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Compartmental models

▶ Have become synonymous with epidemiological modèles

▶ Many epidemiological models are compartmental models, but the development of
compartmental models in the 1970-1980s was not at all specific to epidemiology

▶ See in particular the works of John Jacquez, Carl Simon, GG Walter

▶ Unjustly fell into disuse: there are some very nice results in the area
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Compartment (Jacquez 1979)

A compartment is an amount of some material which acts kinetically like
a distinct, homogeneous, well-mixed amount of material. A compartmental
system consists of one or more compartments which interact by exchanging
the material. There may be inputs into one or more compartments from outside
the system and there may be excretions from the compartments of the system.
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▶ qi size of the compartment, i.e., quantity
of kinetically homogeneous material
present in i ; qi ≥ 0

▶ fij and fji transfer coefficients/functions
▶ f0i excretion coefficient/function
▶ ii (t) entries from outside the system
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What is a model?

The essence of modeling

A model is a simplified representation of a real-world system. It is an abstraction
designed to capture the essential features and dynamics of the system being studied

Purpose:
▶ Understand complex systems
▶ Predict future behavior
▶ Test hypotheses
▶ Guide experimental design
▶ Inform policy decisions

Characteristics:
▶ Always a simplification
▶ Based on assumptions
▶ Domain-specific
▶ Can be mathematical, conceptual, or

physical
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What is a compartmental model?

Definition 1 (Compartmental model)

A compartmental model is a mathematical model that divides a system into a finite
number of distinct, homogeneous, and well-mixed subpopulations, called
compartments. The model describes the flow of individuals or material between these
compartments over time

Compartment
1 (x1)

Compartment
2 (x2)

Compartment
3 (x3)

k21 k32
k12 k23

Input Output

Key assumption: The population within each compartment is instantaneously and perfectly
mixed
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Early history of compartmental ideas
▶ Early 20th century: Origins in chemical kinetics and epidemiology

▶ Ross (1911): Modeled malaria transmission
▶ Kermack & McKendrick (1927): Developed the foundational SIR model for

epidemics
▶ Mid-20th century: Formalization and application in pharmacokinetics and

physiology
▶ John A. Jacquez (1922-2002): A pioneer in the mathematical theory of

compartmental systems
▶ Authored the seminal text "Compartmental Analysis in Biology and Medicine"
▶ Formalized concepts of model specification, structural identifiability, and linear

system properties
▶ Carl P. Simon: Worked extensively on the qualitative analysis of nonlinear

dynamical systems, including epidemiological models
▶ Contributed significantly to understanding the stability of equilibria and the

threshold phenomena in disease dynamics
▶ G. G. Walter: Investigated the structural properties of compartmental models,

particularly identifiability
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Applications across disciplines
Epidemiology
▶ Modeling infectious disease spread

(SIR, SEIR)
▶ Vaccine strategy evaluation
▶ Predicting pandemic trajectories (e.g.,

COVID-19)

Pharmacology
▶ Pharmacokinetics (PK) and

Pharmacodynamics (PD)
▶ Drug absorption, distribution,

metabolism, and excretion (ADME)
▶ Dosing regimen design

Ecology
▶ Nutrient cycling in ecosystems
▶ Population dynamics
▶ Toxin flow in food webs

Other fields
▶ Chemical engineering (reactor models)
▶ Economics (flow of capital)
▶ Tracer kinetics in physiology
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The Building Blocks

▶ Compartments (Ci): Subpopulations or amounts of material.
▶ Example: Susceptible (S), Infected (I), Recovered (R) individuals.

▶ State Variables (xi (t)): The amount or concentration of material in compartment
i at time t. The state of the system is the vector x(t) = [x1(t), x2(t), . . . , xn(t)]

T .
▶ Flows (Fluxes): The rate of transfer of material between compartments or

between a compartment and the outside world (environment).
▶ Let fij be the rate of flow from compartment j to compartment i .
▶ f0j is the rate of flow from compartment j to the environment (excretion/output).
▶ fi0 is the rate of flow from the environment to compartment i (input).

▶ Rate Constants (kij): Parameters that determine the rate of flow. In linear
models, fij = kijxj .
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Mathematical formulation: the ODE system
The dynamics of a compartmental system are described by a system of first-order
ordinary differential equations (ODEs).

The fundamental equation of balance

For each compartment i , the rate of change of its state variable xi is given by:

dxi
dt

= (Sum of all flows into Ci )− (Sum of all flows out of Ci )

Mathematically, for an n-compartment system:

dxi
dt

= fi0(t) +
n∑

j=1,j ̸=i

fij(x)−
n∑

j=0,j ̸=i

fji (x)

where:
▶ fi0(t) is the input to compartment i .
▶ fij(x) is the flow from j to i .
▶ fji (x) is the flow from i to j .
▶ f0i (x) is the excretion from compartment i .
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Example: a simple two-compartment model
Consider a system where a drug is injected into the blood (Compartment 1) and then
moves to the tissues (Compartment 2) and is also eliminated from the blood.

Input I (t)

Blood (x1) Tissues (x2)

Elimination

k21

k12k01

Assuming linear, first-order kinetics (fij = kijxj):

dx1

dt
= I (t) + k12x2 − k21x1 − k01x1

dx2

dt
= k21x1 − k12x2
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Linear vs. nonlinear models

Linear Compartmental Models
▶ All flow rates fij are linear functions of

the state variables: fij = kijxj .
▶ The system of ODEs is linear:

dx
dt

= Ax + b(t)

▶ A is the compartmental matrix.
▶ Analytically tractable.
▶ Common in tracer kinetics and

pharmacokinetics.

Nonlinear Compartmental Models
▶ At least one flow rate fij is a nonlinear

function of the state variables.
▶ Example: fij =

Vmaxxj
Km+xj

(Michaelis-Menten kinetics) or
fij = βxixj (mass action, as in
epidemiology).

▶ The system of ODEs is nonlinear.
▶ Often require numerical methods and

qualitative analysis.
▶ Essential for modeling population

dynamics, epidemiology, and enzyme
kinetics.

Key distinction

The nature of the model (linear vs. nonlinear) dictates the mathematical tools available
for its analysis
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The state space and positivity

Definition 2 (State Space)

The state space is the set of all possible values that the state vector x(t) can take.

For compartmental models, the state variables represent physical quantities (e.g.,
concentrations, populations), which cannot be negative
Therefore, the physically meaningful state space is the non-negative orthant:

Ω = Rn
≥0 = {x ∈ Rn : xi ≥ 0 for all i = 1, . . . , n}

Positivity of Solutions

A crucial property of a well-posed compartmental model is that if the system starts with
non-negative initial conditions, x(0) ∈ Ω, then the solution x(t) must remain in Ω for
all t > 0. This is also known as the forward invariance of Rn

≥0.
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Condition for Positivity of Solutions

Theorem 3 (Positivity Condition, often attributed to Jacquez)

Consider the system dx
dt = f (x) with x(0) ≥ 0. The non-negative orthant Rn

≥0 is
forward invariant if and only if for each i = 1, . . . , n:

fi (x) ≥ 0 whenever x ∈ Rn
≥0 and xi = 0.

Interpretation:
▶ If a compartment is empty (xi = 0), the net flow into it must be non-negative
▶ In other words, you cannot have a net flow out of an empty compartment
▶ For linear models dx

dt = Ax , this condition is equivalent to requiring that all
off-diagonal elements of the compartmental matrix A are non-negative (aij ≥ 0 for
i ̸= j)
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The Compartmental Matrix (Linear Case)
For a linear system dx

dt = Ax , the matrix A has special properties.

dxi
dt

=
n∑

j=1,j ̸=i

kijxj −

k0i +
n∑

j=1,j ̸=i

kji

 xi

The elements of A = [aij ] are:
▶ Off-diagonal elements: aij = kij ≥ 0 for i ̸= j . (This ensures positivity).
▶ Diagonal elements: aii = −k0i −

∑n
j=1,j ̸=i kji ≤ 0. The diagonal element aii

represents the total fractional outflow from compartment i .

Definition 4 (Metzler Matrix)

A matrix with non-negative off-diagonal elements is called a Metzler matrix. All linear
compartmental matrices are Metzler matrices.

This structure has profound implications for the stability and behavior of the system.
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Conservation of Mass
Definition 5 (Closed System)

A compartmental system is closed if there are no flows to or from the environment.
That is, fi0 = 0 and f0j = 0 for all i , j .

Theorem 6 (Conservation of Mass)

In a closed system, the total amount of material is conserved.

d

dt

n∑
i=1

xi =
n∑

i=1

dxi
dt

= 0

Therefore,
∑n

i=1 xi (t) = N (a constant) for all t.

Proof Sketch:
∑

i ẋi =
∑

i

∑
j ̸=i (fij − fji ). Since every flow fij from j to i is also a

flow out of j , the terms cancel in pairs.
Implication: For closed systems like many basic epidemiological models (e.g., SIR), the
total population N = S(t) + I (t) +R(t) is constant. This reduces the dimensionality of
the system.
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Epidemiological Example: The SIR Model
A classic example of a closed, nonlinear compartmental model.
▶ S: Susceptible individuals
▶ I: Infectious individuals
▶ R: Recovered (and immune) individuals

Susceptible
(S)

Infectious
(I)

Recovered
(R)

βSI/N γI

The ODE System:
dS

dt
= −βSI

N
(Nonlinear term: mass action)

dI

dt
=

βSI

N
− γI

dR

dt
= γI

Here, S(t) + I (t) + R(t) = N is constant. The state space is the simplex
∆ = {(S , I ,R) ∈ R3

≥0 : S + I + R = N}.
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The Matrix Form and Solution

A linear, time-invariant compartmental system can be written as:

dx
dt

= Ax(t), x(0) = x0

where A is the n × n compartmental matrix.

The General Solution
The solution to this system is given by the matrix exponential:

x(t) = eAtx0

where eAt =
∑∞

k=0
(At)k

k! .

The properties of the solution x(t) are determined by the eigenvalues and eigenvectors
of the matrix A.
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Eigenvalues and Stability (Contribution of Jacquez)
Theorem 7 (Gershgorin Circle Theorem Application)

Let A be a compartmental matrix. The eigenvalues λ of A lie in the union of the
Gershgorin discs in the complex plane:

Di =

z ∈ C : |z − aii | ≤
∑
j ̸=i

|aij | =
∑
j ̸=i

aij


Since aii = −k0i −

∑
j ̸=i kji and aij = kij for j ̸= i :

aii = −k0i −
∑
j ̸=i

aji

The sum of the off-diagonals in a column is
∑

j ̸=i aji . The diagonal is aii . The column
sum is

∑n
j=1 aji = −k0i ≤ 0.

Theorem 8 (Properties of Eigenvalues of A, from Jacquez)

Let A be a compartmental matrix. Then:
1. The real parts of all eigenvalues of A are non-positive (Re(λ) ≤ 0).
2. If the system has an "exit" (i.e., there is a path from every compartment to the

environment, making the graph of the system strongly connected to the
environment), then all eigenvalues have strictly negative real parts (Re(λ) < 0). In
this case, the origin is a globally asymptotically stable equilibrium.

3. If the system is closed, then λ = 0 is an eigenvalue, and all other eigenvalues have
negative real parts. The eigenvector for λ = 0 corresponds to a steady state
distribution.
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Physical Interpretation of Eigenvalues

The solution x(t) can be expressed as a sum of modes corresponding to the eigenvalues:

x(t) =
n∑

i=1

civieλi t

(assuming distinct eigenvalues for simplicity).
▶ Each λi determines a time constant of the system, τi = −1/Re(λi ).
▶ The eigenvalues represent the intrinsic rates at which the system returns to

equilibrium after a perturbation.
▶ Faster modes (large negative Re(λi )) decay quickly.
▶ Slower modes (small negative Re(λi )) dominate the long-term behavior.
▶ Imaginary parts of eigenvalues correspond to oscillatory behavior. For

compartmental models, oscillations are damped.
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Structural Properties: Reachability and Observability
These concepts from control theory were applied to compartmental analysis, notably by
Jacquez. They concern what can be known and controlled about the system.

Definition 9 (Reachability)

A state is reachable if it can be reached from the origin in finite time using some input
function b(t). A system is completely reachable if all states are reachable.

Question: Can we drive the system to any desired state (e.g., drug concentration) with
an external input?

Definition 10 (Observability)

A system is observable if, for any initial state x(0), it is possible to determine this
state from the history of the output y(t) = Cx(t). The matrix C defines which
compartments are measured.

Question: Can we deduce the state of all compartments by only measuring a few?
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Structural Identifiability (Contribution of Walter and Jacquez)
A more fundamental problem in modeling.

Definition 11 (Structural Identifiability)

A model is structurally identifiable if its unknown parameters can be uniquely
determined from perfect (noise-free) input-output data, given the model structure.

The Problem:
▶ We propose a model structure (e.g., the 2-compartment diagram).
▶ We can only inject a tracer (input) and measure its concentration in one

compartment (output).
▶ Can we uniquely find the values of all rate constants (kij) from this experiment?

Why it matters

If a model is not structurally identifiable, different sets of parameter values can produce
the exact same output. This means the model’s internal structure is ambiguous and
parameters are biologically meaningless.

G.G. Walter provided several graph-theoretic conditions and theorems for determining
identifiability from the model’s diagram.
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Example: A Non-Identifiable Model
Consider this "catenary" system where we input into C1 and observe C1.

C1 C2 C3

k21

k12

k32

k23

k01

The output from C1 is a sum of exponentials. It turns out that you cannot distinguish
this model from the one below by only observing C1:

C1 C2

C3

The parameters are not uniquely identifiable. Walter’s work provided systematic ways
to check for this before conducting experiments.

p. 22 – Analysis of linear compartmental models



Introduction to compartmental models

Fundamentals of compartmental modeling

Core mathematical properties

Analysis of linear compartmental models

Analysis of nonlinear models: epidemiology

Advanced and modern topics

Conclusion



The Need for Nonlinearity

Linear models assume rates are proportional to the source compartment only. This fails
when interactions between populations are key.

Epidemiology: The rate of new infections depends on the product of the number of
susceptible people and the number of infectious people.

Rate of new infections ∝ S × I

This is a bilinear term, making the system nonlinear.

Consequences of Nonlinearity:
▶ No general analytical solution.
▶ Existence of multiple equilibria.
▶ Complex behaviors like thresholds, bifurcations, and limit cycles.
▶ Analysis relies on qualitative theory of dynamical systems.
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Equilibria and Stability
Definition 12 (Equilibrium)

An equilibrium (or steady state, fixed point) of the system dx
dt = f (x) is a point x∗ such

that f (x∗) = 0. At equilibrium, the system does not change.

For the SIR model (Ṡ = −βSI/N, İ = βSI/N − γI , Ṙ = γI ):
▶ Disease-Free Equilibrium (DFE): This corresponds to the absence of disease.

We set I = 0.
I ∗ = 0 =⇒ Ṡ = 0, İ = 0, Ṙ = 0

The DFE is any point (S , 0,R) where S + R = N. We typically denote it as
E0 = (N, 0, 0).

▶ Endemic Equilibrium (EE): This corresponds to the persistence of the disease in
the population. We set İ = 0 with I ̸= 0.

βS∗I ∗

N
− γI ∗ = 0 =⇒ βS∗

N
= γ =⇒ S∗ =

γN

β

This equilibrium only exists if S∗ < N, which has major implications.
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Local stability analysis: the Jacobian
To determine if an equilibrium x∗ is stable, we linearize the system around it. The
behavior of the nonlinear system near x∗ is approximated by the linear system:

dz
dt

= J(x∗)z , where z = x − x∗

J(x∗) is the Jacobian matrix of f evaluated at x∗:

Jij =
∂fi
∂xj

∣∣∣∣
x=x∗

Theorem 13 (Hartman-Grobman, simplified)

The stability of the equilibrium x∗ is determined by the eigenvalues of J(x∗):
▶ If all eigenvalues have negative real parts, x∗ is locally asymptotically stable
▶ If at least one eigenvalue has a positive real part, x∗ is unstable
▶ If some eigenvalues have zero real part, the test is inconclusive
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Global stability and Lyapunov functions

Local stability only tells us about behavior near an equilibrium. Global stability ensures
the system converges to the equilibrium from (almost) any initial condition

Definition 14 (Lyapunov Function)

A Lyapunov function L(x) for an equilibrium x∗ is a scalar function that is positive
definite (L(x) > 0 for x ̸= x∗, L(x∗) = 0) and its time derivative along trajectories is
negative semi-definite (dLdt ≤ 0)

Analogy: A Lyapunov function is like the "energy" of the system. If the energy is
always decreasing, the system must eventually settle at its minimum energy state (the
equilibrium)

Finding a Lyapunov function is an art, but for many epidemiological models, they can
be constructed to prove global stability of either the DFE (when R0 < 1) or the EE
(when R0 > 1). This provides much stronger guarantees about the system’s behaviour
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Stochastic Compartmental Models
ODEs are deterministic: given the same initial conditions, the outcome is always the
same. Real life is stochastic.
Sources of Randomness:
▶ Demographic Stochasticity: Randomness from individual events (births, deaths,

transmissions) being discrete. Important in small populations.
▶ Environmental Stochasticity: Random fluctuations in model parameters (e.g.,

β(t) varies randomly around a mean).
Modeling Approaches:
▶ Continuous-Time Markov Chains (CTMC): The number of individuals in each

compartment is an integer, and transitions are probabilistic events. This is the
most detailed approach.

▶ Stochastic Differential Equations (SDEs): Add a noise term to the ODEs. A
good approximation for large populations.

Stochastic models can predict the probability of disease extinction, the size of
outbreaks, and provide confidence intervals for predictions.
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Network and Agent-Based Models

The "well-mixed" assumption is often unrealistic. People interact within a social
network structure.
▶ Network Models: Individuals are nodes, and contacts are edges. The disease

spreads along the network.
▶ Can capture the role of "superspreaders" (hubs in the network).
▶ The degree distribution of the network heavily influences R0 and epidemic dynamics.

▶ Agent-Based Models (ABM): The most detailed approach. Each individual
("agent") is simulated with their own attributes and behaviors.
▶ Computationally intensive.
▶ Can incorporate complex human behavior, geography, and detailed social structures.
▶ Blurs the line with traditional compartmental models but can be seen as a

micro-simulation from which compartmental dynamics emerge.
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Data assimilation and parameter estimation
A model is only as good as its parameters.
▶ The Inverse Problem: Given real-world data (e.g., daily case counts), what are

the most likely parameter values (β, γ, . . . )?
▶ This is a statistical estimation problem.

Common Methods:
▶ Least Squares Fitting: Minimize the difference between model output and data.

Prone to getting stuck in local minima.
▶ Bayesian Inference (MCMC): A powerful, modern approach. Treats parameters

as random variables and finds their posterior probability distribution given the data.

▶ Provides not just a point estimate but a measure of uncertainty (credible intervals)
for each parameter.

▶ Can incorporate prior knowledge about parameters.

This is where the theoretical work on structural identifiability by Jacquez and Walter
becomes critically important in practice.
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Summary of Key Concepts

▶ Compartmental models provide a powerful framework for understanding dynamic
systems by simplifying them into interacting subpopulations.

▶ The mathematical foundation is a system of ODEs, which can be linear or
nonlinear.

▶ Linear models, central to the work of Jacquez, are analyzed via the
compartmental matrix, its eigenvalues, and concepts of identifiability and
observability.

▶ Nonlinear models, essential for epidemiology, are analyzed using the tools of
dynamical systems, as highlighted by Simon’s work.

▶ The Basic Reproduction Number (R0) is the fundamental threshold quantity
that determines whether a disease will spread or die out.

▶ The field is evolving to include more realism through stochasticity, networks,
and time-varying parameters.
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