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Why do this?

This work is mostly about dynamics

Looping back to our first few lectures: matrices are everywhere!

This is a (rather abstract) problem in theoretical ecology (or mathematical ecology?)

We will be using a surprising number of results we have already seen
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Rael & Taylor (2018)
A flow network model for animal movement on a landscape with application to invasion, Theoretical Ecology

P ′
i = PiB(Pi ) +

N∑
j=1

ajiPjm(Pj ,Pi )− Pi

N∑
j=1

aijm(Pi ,Pj)

where

m(Pi ,Pj) =
max{0, π(Pi )− π(Pj)}

dij
π(Pi ) =

Pi

Ki

dij distance from i to j , Ki carrying capacity

B(Pi ) =

ri

(
1− Pi

Ki

)
sources

−ri sinks
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Position of the problem

Assume a metapopulation of patches connected through transport of individuals
between them

Some patches are sources, others are sinks:

▶ Population tends to persist in sources

▶ Population tends to vanish in sinks

Ceteris paribus, does there exist a ratio of the number of source to sink patches s.t.
the population of the coupled system persists?
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Something like this...
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Obvious special cases
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This should not be good for the species
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This is probably good for the species
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Model for N patches

W.l.o.g.: S ≥ 0 first patches are sources, N − S remaining are sinks [w.l.o.g. but not
that trivial nonetheless]

Sources:

P ′
i = riPi

(
1− Pi

Ki

)
+

N∑
j=1

mijPj , i = 1, . . . ,S (1a)

Sinks:

P ′
i = −riPi +

N∑
j=1

mijPj , i = S + 1, . . . ,N (1b)

mii = −
N∑
j=1
j ̸=i

mji
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Vector form (v1)
P = (P1, . . . ,PN)

T

P′ = G(P)P+MP

where

G(P) = diag

(
r1

(
1− P1

K1

)
, . . . , rS

(
1− PS

KS

)
,−rS+1, . . . ,−rN

)

M =



−
N∑
j=1
j ̸=1

mj1 m12 · · · m1N

m21 −
N∑
j=1
j ̸=2

mj2 · · · m2N

. . .

mN1 mN2 · · · −
N∑
j=1
j ̸=N

mjN
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Vector form (v2)

Ps = (P1, . . . ,PS)
T (sources), Pt = (PS+1, . . . ,PN) (sinks)

P′
s = Gs(Ps)Ps +MsPs +MstPt

P′
t = −DtPt +MtsPs +MtPt

where

Gs(Ps) = diag

(
r1

(
1− P1

K1

)
, . . . , rS

(
1− PS

KS

))
Dt = diag (rS+1, . . . , rN)(

Ms Mst

Mts Mt

)
= M (2)
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Main result we want to get to

Theorem 8.1

∃ a unique critical interval Sint ⊂ (0,N) ⊂ R s.t. if the number of source patches
S < min(Sint), the population-free equilibrium (PFE) (P1, . . . ,PN) = (0, . . . , 0) of (1)
is locally asymptotically stable and if S > max(Sint), the PFE is unstable

If, additionally, the digraph of patches is strongly connected, then Sint reduces to a
single point Sc and the PFE is globally asymptotically stable in the case that S < Sc ;
in the case that S > Sc , there is a unique component-wise positive equilibrium P∗ that
is GAS with respect to RN

+ \ {0}
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Properties of the movement matrix M

Lemma 8.2

1. 0 ∈ σ(M) corresponding to left e.v. 1T [σ spectrum]

2. −M is a singular M-matrix

3. 0 = s(M) ∈ σ(M) [s spectral abscissa]

4. If M irreducible, then s(M) has multiplicity 1
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Proof of Lemma 8.2

1. The result is obvious: all column sums of M equal zero, i.e., 1lTM = 01lT

3. Using the Gershgorin Disk Theorem A.3 on M indicates that all Gershgorin disks
are tangent to the imaginary axis at (0, 0). As 0 is an eigenvalue of M, it follows that
s(M) = 0

4. This is a direct consequence of using the Perron-Frobenius Theorem A.5 on the
essentially nonnegative matrix M
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Proof of Lemma 8.2 (cont’d)

2. From the Gershgorin Disk Theorem A.3, all eigenvalues of −M belong to disks
that lie to the right of the imaginary axis and, from the zero column sums, are tangent
to that axis at (0, 0)

Now consider −M+ εI, for ε > 0. This shifts the centers of all Gershgorin disks to
the right by ε Theorem A.1 but does not change their radii, so all disks now lie strictly
to the right of the imaginary axis

Thus all eigenvalues of −M+ εI have positive real parts

Furthermore, −M and −M+ εI are of class Zn (Definition A.6). Theorem A.7(18)
=⇒ −M+ εI is of class K , i.e., an M-matrix. Since this is true for all ε > 0,
Theorem A.8(1) implies that −M is of class K0. So −M is an M-matrix and it is
singular
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Properties of the movement matrix M (cont’d)

Proposition 8.3 (D a diagonal matrix)

1. s(M+ dI) = d , ∀d ∈ R
2. s(M+ D) ∈ σ(M+ D) associated to v > 0. If M irreducible, s(M+ D) has

multiplicity 1 and is associated to v ≫ 0

3. diag(D) ≫ 0 =⇒ D −M invertible M-matrix and (D −M)−1 > 0

4. M irreducible and diag(D) > 0 =⇒ D −M nonsingular irreducible M-matrix and
(D −M)−1 ≫ 0
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Proof of Proposition 8.3

1. From Lemma 8.2(3), s(M) = 0. Therefore, using a “spectrum shift” Theorem A.1,
s(M+ dI) = d

2. These are direct consequences of applying the Perron-Frobenius Theorem A.5 to the
essentially nonnegative matrix M+ D
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Proof of Proposition 8.3 (cont’d)

3. Define d = mini=1,...,N dii . Then

diag(D) ≫ 0 =⇒ d > 0 =⇒ −M ≤ dI−M ≤ D −M

From Theorem A.8(5), dI−M is an M-matrix. Since s(M) = 0, using a “spectrum
shift”, all eigenvalues of dI−M have real parts larger than d , so dI−M is a
nonsingular M-matrix. In turn, Theorem A.7(4) =⇒ D −M nonsingular M-matrix
and Theorem A.7(11) leads to the conclusion

4. Suppose M irreducible. Let d = maxi=1,...,N dii > 0. Then D −M is irreducible
and diagonally dominant with all columns k = 1, . . . ,N such that dkk = d satisfying
the strict diagonal dominance requirement. (Other columns with nonzero entries in D
also satisfy the requirement.) As a consequence, [Varga, 2010, Theorem 1.11] implies
that D −M nonsingular and inverse positivity follows from Theorem A.9
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−M is also the Laplacian matrix of a digraph

Note that −M is also the Laplacian matrix of a directed graph

As such, finer estimates of the location of eigenvalues are available; see, e.g.,
[Agaev and Chebotarev, 2005]

However, the main concern here is with the spectral abscissa, so this is not needed
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The population-free equilibrium (PFE)

We find the PFE Ps = Pt = 0

At the PFE,
JSPFE = M+ (Ds ⊕−Dt) (3)

where Ds = Gs(0) = diag(r1, . . . , rS)

The matrix
Ds ⊕−Dt = diag(r1, . . . , rS ,−rS+1, . . . ,−rN)

has S diagonal entries > 0 and N − S diagonal entries < 0
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Mechanism of the existence proof

Start with S = 0 (only sinks)
=⇒ Ds vacuous and Ds ⊕−Dt = diag(−r1, . . . ,−rN)
=⇒ s(JSPFE ) < 0

Finish with S = N (only sources)
=⇒ Dt vacuous and Ds ⊕−Dt = diag(r1, . . . , rN)
=⇒ s(JSPFE ) > 0

Eigenvalues of JSPFE depend continuously of entries of JSPFE, so s(JSPFE) changes signs,
we are done.. if we are happy with a lot of uncertainty about behaviour of s(JSPFE)
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Continuous perturbation of the spectrum

We have assumed that patches are ordered so that the first S patches are sources and
the remaining N − S are sinks

From previous argument, as S varies from 0 to N, there should be a point where
s(JSPFE) changes signs

Thinking about it, s(JSPFE) can probably be made to vary continuously

We need to describe a continuous perturbation of the spectrum of JSPFE as S varies
from 0 to N
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For S ∈ {0, . . . ,N − 1}

0 S

ε

S + 1 N

0 S

ε

S + 1 N

0 S

ε

S + 1 N

JS ,εPFE = M+ diag(r1, . . . , rS , ε,−rS+2, . . . ,−rN)

where ε ∈ [−rS+1, rS+1] is in (S + 1)th position
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For S ∈ [0,N]

JSPFE = Jξ,εPFE, with ξ = ⌊S⌋, ε = 2(S − ⌊S⌋)ri − ri (4)

where i = ⌊S⌋+ 1 if S < N and i = N when S = N

Generally we vary ζ continuously in each [−rS+1, rS+1]

J
S,−rS+1

PFE = JSPFE and J
S ,rS+1

PFE = JS+1
PFE

(4) translates a continuous value of S into a pair (ξ, ε) giving the actual (integer)
number ξ of source patches and an “offset” ε
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The spectral abscissa s(JSPFE) switches signs

Lemma 8.4

Let r = min
i=1,...,N

{ri}

Then s(J0PFE) ≤ −r < 0 and s(JNPFE) ≥ r > 0
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Proof of Lemma 8.4

If S = 0, then
J0PFE = M+ diag(−r1, . . . ,−rN)

From Proposition 8.2(3), s(M) = 0. Note that this follows from using the Gershgorin
Disk Theorem A.3, where for M, all Gershgorin disks are left of the imaginary axis
and tangent to origin of the complex plane

Then the centres of the Gershorin disks of M+ diag(−r1, . . . ,−rN) are shifted left by
r1, . . . , rN while the radii remain the same

As a consequence, the closest disk(s) to the origin of the complex plane have centre(s)
−r and thus s(M+ diag(−r1, . . . ,−rN)) ≤ −r < 0
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Proof of Lemma 8.4 (cont’d)

If S = N, then
JNPFE = M+ diag(r1, . . . , rN)

For i = 1, . . . ,N, define ei = ri − r ≥ 0, then

JNPFE = M+ rI+ diag(e1, . . . , eN)

where, by Proposition 8.3(1), s(M+ rI) = r > 0
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Proof of Lemma 8.4 (cont’d)

First, assume M irreducible

Then JNPFE is an irreducible essentially nonnegative matrix

Since JNPFE ≥ M+ rI, Theorem A.10(3) =⇒

s(JNPFE) ≥ s(M+ rI) = r

with the inequalities being strict if there exists at least one ei > 0
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Proof of Lemma 8.4 (cont’d)

Now assume that M reducible

Then ∃ permutation matrix P such that PTMP is block upper triangular with
irreducible blocks on the diagonal

Call C the number of such blocks, i.e., the number of strong components in the
digraph of patches

For i = 1, . . . ,C , denote n(i) the number of patches in strong component i and
k(1), . . . , k(n(i)) their indices

By abuse of notation, denote Mii the corresponding diagonal block in the reduced
form of M
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Proof of Lemma 8.4 (cont’d)

Applying the permutation matrix P to JNPFE gives a block upper triangular matrix

PT JNPFEP

with, for i = 1, . . . ,C , the n(i)× n(i) diagonal blocks Mii + Ei being irreducible and
with

Ei = rI+ diag
(
ek(1), . . . , ek(n(i))

)
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Proof of Lemma 8.4 (cont’d)

Fix i = 1, . . . ,C and let v be a positive right eigenvector of Mii + Ei corresponding to
the spectral abscissa s1 and w be a positive left eigenvector of Mii + rI corresponding
to the spectral abscissa s2. Then

s1w
Tv = wT

(
Mii + rI+ diag(ek(1), . . . , ek(n(i)))

)
v

= wT (Mii + rI)v +wTdiag(ek(1), . . . , ek(n(i)))v

= s2w
Tv +wTdiag(ek(1), . . . , ek(n(i)))v

≥ s2w
Tv

the inequality being strict if at least one of the ek(j), j = 1, . . . , n(i), is positive. Hence
s1 ≥ s2, i.e., s(Mii + Ei ) ≥ s(Mii + rI). This is true for all diagonal blocks. Now,
since PT JNPFEP is block upper triangular,

s(JNPFE) = s(PT JNPFEP) = max{s(M11 + E1), . . . , s(MCC + EC )}
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Proof of Lemma 8.4 (cont’d)

As PT (M+ rI)P is also block upper triangular,

r = s(M+ rI) = max{s(M11 + rI), . . . , s(M11 + rI)}

As a consequence, s(JNPFE) ≥ r > 0
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Thus, Sc necessarily lies in the open interval (0,N). The following lemma is of interest
and the method of proof of the second assertion is used again later

Lemma 8.5

1. For all S ∈ (0,N) ⊂ R,
J0PFE < JSPFE < JNPFE (5)

2. JSPFE is an increasing function of S , in the sense that

∀S1,S2 ∈ [0,N] ⊂ R such that S1 < S2, JS1PFE < JS2PFE (6)
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Proof of Lemma 8.5

1. Let S ∈ (0,N) be fixed. Using (4), we get a pair (ξ, ε) ∈ {0, . . . ,N} × [−ri , ri ], for

i = 1 . . .N, such that JSPFE = Jξ,εPFE. We have

Jξ,εPFE − J0PFE = M+ diag(r1, . . . , rξ, ε,−rξ+2, . . . ,−rN)

−M− diag(−r1, . . . ,−rN)

= diag(2r1, . . . , 2rξ, ε+ rξ+1, 0, . . . , 0)

> 0

since ε ∈ [−rξ+1, rξ+1]

Computing JNPFE − Jξ,εPFE at the other endpoint works similarly, giving (5)
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Proof of Lemma 8.5 (cont’d)

2. Use (4) again to obtain two pairs (ξ1, ε1) and (ξ2, ε2), where, by the assumption
S1 < S2, ξ1 ≤ ξ2. First, assume that ξ1 < ξ2. Then

Jξ2,ε2PFE − Jξ1,ε1PFE = diag(r1, . . . , rξ2 , ε2,−rξ2+2, . . . ,−rN)

− diag(r1, . . . , rξ1 , ε1,−rξ1+2, . . . ,−rN)

= diag(0, . . . , 0, rξ1+1 − ε1, 2rξ1+2, . . . , 2rξ2 , ε2 + rξ2+1, 0, . . . , 0)

> 0

since ε1 ∈ [−rξ1+1, rξ1+1], and ε2 ∈ [−rξ2+1, rξ2+1]

Now assume ξ1 = ξ2. Then, since S1 < S2, we find that ε1 < ε2 and the diagonal
matrix in the subtraction Jξ2,ε2PFE − Jξ2,ε1PFE takes the form
diag(0, . . . , 0, ε2 − ε1, 0, . . . , 0) > 0. So (6) holds
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Proposition 8.6

M reducible =⇒ s(JSPFE) nondecreasing for S ∈ [0,N]

M irreducible =⇒ s(JSPFE) increasing for S ∈ [0,N]

=⇒ ∃Sint ⊂ (0,N) (resp. Sc ∈ (0,N)) s.t. PFE LAS if S < min(Sint) (resp. S < Sc)
and PFE unstable if S > max(Sint) (resp. S > Sc)
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Proof of Proposition 8.6

First, assume M is irreducible. Then, by Lemma 8.5 and the fact that M is irreducible
(and thus so is JSPFE), Theorem A.10(3) gives the result

p. 37 – Local analysis of the model



Proof of Proposition 8.6 (cont’d)

Now, assume that M is reducible. =⇒ ∃ permutation matrix P such that PTMP
block upper triangular. Consider S ∈ [0,N] ⊂ R and use (4) to obtain a corresponding

pair (ξ, ε) ∈ {0, . . . ,N} × [−rξ, rξ]. Apply the same permutation to Jξ,εPFE, giving

PT Jξ,εPFEP =


M11 + E1 M12 · · · M1N

0 M22 + E2

. . .

0 · · · 0 MCC + EC


where C is the number of strong components in the digraph of patches and

E1 ⊕ · · · ⊕ EC = PTdiag(r1, . . . , rξ, ε,−rξ+2, . . . ,−rN)P

with matrix on right hand side having ε as (ξ + 1)th diagonal entry. As in the proof of
Lemma 8.4, we have denoted Mii the diagonal blocks in the reduced form of M
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Proof of Proposition 8.6 (cont’d)

For j = 1, . . . ,C , each of the matrices Mjj is irreducible; C − 1 of the matrices Ej are
diagonal with entries −ri and ri on the diagonal (with some having only −ri , some
having only ri and some having both types of entries)

The remaining Ej matrix is diagonal, with potentially −ri and ri as the others, but also
ε. Call η ∈ {1, . . . ,C} the index of the strong component containing the matrix with ε

As a consequence, for all j = 1, . . . ,C , Mjj + Ej are irreducible essentially nonnegative
matrices, with only matrix Mηη + Eη having an ε added to one of its diagonal entries
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Proof of Proposition 8.6 (cont’d)

As PT Jξ,εPFEP is block upper triangular, we have

s
(
PT Jξ,εPFEP

)
= max {s(M11 + E1), . . . , s(MCC + EC )}

Except for Mηη + Eη, all matrices Mii + Ei have fixed spectral abscissa. Concerning
matrix Mηη + Eη, it is clear that the reasoning in the proof of Lemma 8.5(2) carries
through and thus,

∀ε1, ε2 ∈ [−rξ+1, rξ+1], ε1 < ε2 =⇒ Jξ,ε1PFE < Jξ,ε2PFE

Hence s(Jξ,εPFE) is the maximum of a set of C functions, C − 1 of which are constant in
ε and one of which is increasing in ε. It now follows that s(JSPFE) is a nondecreasing
function of S , as desired
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We now can do Part 1 of Theorem 8.9

As JSPFE is essentially nonnegative, its spectral abscissa s(JSPFE) is an eigenvalue.
Eigenvalues of JSPFE depend continuously on S (Theorem A.2). By Lemma 8.4,
s(J0PFE) < 0 and s(JNPFE) > 0, so by the Intermediate Value Theorem, there exists at
least one point Sc ∈ (0,N) such that s(JS

c

PFE) = 0

In the case where M is irreducible, s(JSPFE) is increasing by Proposition 8.6 and as a
consequence, Sc is unique. In the case where M is reducible, s(JSPFE) is
nondecreasing, therefore there exists an interval Sint , possibly reduced to a single
point, such that s(JSPFE) = 0 for all S ∈ Sint

The usual criteria for local asymptotic stability and instability of equilibria then imply
the first part of Theorem 8.9 for S < Sc and S > Sc (irreducible case) or
S < min(Sint) and S > max(Sint) (reducible case)
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▶ M reducible: ∃Sint ⊂ (0,N) s.t. PFE LAS if S < min(Sint) and PFE unstable if
S > max(Sint)

▶ M irreducible: ∃Sc ∈ (0,N) s.t. PFE LAS if S < Sc and PFE unstable if S > Sc

s (J PFE
S )

SN

−r

r

s (J PFE
S )

SN

−r

r
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As indicated by [Deutsch and Neumann, 1985], perturbation of the diagonal leads to
convex changes in the spectral abscissa on each sub-interval
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We have a reproduction number when M irreducible

Proposition 8.7

Suppose M irreducible. Define the basic reproduction number

R0 = ρ
((

Ms +Mst(Dt −Mt)
−1Mts

)−1Ds

)
(7)

where Ms ,Mt ,Mst ,Mts are defined as in (2), Ds = diag(r1, . . . , rS) and
Dt = diag(rS+1, . . . , rN). Then

s(JSPFE) < 0 ⇐⇒ R0 < 1 and s(JSPFE) > 0 ⇐⇒ R0 > 1 (8)
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Proof of Proposition 8.7

Write (3) as
JSPFE = M+ D̃s − D̃t

where D̃s = Ds ⊕ 0N−S×N−S and D̃t = 0S×S ⊕Dt . Let −α be the spectral abscissa of
M+ D̃s − D̃t . From Proposition 8.3(2), there is a vector v ≫ 0 such that

(M+ D̃s − D̃t)v = −αv

In other words,
αv = (D̃t −M)v − D̃sv

p. 48 – Local analysis of the model



Proof of Proposition 8.7 (cont’d)

By the assumption of irreducibility of M, it follows from Proposition 8.3(4) that
D̃t −M is an irreducible nonsingular M-matrix and (D̃t −M)−1 ≫ 0

Then
α
(
D̃t −M

)−1
v = v −

(
D̃t −M

)−1 D̃sv

with the matrix (D̃t −M)−1D̃s > 0

As a consequence, from the Perron-Frobenius Theorem A.5, the spectral radius of
(D̃t −M)−1D̃s is an eigenvalue and is associated to a nonnegative eigenvector
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Proof of Proposition 8.7 (cont’d)

Let u be such an eigenvector, normalised so that uTv = 1. Then

αuT
(
D̃t −M

)−1
v = uTv

(
1− ρ

{(
D̃t −M

)−1 D̃s

})

Thus
α > 0 ⇐⇒ ρ

{(
D̃t −M

)−1 D̃s

}
< 1

and
α < 0 ⇐⇒ ρ

{(
D̃t −M

)−1 D̃s

}
> 1
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Proof of Proposition 8.7 (cont’d)

From the structure of D̃s , the spectral radius of (D̃t −M)−1D̃s is the spectral radius of(
D̃t −M

)−1

[11]
Ds

where (D̃t −M)−1
[11] is the (1,1) block in (D̃t −M)−1

Writing M as (2), we have by the formula for the inverse of a 2× 2 block matrix that(
D̃t −M

)−1

[11]
= (−Ms −Mst(Dt −Mt)

−1Mts)
−1
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Proof of Proposition 8.7 (cont’d)

Clearly,

ρ
(
(−Ms −Mst(Dt −Mt)

−1Mts)
−1Ds

)
= ρ

(
(Ms +Mst(Dt −Mt)

−1Mts)
−1Ds

)
giving the result
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So..

we are done!

.. Are we? The result is only local, can we go further?
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System (1) is cooperative

Jacobian of (1):

J(Ps ,Pt) =

(
G′

s(Ps)Ps + Gs(Ps) +Ms Mst

Mts −Dt +Mt

)
(9)

where

G′
s(Ps) = diag

(
− r1
K1

, . . . ,− rS
Ks

)

Thus
J(Ps ,Pt) = M+

(
(G′

s(Ps)Ps + Gs(Ps))⊕−Dt

)
with G′

s(Ps)Ps + Gs(Ps) and −Dt diagonal

=⇒ system (1) is cooperative
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A theorem of Hirsch

So, to move forward, we would like to apply the following result

Theorem 8.8 (Th. 6.1 in Hirsch (1984) – BAMS 11(1))

Let F be a C 1 vector field in Rn with flow ϕ preserving Rn
+ for t > 0 and strongly

monotone in Rn
+. Suppose that the origin is an equilibrium and all trajectories in Rn

+

are bounded. Suppose the matrix-valued map DF : Rn
+ → Rn×n is strictly

antimonotone, i.e.,
x > y =⇒ DF(x) < DF(y)

Then either all trajectories in Rn
+ go to the origin, or there exists a unique equilibrium

P⋆ ∈ IntRn
+ and all trajectories in Rn

+ \ {0} limit to P⋆
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OK, nice, but..

Take
P1 = (0, . . . , 0, ⋆, . . . , ⋆) and P2 = (0, . . . , 0, ⋆, . . . , ⋆)

have their first S entries zero, i.e., P1 = (0s ,P1
t ) and P2 = (0s ,P2

t ); assume P1 > P2,
i.e., P1

t > P2
t

Then

J(0s ,P
1
t ) = M+

(
(G′

s(0s)0s + Gs(0s))⊕−Dt

)
= M+ (Ds ⊕−Dt)

= J(0s ,P
2
t )

i.e.,
JSP1

= JSP2

=⇒ (1) is not strictly antimonotone
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(non) lasciate ogne sperenza, voi ch’intrate

Except for strict antimonotonicity of F, all hypotheses of [Hirsch (1984) – Th. 6.1] are
satisfied:

▶ in the case M irreducible, (1) is strongly monotone (by [Hirsch (1984) – Th. 1.7])

▶ the origin is an equilibrium

▶ all solutions of (1) are bounded in RN
+ (not shown here, but not hard)

=⇒ by other results (e.g., Hirsch ibid), there exists P∗ ≫ 0

What is the use of strict antimonotonicity in the proof of [Hirsch (1984) – Th. 6.1]? ..
To show uniqueness of P∗
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More precisely: let z ∈ (0,P∗), where P∗ ≫ 0 is a nontrivial equilibrium

Strict antimonotonicity =⇒ F(z) > 0, and we can then proceed with the remainder
of the proof of [Hirsch (1984) – Th. 6.1]

Let us show that we indeed have F(z) > 0 for (1), despite the lack of strict
antimonotonicity

As in [Hirsch (1984) – Th. 6.1]: for i = 1, . . . ,N, let

gi : [0, 1] → R
s 7→ Fi (sP

∗)
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Then gi (0) = gi (1) = 0 for i = 1, . . . ,N and, for i = S + 1, . . . ,N (sinks),

gi (s) = −ri sP
∗
i +

N∑
j=1

mijsP
∗
j =

riP
∗
i +

N∑
j=1

mijP
∗
j

 s = 0

However, for i = 1, . . . ,S (sources),

gi (s) = ri

(
1−

sP∗
i

Ki

)
sP∗

i +
N∑
j=1

mijsP
∗
j

Ha!

g ′′
i (s) = −

2riP
∗2
i

K
< 0, i = 1, . . . ,S

=⇒ for i = 1, . . . ,S , gi (s) > 0 when s ∈ (0, 1)
=⇒ when S > 0, F(z) > 0, ∀z ∈ (0,P∗)
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And we can then carry on with the remainder of the proof of [Hirsch (1984) – Th. 6.1]

To finish, the case S = 0 is easy:(
N∑
i=1

Pi

)′

= −
N∑
i=1

riPi < 0

since at least one of the Pi (0) > 0

=⇒
(∑N

i=1 Pi

)
→ 0 =⇒ limt→∞ Pi (t) = 0 for i = 1, . . . ,N

Et hop! □
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To conclude (mathematically)

Theorem 8.9

There exists a critical interval Sint ⊂ (0,N) ⊂ R s.t.

▶ S < min(Sint) =⇒ PFE LAS

▶ S > max(Sint) =⇒ PFE instable

Additionally, if the patch digraph is strongly connected, then

▶ Sint is reduced to a point Sc

▶ S < Sc =⇒ PFE GAS

▶ S > Sc =⇒ ∃!P∗ ≫ 0 GAS for RN
+ \ {0}
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In the 2 figures that follow:

▶ N = 50

▶ r = ri , ∀i = 1, . . . ,N

▶ mij = m, ∀i , j = 1, . . . ,N s.t. mij > 0

▶ plot is value of Sc as a function of m and r

Figure 1: ring of patches

Figure 2: complete digraph
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Case of complete homogeneous movement

Proposition 8.10

Suppose that the movement digraph is complete and that mij = m for i , j = 1, . . . ,N,
i ̸= j

Suppose that S ∈ {1, . . . ,N − 1}, that for i = 1, . . . ,S , ri = rs and that for
i = S + 1, . . . ,N, ri = rt

Then

Sc =
mNrt − rsrt
m(rs + rt)

(10)

If rs = rt = r , then

Sc =
N

2
− r

2m
(11)
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Proof of Prop 8.10 uses equitable partitions

Section 9.3 in Algebraic Graph Theory, Godsil & Royle (2013)

An equitable partition π splits a graph X into cells Ci , i = 1, . . . , r , s.t. for a vertex
u in cell Ci , the number of neighbours in cell Cj is a constant bij that does not depend
on u

⇐⇒ the subgraph of X induced by each cell is regular [vertices have same degree]
and edges joining two distinct cells form a semiregular bipartite graph [vertices have
same degree in each bipartite component]

The digraph with the r cells of π as vertices and the bij arcs from the i th to the j th cell
of π is the quotient X/π of X on π. The adjacency matrix of X/π is A(X/π) = [bij ]
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Characterising an equitable partition

Lemma 8.11 (A friendly characterisation)

X graph, A(X ) its adjacency matrix, π a partition of V (X ) with characteristic matrix
P. Then

π equitable ⇐⇒ column space of P is A-invariant
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Write

JSPFE =

(
mJ− NmI+ rsI mJ

mJ mJ− NmI− rtI

)
(12)

with J matrix of all 1’s

Consider (12) as the adjacency matrix of a digraph G

Suppose partition π splits G in two cells, {Si}i=1,...,S (sources) and {Ti}i=S+1,...,N

(sinks)

The characteristic matrix of π is the N × 2-matrix

C =

(
1S 0S

0N−S 1N−S

)
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We have

JSPFE1 = JSPFE

(
1S

1N−S

)
=

(
rs1S

−rt1N−S

)

Thus the column space of C is JSPFE-invariant =⇒ π is equitable
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Properties of equitable partitions

Lemma 8.12

π equitable partition of graph X with characteristic matrix P, and B = A(X/π). Then
AP = PB and B = (PTP)−1PTAP

Theorem 8.13

π equitable partition of graph X =⇒ characteristic polynomial of A(X/π) divides
characteristic polynomial of A(X )
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=⇒ the quotient matrix BS
PFE satisfies

BS
PFE = (CTC )−1CT JSPFEC

=⇒ BS
PFE =

(
mS −mN + rs m(N − S)

mS −(mS + rs)

)

And σ(BS
PFE) ⊂ σ(JSPFE)
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BS
PFE essentially nonnegative (and clearly irreducible)

=⇒ ∃!vp ≫ 0 s.t. BS
PFEvp = λpvp = s(BS

PFE)vp

Then JSPFEC = CBS
PFE

So
JSPFECvp = CBS

PFEvp = λpCvp

and Cvp is an eigenvector of JSPFE that is also ≫ 0

As the only eigenvector ≫ 0 of JSPFE corresponds to s(JSPFE), we have
s(JSPFE) = s(BS

PFE)
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To compute Sc , recall Sc is value of S where PFE loses stability

Consider BS
PFE. We have tr(BS

PFE) = −mN + rs − rt and

det(BS
PFE) = −mS(rs + rt)− rsrt +mNrt

One shows easily that det(·) gouverns stability

=⇒ Sc =
mNrt − rsrt
m(rs + rt)

□

p. 74 – An interesting special case



Position of the problem

A metapopulation of sources and sinks with explicit movement

The movement matrix

Local analysis of the model

Global behaviour

An interesting special case

Mathematical w.l.o.g. ̸= numerical w.l.o.g.



Ordering of vertices is important

To show mathematical results, we have assumed (without loss of generality) that
sources came first

When digraph is complete, no problem

When digraph not complete, not that clear
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Digraphs for investigation of effect of vertex order
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Consider 10! = 3,628,800 vertex permutations on each graph
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Appendix – Used results



[Horn and Johnson, 2013]

Theorem A.1 ([Horn and Johnson, 2013, Problem 1.2.P8])

Let A ∈ Mn and λ ∈ C be given. Suppose that the eigenvalues of A are λ1, . . . , λn.
Explain why pA+λI(t) = pA(t − λ) and deduce from this identity that the eigenvalues
of A+ λI are λ1 + λ, . . . , λn + λ
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Theorem A.2 ([Horn and Johnson, 2013, Theorem 2.4.9.2])

Let an infinite sequence A1,A2, . . . ∈ Mn be given and suppose that limk→∞ Ak = A
(entrywise convergence)

Let λ(A) = [λ1(A) · · ·λn(A)]
T and λ(Ak) = [λ1(Ak) · · ·λn(Ak)]

T be given
presentations of the eigenvalues of A and Ak , respectively, for k = 1, 2, . . .. Let
Sn = {π : π is a permutation of {1, 2, . . . , n}}. Then for each given ε > 0 there exists
a positive integer N = N(ε) such that

min
π∈Sn

max
i=1,...,n

{
|λπ(i)(Ak)− λi (A)|

}
≤ ε for all k ≥ N
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[Varga, 2010]

Let A ∈ Mn(C). Denote N = {1, . . . , n}. For i ∈ N, define

ri (A) =
∑

j∈N\{i}

|aij |

to be the ith deleted row sums of A. Assume that ri (A) = 0 if n = 1. Let

Γi (A) = {z ∈ C | |z − aii | ≤ ri (A)} i ∈ N

be the ith Gershgorin disk of A and

Γ(A) =
⋃
i∈N

Γi (A)

be the Gershgorin set of A. Γi and Γ are closed and bounded in C. Γi (A) is a disk
centred at aii and with radius ri (A), i ∈ N.
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Theorem A.3 (Gershgorin, 1931)

For all A ∈ Mn(C) and for all λ ∈ σ(A), there exists k ∈ N such that

|λ− akk | ≤ rk(A)

i.e., λ ∈ Γk(A) and thus λ ∈ Γ(A). Since this is true for all λ, we have

σ(A) ⊆ Γ(A)

Remark A.4

This also works with deleted column sums; indeed, just consider AT in this case.
However, this typically gives different disks
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[Fiedler, 2008]

Theorem A.5 (Perron-Frobenius [Fiedler, 2008, Theorem 4.2.1])

A ≥ 0 be irreducible. Then ρ(A) is a simple positive eigenvalue of A and there exists a
positive eigenvector x associated to ρ(A). No other nonnegative vector is associated
with any other eigenvalue of A
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Definition A.6

A matrix is of class Zn if it is in Mn(R) and such that ai ,j ≤ 0, i ̸= j , i , j = 1, . . . , n

Zn = {A ∈ Mn : ai ,j ≤ 0, i ̸= j}

We also say that A ∈ Zn has the Z -sign pattern
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Theorem A.7 ([Fiedler, 2008, Theorem 5.1.1])

Let A ∈ Zn. TFAE and define matrices of class K (or nonsingular M-matrix)

1. There is a nonnegative vector x such that Ax > 0

2. There is a positive vector x such that Ax > 0

3. There is a diagonal matrix diag(D) > 0 such that the entries in AD = [wik ] are
such that

wii >
∑
k ̸=i

|wik |∀i

4. For any B ∈ Zn such that A ≥ A, then B is nonsingular

5. Every real eigenvalue of any principal submatrix of A is positive.

6. All principal minors of A are positive
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Theorem A.7 ([Fiedler, 2008, Theorem 5.1.1] (continued))

7. For all k = 1, . . . , n, the sum of all principal minors is positive

8. Every real eigenvalue of A is positive

9. There exists a matrix C ≥ 0 and a number k > ρ(A) such that A = kI− C

10. There exists a splitting A = P − Q of the matrix A such that P−1 ≥ 0, Q ≥ 0,
and ρ(P−1Q < 1)

11. A is nonsingular and A−1 ≥ 0

12.

13.

14.

15.

16.

17.

18. The real part of any eigenvalue of A is positive
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Theorem A.8 ([Fiedler, 2008, Theorem 5.2.1])

Let A ∈ Zn. TFAE and define matrices of class K0

1. A+ εI ∈ K for all ε > 0

2. Every real eigenvalue of a principal submatrix of A is nonnegative

3. All principal minors of A are nonnegative

4. The sum of all principal minors of order k = 1, . . . , n is nonnegative

5. Every real eigenvaue of A is nonegative

6. There exists C ≥ 0 and k ≥ ρ(C ) such that A = kI− C

7. Every eigenvalue of A has nonnegative real part
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Theorem A.9 ([Fiedler, 2008, Theorem 5.2.10])

Let A ∈ Z be irreducible. TFAE

1. ∃x > 0 s.t. Ax > 0

2. ∃x > 0 s.t. Ax ≥ 0 and Ax ̸= 0

3. A ∈ K

4. A−1 > 0
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[Smith, 1995]

Theorem A.10 ([Smith, 1995, Corollary 4.3.2])

Let A be quasi-positive. Then s(A) ∈ σ(A) and ∃v > 0 such that Av = s(A)v.
Moreover, Re λ < s(A) for all λ ∈ σ(A) \ {s(A)}. If, in addition, A is irreducible, then

1. s(A) has algebraic multiplicity 1

2. v ≫ 0 and any eigenvector w > 0 of A is a positive multiple of v

3. If B is a matrix satisfying B > A, then S(B) > s(A)

4. If s(A) < 0 then −A−1 ≫ 0
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