given £ > 0 there exists
a positive integer N = N(g) such that

mig _max {\)\W(;)(Ak) —Xi(A)|} <eforall k>N
wESH I=1,...,n
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[Varga, 2010]
Let A€ M,(C). Denote N ={1,...,n}. For i€ N, define

n(A) = > layl
JEN\{i}
to be the ith deleted row sums of A. Assume that rj(A) =0 if n=1. Let
Fi(A)={zeC||z—ail <ri(A)} ieN
be the ith Gershgorin disk of A and

r(A) = Jri(A)

ieN

be the Gershgorin set of A. ['; and I are closed and bounded in C. I';(A) is a disk
centred at a;; and with radius r;(A), i € N.
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For all A € My(C) and for all X\ € o(A), there exists k € N such that
|>\ — akk| S rk(A)
ie., X € T(A) and thus X € T(A). Since this is true for all A, we have

o(A) CT(A)

This also works with deleted column sums; indeed, just consider AT in this case.
However, this typically gives different disks
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[Fiedler, 2008]

A > 0 be irreducible. Then p(A) is a simple positive eigenvalue of A and there exists a
positive eigenvector x associated to p(A). No other nonnegative vector is associated
with any other eigenvalue of A
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Definition A.6
A matrix is of class Z, if it is in M,(R) and such that a;; <0, i #j,i,j=1,...,n

Zn:{AEMn:ai,jS(Li?é.j}

We also say that A € Z, has the
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Theorem A.7 ([Fiedler, 2008, Theorem 5.1.1])
Let A € Z,. TFAE and define matrices of class K (or nonsingular M-matrix)
1. There is a nonnegative vector x such that Ax > 0

2. There is a positive vector x such that Ax > 0
3. There is a diagonal matrix diag(D) > 0 such that the entries in AD = [wi]| are

such that
wij > Z ’W,'k|Vi
ki
4. For any B € Z, such that A > A, then B is nonsingular
5. Every real eigenvalue of any principal submatrix of A is positive.

6. All principal minors of A are positive
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Theorem A.7 ([Fiedler, 2008, Theorem 5.1.1] (continued))

7. Forall k=1,...,n, the sum of all principal minors is positive

8. Every real eigenvalue of A is positive
9. There exists a matrix C > 0 and a number k > p(A) such that A= kI — C

10.

11.
12.
13.
14.
15.
16.
17.
18.

There exists a splitting A= P — Q of the matrix A such that P~* >0, Q >0,
and p(P71Q < 1)

A is nonsingular and A~1 >0

The real part of any eigenvalue of A is positive
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Theorem A.8 ([Fiedler, 2008, Theorem 5.2.1])
Let A € Z,. TFAE and define matrices of class Ky

1.

SINEOIEE-SRCORIIS

A+ele K foralle >0

Every real eigenvalue of a principal submatrix of A is nonnegative
All principal minors of A are nonnegative

The sum of all principal minors of order k =1, ..., n is nonnegative
Every real eigenvaue of A is nonegative

There exists C > 0 and k > p(C) such that A=kl — C

Every eigenvalue of A has nonnegative real part
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Let A € Z be irreducible. TFAE
1. 3x>0st Ax>0
2. 3x>0st Ax>0and Ax#0
3. Ae K
4. A1 >0
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[Smith, 1995]

Theorem A.10 ([Smith, 1995, Corollary 4.3.2])
Let A be quasi-positive. Then s(A) € o(A) and 3v > 0 such that Av = s(A)v.
Moreover, Re A < s(A) for all A € o(A) \ {s(A)}. If, in addition, A is irreducible, then
1. s(A) has algebraic multiplicity 1
2. v > 0 and any eigenvector w > 0 of A is a positive multiple of v
3. If B is a matrix satisfying B > A, then S(B) > s(A)
4. If s(A) < 0 then —A™1 >0
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