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Kermack-McKendrick-type epidemic models



Kermack and McKendrick (1927+)

Model in these slides is a particular case in
▶ Kermack & McKendrick. A contribution to the mathematical theory of epidemics

(1927)

That paper was followed by a series of “Contributions to the mathematical theory of
epidemics.”
▶ II. The problem of endemicity (1932)
▶ III. Further studies of the problem of endemicity (1933)
▶ IV. Analysis of experimental epidemics of the virus disease mouse ectromelia (1937)
▶ V. Analysis of experimental epidemics of mouse-typhoid; a bacterial disease

conferring incomplete immunity (1939)
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Kermack-McKendrick-type epidemic models





What is the size of an epidemic?

▶ If we are interested in the possibility that an epidemic occurs
▶ Does an epidemic peak always take place?
▶ If it does take place, what is its size?

▶ If an epidemic traverses a population, is everyone affected/infected?
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The Kermack-McKendrick SIR model without demography

▶ The period of time under consideration is sufficiently short that demography can be
neglected (we also say the model has no vital dynamics)

▶ Individuals are either susceptible to the disease or infected by (and infectious with)
the disease

▶ After recovering or dying from the disease, individuals are removed from the
infectious compartment (R)

▶ Incidence is of mass action type and takes the form βSI
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The state variables

We formulate the model as a system of differential equations

Differential equations: unknowns are functions (instead of scalars, like in algebraic
equations)

At time t ≥ 0 (we typically assume time starts at t = 0, but could also consider
t ≥ t0 > 0), the state variables, in the current model, are the numbers of individuals
who are
▶ susceptible to the disease: S(t)

▶ infected and infectious with the disease: I (t)

▶ removed from the infectious comparment: R(t)

Often, we drop the dependence on t if it is not explicitly required and write S , I ,R
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Important – Incidence functions

Incidence is the rate at which new cases arise, the incidence function then describes
how contacts lead to new infections

If there are S susceptible individuals and I infectious individuals in the population, we
use a function of the form

f (S , I )

The function can also explicitly depend on the total population N, i.e., f (S , I ,N)

We return to incidence functions in Lecture 06

For now, just know the most common incidence functions are
▶ mass action incidence f (S , I ,N) = βSI

▶ standard (or proportional) incidence f (S , I ,N) = βSI/N
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The Kermack-McKendrick model

This model is typically called the Kermack-McKendrick (KMK) SIR model

d

dt
S(t) = −βS(t)I (t)

d

dt
I (t) = βS(t)I (t)− γI (t)

d

dt
R(t) = γI (t)

S(t) I (t) R(t)
βS(t)I (t) γI (t)
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The Kermack-McKendrick model

As indicated, we often drop dependence on t of the state variables; we also write
X ′ := dX (t)/dt. So the KMK model is usually written

S ′ = −βSI (1a)
I ′ = βSI − γI (1b)
R ′ = γI (1c)

S I R
βSI γI
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Reduction of the model
3 compartments, but when considered in detail, we notice that removed do not have a
direct influence on the dynamics of S or I , in the sense that R does not appear in (1a)
or (1b)

Furthermore, the total population (including deceased who are also in R)
N = S + I + R satisfies

N ′ = (S + I + R)′ = 0

Thus, N is constant and

S(t) + I (t) + R(t) = N0, t ≥ 0. (2)

so the dynamics of R can be deduced from R = N − (S + I ). So we can consider

S ′ = −βSI (3a)
I ′ = βSI − γI (3b)
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Equilibria
Let us consider the equilibria of

S ′ = −βSI (3a)
I ′ = (βS − γ)I (3b)

From (3b)
▶ either S⋆ = γ/β

▶ or I ⋆ = 0

Substitute into (3a)
▶ in the first case, (S⋆, I ⋆) = (γ/β, 0)
▶ in the second case, any S⋆ ≥ 0 is an EP

The second case is an issue: the usual linearisation does not work when there is a
continuum of equilibria as the EP are not isolated
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What is the problem with non-isolated EP?

Proposition 1

The Kermack-McKendrick model SIR model (1) has the continuum of equilibria

EKMK
0 := {(S⋆, I ⋆,R⋆) = (S∞, 0,N0 − S∞), S∞ ∈ [0,N0]} (5)
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Proof

Let us consider (1) and start with I = I ⋆ = 0. Substitute this value into (1a) at
equilibrium, giving 0 = −γS⋆I ⋆(= 0), meaning that any value of S⋆ satisfies this
relation. From the conservation of the total population (2), the equilibrium EKMK

0 takes
the form given by (5)

Now consider S = S⋆ = γ/β. Substituting this value into (1a) at equilibrium gives
0 = −γI ⋆, from which it follows that I ⋆ = 0, and, using the conservation of total
population (2),

(S⋆, I ⋆,R⋆) =

(
γ

β
, 0,N0 −

γ

β

)
(6)

is an equilibrium of (1). The equilibrium (6) is biologically relevant only when
N0 − γ/β ≥ 0. Note that (5) includes (6) when the latter is biologically relevant
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Adapting slightly the definitions in [?], consider the ordinary differential equation

x ′ = f (x) (7)

where x(t) ∈ W and f : W → E is a function such that solutions to (7) exist uniquely,
e.g., a C 1 function, from an open set W of the vector space E into E

Denote x(t, x0) the solution to (7) through the initial value x(t0) = x0
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A point x⋆ ∈ W is an equilibrium if f (x⋆) = 0

Definition 2 (Locally stable equilibrium)

An equilibrium point x⋆ of (7) is locally stable (LS) if for every neighbourhood N (x⋆)
of x⋆ in W , there is a neighbourhood N1 ⊆ N (x⋆) of x⋆ such that every solution
x(t, x0) with x0 ∈ N1 is defined and in N (x⋆) for all t > t0

Definition 3 (Locally asymptotically stable equilibrium)

If N1 can be chosen so that in addition to the properties in Definition 2,
limt→∞ x(t, x0) = x⋆ for all x0 ∈ N1, then x⋆ is locally asymptotically stable (LAS)
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DFE (5) of (1) are not isolated: any (open) neighbourhood of an equilibrium contains
infinitely many other equilibria

S

R

S + R = N0

S = N0

R = N0

x⋆

Neighbourhood N (x⋆) of x⋆ ∈ EKMK
0 lying on the S − R plane (the neighbourhood

extends above and below the S − R plane in the I direction, not shown here). The thin
line is EKMK

0 , the thick line is EKMK
0 ∩N (x⋆)
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Proposition 4

Consider a disease-free equilibrium x⋆ ∈ EKMK
0 of (1). Then x⋆ is LS but not LAS

This means in particular that considering the Jacobian of (1) at the DFE makes no
sense!
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Proof

Let x⋆1 ∈ EKMK
0 be an equilibrium of (1). Consider SN (x⋆1 ) ⊂ EKMK

0 , open subset of
EKMK

0 containing x⋆1 . Now take some x⋆2 ∈ SN (x⋆1 ). Since x⋆2 ∈ SN (x⋆1 ) ⊂ EKMK
0 , x⋆2 is

an equilibrium of (1) and thus x(t, x⋆2 ) = x⋆2 ∈ SN (x⋆1 ) for all t ≥ t0. As a
consequence, x⋆1 is locally stable

⇒ any open neighbourhood N (x⋆1 ) contains SN = N (x⋆1 ) ∩ EKMK
0

Consider, then, some x⋆2 ∈ SN . Since x⋆2 ∈ SN , x⋆2 is an equilibrium and as a
consequence, limt→∞ x(t, x⋆2 ) = x⋆2 . Therefore, any open neighbourhood of x⋆1 contains
points x0 not such that limt→∞ x(t, x0) = x⋆1 =⇒ x⋆1 is LS but not LAS
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The next generation matrix method in this context

Consider the method in [?]

To construct R0, they require local stability

Theorem 2 in [?] pertaining to LAS, on the other hand, has one assumption (assumption
A5) that the DFE be locally asymptotically stable, with the assumption that all
eigenvalues of the linearisation near a disease-free equilibrium have negative real parts

Clearly, this cannot be true with (1)
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Another approach – Study dI/dS

S ′ = −βSI (3a)
I ′ = βSI − γI (3b)

What is the dynamics of dI/dS?

dI

dS
=

dI

dt

dt

dS
=

I ′

S ′ =
βSI − γI

−βSI
=

γ

βS
− 1 (8)

provided S ̸= 0

Note – Recall that S and I are S(t) and I (t).. (8) thus describes the relation between
S and I over solutions to the original ODE (3)
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Integrate (8) and obtain trajectories in state space

I (S) =
γ

β
lnS − S + C

with C ∈ R

IC I (S0) = I0 ⇒ C = S0 + I0 −
γ

β
lnS0 and the solution to (1) is, as a function of S

I (S) = S0 + I0 − S +
γ

β
ln

S

S0

R(S) = N − S − I (S) = R0 −
γ

β
ln

S

S0

(since N0 = S0 + I0 + R0)
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Trajectories of (3) in (S , I )-space, normalised, with IC (S0, 1 − S0) and β/γ = 2.5
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Let us study

I (S) = S0 + I0 − S +
γ

β
ln

S

S0

We have
d

dS
I (S) =

γ

βS
− 1

So, in the previous curves, the max of I (S) happens when S = γ/β (S = 0.4 in the
example)

At that point,

I (S) = I0 +

(
1 − 1

R0
− ln(R0)

R0

)
S0
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Theorem 5 (Epidemic or no epidemic?)

Let (S(t), I (t)) be a solution to (3) and R0 defined by

R0 =
β

γ
S0 (9)

▶ If R0 ≤ 1, then I (t) ↘ 0 when t → ∞
▶ If R0 > 1, then I (t) first reaches a maximum

I0 +

(
1 − 1

R0
− ln(R0)

R0

)
S0 (10)

then goes to 0 as t → ∞
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rhs_SIR_KMK <- function(t, x, p) {
with(as.list(c(x, p)), {

dS = - beta * S * I
dI = beta * S * I - gamma * I
dR = gamma * I
return(list(c(dS, dI, dR)))

})
}
# Initial condition for S (to compute R_0)
S0 = 1000
gamma = 1/14
# Set beta so that R_0 = 1.5
beta = 1.5 * gamma / S0
params = list(gamma = gamma, beta = beta)
IC = c(S = S0, I = 1, R = 0)
times = seq(0, 365, 1)
sol_KMK <- ode(IC, times, rhs_SIR_KMK, params)
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plot(sol_KMK[, "time"], sol_KMK[, "I"],
type = "l", lwd = 2,
main = TeX("Kermack-McKendrick SIR, $R_0=1.5$"),
xlab = "Time (days)", ylab = "Prevalence")
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The basic reproduction number R0

▶ Indicator often used in epidemiology. Verbally
average number of secondary cases of infection produced when a single infec-
tious individual is introduced in a wholly susceptible population

▶ If R0 < 1, then each infectious individual infects on average less than 1 person and
the epidemic is quite likely to go extinct

▶ If R0 > 1, then each infectious individual infects on average more than 1 person and
an epidemic is quite likely to occur
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A few sample values of R0

R0 can be estimated from data (from the Anderson & May book)

Infection Location Period R0

Measles Cirencester, England 1947-50 13-14
England and Wales 1950-68 16-18
Kansas, USA 1918-21 5-6
Ontario, Canada 1912-3 11-12
Willesden, England 1912-3 11-12
Ghana 1960-8 14-15
East Nigeria 1960-8 16-17
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Final size of an epidemic

For a nonnegative valued integrable function w(t), denote

w0 = w(0), w∞ = lim
t→∞

w(t), ŵ =

∫ ∞

0
w(t) dt

In the subsystem

S ′ = −βSI (3a)
I ′ = βSI − γI (3b)

compute the sum of (3a) and (3b), making sure to show time dependence

d

dt
(S(t) + I (t)) = −γI (t)

p. 29 – Kermack-McKendrick-type epidemic models



Integrate from 0 to ∞:∫ ∞

0

d

dt
(S(t) + I (t)) dt = −

∫ ∞

0
γI (t)dt

The left hand side gives∫ ∞

0

d

dt
(S(t) + I (t)) dt = S∞ + I∞ − S0 − I0 = S∞ − S0 − I0

since I∞ = 0

The right hand side takes the form

−
∫ ∞

0
γI (t)dt = −γ

∫ ∞

0
I (t)dt = −γ Î

We thus have
S∞ − S0 − I0 = −γ Î (11)
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Now consider (3a):
S ′ = −βSI

Divide both sides by S :
S ′(t)

S(t)
= −βI (t)

Integrate from 0 to ∞:
lnS∞ − lnS0 = −β Î (12)

Express (11) and (12) in terms of −Î and equate

lnS∞ − lnS0

β
=

S∞ − S0 − I0
γ

Thus we have
(lnS0 − lnS∞)S0 = (S0 − S∞)R0 + I0R0 (13)
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Theorem 6 (Final size relation)

Let (S(t), I (t)) be a solution to (3) and R0 defined by (9)

The number S(t) of susceptible individuals is a nonincreasing function and its limit S∞
is the only solution in (0,S0) of the transcendental equation

(lnS0 − lnS∞)S0 = (S0 − S∞)R0 + I0R0 (13)
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The (transcendantal) final size equation

Rewrite the final size equation

(lnS0 − lnS∞)S0 = (S0 − S∞)R0 + I0R0 (13)

as
T (S∞) = (ln S0 − lnS∞)S0 − (S0 − S∞)R0 − I0R0 (14)

Thus, we seek the zeros of the function T (S∞)

p. 33 – Kermack-McKendrick-type epidemic models



We seek S∞ in (0,S0] s.t. T (S∞) = 0, with

T (S∞) = (ln S0 − lnS∞)S0 − (S0 − S∞)R0 − I0R0 (14)

Note to begin that
lim

S∞→0
T (S∞) = lim

S∞→0
−S0 ln(S∞) = ∞

Differentiating T with respect to S∞, we get

T ′(S∞) = R0 − S0/S∞

When S∞ → 0, R0 − S0/S∞ < 0, so T decreases to S∞ = S0/R0

So if R0 ≤ 1, the function T is decreasing on (0,S0), while it has a minimum if R0 > 1
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Case R0 ≤ 1

T (S∞) = (ln S0 − lnS∞)S0 − (S0 − S∞)R0 − I0R0 (14)

▶ We have seen that T decreases on (0,S0]

▶ Also, T (S0) = −I0R0 < 0 (I0 = 0 is trivial and not considered)

▶ T is continuous

=⇒ there exists a unique S∞ ∈ (0, S0] s.t. T (S∞) = 0
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Case R0 > 1

T (S∞) = (ln S0 − lnS∞)S0 − (S0 − S∞)R0 − I0R0 (14)

▶ We have seen that T decreases on (0,S0/R0]

▶ For S∞ ∈ [S0/R0], T ′ > 0

▶ As before, T (S∞) = −I0R0

▶ T is continuous

=⇒ there exists a unique S∞ ∈ (0, S0] s.t. T (S∞) = 0. More precisely, in this case,
S∞ ∈ (0,S0/R0)
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We solve numerically. We need a function

final_size_eq = function(S_inf, S0 = 999, I0 = 1, R_0 = 2.5) {
OUT = S0*(log(S0)-log(S_inf)) - (S0+I0-S_inf)*R_0
return(OUT)

}

and solve easily using uniroot:

uniroot(f = final_size_eq, interval = c(0.05, 999))

## $root
## [1] 106.8819
##
## $f.root
## [1] -2.649285e-07
##
## $iter
## [1] 10
##
## $init.it
## [1] NA
##
## $estim.prec
## [1] 6.103516e-05
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A function to use this..

final_size = function(L) {
with(as.list(L), {
S_inf = uniroot(f = function(x)

final_size_eq(S_inf = x,
S0 = S0, I0 = I0,
R_0 = R_0),

interval = c(0.05, S0))
return(S_inf$root)
})

}
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A figure with all the information

N0 = 1000
I0 = 1
S0 = N0-I0
R_0 = 0.8
S = seq(0.1, S0, by = 0.1)
fs = final_size_eq(S, S0 = S0, I0 = I0, R_0 = R_0)
S_inf = uniroot(f = function(x) final_size_eq(S_inf = x,

S0 = S0, I0 = I0,
R_0 = R_0),

interval = c(0.05, S0))
plot(S, fs, type = "l", ylab = "Value of equation (10)")
abline(h = 0)
points(x = S_inf$root, y = 0, pch = 19)
text(x = S_inf$root, y = 0, labels = "S_inf", adj = c(-0.25,-1))
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R0 = 0.8

0 200 400 600 800 1000

0
20

00
60

00

S

V
al

ue
 o

f e
qu

at
io

n 
(1

0)

S_inf

p. 40 – Kermack-McKendrick-type epidemic models



R0 = 2.4
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A little nicer

values = expand.grid(
R_0 = seq(0.01, 3, by = 0.01),
I0 = seq(1, 100, 1)

)
values$S0 = N0-values$I0
L = split(values, 1:nrow(values))
values$S_inf = sapply(X = L, FUN = final_size)
values$final_size = values$S0-values$S_inf+values$I0
values$attack_rate = (values$final_size / N0)*100

p = levelplot(attack_rate ~ R_0*I0, data = values,
xlab = TeX("$R_0$"), ylab = "I(0)",
col.regions = viridis(100))

print(p)

(requires lattice, viridis and latex2exp librairies)
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Attack rate (in %)
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The simplest vaccination model

To implement vaccination in KMK, assume that vaccination reduces the number of
susceptibles

Let total population be N with S0 initially susceptible

Vaccinate a fraction p ∈ [0, 1] of susceptible individuals

Original IC (for simplicity, R(0) = 0)

IC : (S(0), I (0),R(0)) = (S0, I0, 0) (15)

Post-vaccination IC

IC : (S(0), I (0),R(0)) = ((1 − p)S0, I0, pS0) (16)
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Vaccination reproduction number

Without vaccination
R0 =

β

γ
S0 (9)

With vaccination, denoting Rv the reproduction number,

Rv =
β

γ
(1 − p)S0 (17)

Since p ∈ [0, 1], Rv ≤ R0
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Herd immunity

Therefore
▶ Rv < R0 if p > 0
▶ To control the disease, Rv must take a value less than 1

To make Rv less than 1

Rv < 1 ⇐⇒ p > 1 − 1
R0

(18)

By vaccinating a fraction p > 1 − 1/R0 of the susceptible population, we thus are in a
situation where an epidemic peak is precluded (or, at the very least, the final size is
reduced)

This is herd immunity
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